void CalculateDIFC::calculate() { Instrument_const_sptr instrument = m_inputWS->getInstrument(); SpecialWorkspace2D_sptr localWS = boost::dynamic_pointer_cast<SpecialWorkspace2D>(m_outputWS); double l1; Kernel::V3D beamline, samplePos; double beamline_norm; instrument->getInstrumentParameters(l1, beamline, beamline_norm, samplePos); // To get all the detector ID's detid2det_map allDetectors; instrument->getDetectors(allDetectors); // Now go through all detid2det_map::const_iterator it = allDetectors.begin(); for (; it != allDetectors.end(); ++it) { Geometry::IDetector_const_sptr det = it->second; if ((!det->isMasked()) && (!det->isMonitor())) { const detid_t detID = it->first; double offset = 0.; if (m_offsetsWS) offset = m_offsetsWS->getValue(detID, 0.); double difc = Geometry::Instrument::calcConversion( l1, beamline, beamline_norm, samplePos, det, offset); difc = 1. / difc; // calcConversion gives 1/DIFC localWS->setValue(detID, difc); } } }
void CalculateDIFC::calculate(API::Progress &progress, API::MatrixWorkspace_sptr &outputWs, DataObjects::OffsetsWorkspace_sptr &offsetsWS, double l1, double beamlineNorm, Kernel::V3D &beamline, Kernel::V3D &samplePos, detid2det_map &allDetectors) { SpecialWorkspace2D_sptr localWS = boost::dynamic_pointer_cast<SpecialWorkspace2D>(outputWs); // Now go through all detid2det_map::const_iterator it = allDetectors.begin(); for (; it != allDetectors.end(); ++it) { Geometry::IDetector_const_sptr det = it->second; if ((!det->isMasked()) && (!det->isMonitor())) { const detid_t detID = it->first; double offset = 0.; if (offsetsWS) offset = offsetsWS->getValue(detID, 0.); double difc = Geometry::Instrument::calcConversion( l1, beamline, beamlineNorm, samplePos, det, offset); difc = 1. / difc; // calcConversion gives 1/DIFC localWS->setValue(detID, difc); } progress.report("Calculate DIFC"); } }
/** * Corrects a spectra for the detector efficiency calculated from detector * information. Gets the detector information and uses this to calculate its * efficiency * @param spectraIndex :: index of the spectrum to get the efficiency for * @throw invalid_argument if the shape of a detector is isn't a cylinder * aligned along one axis * @throw runtime_error if the SpectraDetectorMap has not been filled * @throw NotFoundError if the detector or its gas pressure or wall thickness * were not found */ void He3TubeEfficiency::correctForEfficiency(std::size_t spectraIndex) { Geometry::IDetector_const_sptr det = this->inputWS->getDetector(spectraIndex); if( det->isMonitor() || det->isMasked() ) { return; } const double exp_constant = this->calculateExponential(spectraIndex, det); const double scale = this->getProperty("ScaleFactor"); Mantid::MantidVec &yout = this->outputWS->dataY(spectraIndex); Mantid::MantidVec &eout = this->outputWS->dataE(spectraIndex); // Need the original values so this is not a reference const Mantid::MantidVec yValues = this->inputWS->readY(spectraIndex); const Mantid::MantidVec eValues = this->inputWS->readE(spectraIndex); std::vector<double>::const_iterator yinItr = yValues.begin(); std::vector<double>::const_iterator einItr = eValues.begin(); Mantid::MantidVec::const_iterator xItr = this->inputWS->readX(spectraIndex).begin(); Mantid::MantidVec::iterator youtItr = yout.begin(); Mantid::MantidVec::iterator eoutItr = eout.begin(); for( ; youtItr != yout.end(); ++youtItr, ++eoutItr) { const double wavelength = (*xItr + *(xItr + 1)) / 2.0; const double effcorr = this->detectorEfficiency(exp_constant * wavelength, scale); *youtItr = (*yinItr) * effcorr; *eoutItr = (*einItr) * effcorr; ++yinItr; ++einItr; ++xItr; } return; }
/** Method updates the column, which describes if current detector/spectra is masked It is used if one tries to process multiple workspaces obtained from a series of experiments where the masked detectors can change */ void PreprocessDetectorsToMD::updateMasksState( const API::MatrixWorkspace_const_sptr &inputWS, DataObjects::TableWorkspace_sptr &targWS) { int *pMasksArray = targWS->getColDataArray<int>("detMask"); if (!pMasksArray) throw std::invalid_argument( "target workspace " + targWS->getName() + " does not have defined masks column to update"); size_t nHist = targWS->rowCount(); const size_t nRows = inputWS->getNumberHistograms(); if (nHist != nRows) throw std::invalid_argument( " source workspace " + inputWS->getName() + " and target workspace " + targWS->getName() + " are inconsistent as have different numner of detectors"); uint32_t liveDetectorsCount(0); for (size_t i = 0; i < nHist; i++) { // get detector or detector group which corresponds to the spectra i Geometry::IDetector_const_sptr spDet; try { spDet = inputWS->getDetector(i); } catch (Kernel::Exception::NotFoundError &) { continue; } // Check that we aren't dealing with monitor... if (spDet->isMonitor()) continue; // if masked detectors state is not used, masked detectors just ignored; bool maskDetector = spDet->isMasked(); *(pMasksArray + liveDetectorsCount) = maskDetector ? 1 : 0; liveDetectorsCount++; } }
/** * Move the user selected spectra in the input workspace into groups in the output workspace * @param inputWS :: user selected input workspace for the algorithm * @param outputWS :: user selected output workspace for the algorithm * @param prog4Copy :: the amount of algorithm progress to attribute to moving a single spectra * @return number of new grouped spectra */ size_t GroupDetectors2::formGroupsEvent( DataObjects::EventWorkspace_const_sptr inputWS, DataObjects::EventWorkspace_sptr outputWS, const double prog4Copy) { // get "Behaviour" string const std::string behaviour = getProperty("Behaviour"); int bhv = 0; if ( behaviour == "Average" ) bhv = 1; API::MatrixWorkspace_sptr beh = API::WorkspaceFactory::Instance().create( "Workspace2D", static_cast<int>(m_GroupSpecInds.size()), 1, 1); g_log.debug() << name() << ": Preparing to group spectra into " << m_GroupSpecInds.size() << " groups\n"; // where we are copying spectra to, we start copying to the start of the output workspace size_t outIndex = 0; // Only used for averaging behaviour. We may have a 1:1 map where a Divide would be waste as it would be just dividing by 1 bool requireDivide(false); for ( storage_map::const_iterator it = m_GroupSpecInds.begin(); it != m_GroupSpecInds.end() ; ++it ) { // This is the grouped spectrum EventList & outEL = outputWS->getEventList(outIndex); // The spectrum number of the group is the key outEL.setSpectrumNo(it->first); // Start fresh with no detector IDs outEL.clearDetectorIDs(); // the Y values and errors from spectra being grouped are combined in the output spectrum // Keep track of number of detectors required for masking size_t nonMaskedSpectra(0); beh->dataX(outIndex)[0] = 0.0; beh->dataE(outIndex)[0] = 0.0; for( std::vector<size_t>::const_iterator wsIter = it->second.begin(); wsIter != it->second.end(); ++wsIter) { const size_t originalWI = *wsIter; const EventList & fromEL=inputWS->getEventList(originalWI); //Add the event lists with the operator outEL += fromEL; // detectors to add to the output spectrum outEL.addDetectorIDs(fromEL.getDetectorIDs() ); try { Geometry::IDetector_const_sptr det = inputWS->getDetector(originalWI); if( !det->isMasked() ) ++nonMaskedSpectra; } catch(Exception::NotFoundError&) { // If a detector cannot be found, it cannot be masked ++nonMaskedSpectra; } } if( nonMaskedSpectra == 0 ) ++nonMaskedSpectra; // Avoid possible divide by zero if(!requireDivide) requireDivide = (nonMaskedSpectra > 1); beh->dataY(outIndex)[0] = static_cast<double>(nonMaskedSpectra); // make regular progress reports and check for cancelling the algorithm if ( outIndex % INTERVAL == 0 ) { m_FracCompl += INTERVAL*prog4Copy; if ( m_FracCompl > 1.0 ) m_FracCompl = 1.0; progress(m_FracCompl); interruption_point(); } outIndex ++; } // Refresh the spectraDetectorMap outputWS->doneAddingEventLists(); if ( bhv == 1 && requireDivide ) { g_log.debug() << "Running Divide algorithm to perform averaging.\n"; Mantid::API::IAlgorithm_sptr divide = createChildAlgorithm("Divide"); divide->initialize(); divide->setProperty<API::MatrixWorkspace_sptr>("LHSWorkspace", outputWS); divide->setProperty<API::MatrixWorkspace_sptr>("RHSWorkspace", beh); divide->setProperty<API::MatrixWorkspace_sptr>("OutputWorkspace", outputWS); divide->execute(); } g_log.debug() << name() << " created " << outIndex << " new grouped spectra\n"; return outIndex; }
/** * Move the user selected spectra in the input workspace into groups in the output workspace * @param inputWS :: user selected input workspace for the algorithm * @param outputWS :: user selected output workspace for the algorithm * @param prog4Copy :: the amount of algorithm progress to attribute to moving a single spectra * @return number of new grouped spectra */ size_t GroupDetectors2::formGroups( API::MatrixWorkspace_const_sptr inputWS, API::MatrixWorkspace_sptr outputWS, const double prog4Copy) { // get "Behaviour" string const std::string behaviour = getProperty("Behaviour"); int bhv = 0; if ( behaviour == "Average" ) bhv = 1; API::MatrixWorkspace_sptr beh = API::WorkspaceFactory::Instance().create( "Workspace2D", static_cast<int>(m_GroupSpecInds.size()), 1, 1); g_log.debug() << name() << ": Preparing to group spectra into " << m_GroupSpecInds.size() << " groups\n"; // where we are copying spectra to, we start copying to the start of the output workspace size_t outIndex = 0; // Only used for averaging behaviour. We may have a 1:1 map where a Divide would be waste as it would be just dividing by 1 bool requireDivide(false); for ( storage_map::const_iterator it = m_GroupSpecInds.begin(); it != m_GroupSpecInds.end() ; ++it ) { // This is the grouped spectrum ISpectrum * outSpec = outputWS->getSpectrum(outIndex); // The spectrum number of the group is the key outSpec->setSpectrumNo(it->first); // Start fresh with no detector IDs outSpec->clearDetectorIDs(); // Copy over X data from first spectrum, the bin boundaries for all spectra are assumed to be the same here outSpec->dataX() = inputWS->readX(0); // the Y values and errors from spectra being grouped are combined in the output spectrum // Keep track of number of detectors required for masking size_t nonMaskedSpectra(0); beh->dataX(outIndex)[0] = 0.0; beh->dataE(outIndex)[0] = 0.0; for( std::vector<size_t>::const_iterator wsIter = it->second.begin(); wsIter != it->second.end(); ++wsIter) { const size_t originalWI = *wsIter; // detectors to add to firstSpecNum const ISpectrum * fromSpectrum = inputWS->getSpectrum(originalWI); // Add up all the Y spectra and store the result in the first one // Need to keep the next 3 lines inside loop for now until ManagedWorkspace mru-list works properly MantidVec &firstY = outSpec->dataY(); MantidVec::iterator fYit; MantidVec::iterator fEit = outSpec->dataE().begin(); MantidVec::const_iterator Yit = fromSpectrum->dataY().begin(); MantidVec::const_iterator Eit = fromSpectrum->dataE().begin(); for (fYit = firstY.begin(); fYit != firstY.end(); ++fYit, ++fEit, ++Yit, ++Eit) { *fYit += *Yit; // Assume 'normal' (i.e. Gaussian) combination of errors *fEit = std::sqrt( (*fEit)*(*fEit) + (*Eit)*(*Eit) ); } // detectors to add to the output spectrum outSpec->addDetectorIDs(fromSpectrum->getDetectorIDs() ); try { Geometry::IDetector_const_sptr det = inputWS->getDetector(originalWI); if( !det->isMasked() ) ++nonMaskedSpectra; } catch(Exception::NotFoundError&) { // If a detector cannot be found, it cannot be masked ++nonMaskedSpectra; } } if( nonMaskedSpectra == 0 ) ++nonMaskedSpectra; // Avoid possible divide by zero if(!requireDivide) requireDivide = (nonMaskedSpectra > 1); beh->dataY(outIndex)[0] = static_cast<double>(nonMaskedSpectra); // make regular progress reports and check for cancelling the algorithm if ( outIndex % INTERVAL == 0 ) { m_FracCompl += INTERVAL*prog4Copy; if ( m_FracCompl > 1.0 ) m_FracCompl = 1.0; progress(m_FracCompl); interruption_point(); } outIndex ++; } // Refresh the spectraDetectorMap outputWS->generateSpectraMap(); if ( bhv == 1 && requireDivide ) { g_log.debug() << "Running Divide algorithm to perform averaging.\n"; Mantid::API::IAlgorithm_sptr divide = createChildAlgorithm("Divide"); divide->initialize(); divide->setProperty<API::MatrixWorkspace_sptr>("LHSWorkspace", outputWS); divide->setProperty<API::MatrixWorkspace_sptr>("RHSWorkspace", beh); divide->setProperty<API::MatrixWorkspace_sptr>("OutputWorkspace", outputWS); divide->execute(); } g_log.debug() << name() << " created " << outIndex << " new grouped spectra\n"; return outIndex; }
/** Executes the algorithm *@param localworkspace :: the input workspace *@param indices :: set of indices to sum up */ void SumSpectra::execEvent(EventWorkspace_const_sptr localworkspace, std::set<int> &indices) { // Make a brand new EventWorkspace EventWorkspace_sptr outputWorkspace = boost::dynamic_pointer_cast<EventWorkspace>( API::WorkspaceFactory::Instance().create("EventWorkspace", 1, 2, 1)); // Copy geometry over. API::WorkspaceFactory::Instance().initializeFromParent(localworkspace, outputWorkspace, true); Progress progress(this, 0, 1, indices.size()); // Get the pointer to the output event list EventList &outEL = outputWorkspace->getEventList(0); outEL.setSpectrumNo(m_outSpecId); outEL.clearDetectorIDs(); // Loop over spectra std::set<int>::iterator it; size_t numSpectra(0); size_t numMasked(0); size_t numZeros(0); // for (int i = m_minSpec; i <= m_maxSpec; ++i) for (it = indices.begin(); it != indices.end(); ++it) { int i = *it; // Don't go outside the range. if ((i >= m_numberOfSpectra) || (i < 0)) { g_log.error() << "Invalid index " << i << " was specified. Sum was aborted.\n"; break; } try { // Get the detector object for this spectrum Geometry::IDetector_const_sptr det = localworkspace->getDetector(i); // Skip monitors, if the property is set to do so if (!m_keepMonitors && det->isMonitor()) continue; // Skip masked detectors if (det->isMasked()) { numMasked++; continue; } } catch (...) { // if the detector not found just carry on } numSpectra++; // Add the event lists with the operator const EventList &tOutEL = localworkspace->getEventList(i); if (tOutEL.empty()) { ++numZeros; } outEL += tOutEL; progress.report(); } // Set all X bins on the output cow_ptr<MantidVec> XValues; XValues.access() = localworkspace->readX(0); outputWorkspace->setAllX(XValues); outputWorkspace->mutableRun().addProperty("NumAllSpectra", int(numSpectra), "", true); outputWorkspace->mutableRun().addProperty("NumMaskSpectra", int(numMasked), "", true); outputWorkspace->mutableRun().addProperty("NumZeroSpectra", int(numZeros), "", true); // Assign it to the output workspace property setProperty("OutputWorkspace", boost::dynamic_pointer_cast<MatrixWorkspace>(outputWorkspace)); }
/** * This function handles the logic for summing RebinnedOutput workspaces. * @param outputWorkspace the workspace to hold the summed input * @param progress the progress indicator * @param numSpectra * @param numMasked * @param numZeros */ void SumSpectra::doRebinnedOutput(MatrixWorkspace_sptr outputWorkspace, Progress &progress, size_t &numSpectra, size_t &numMasked, size_t &numZeros) { // Get a copy of the input workspace MatrixWorkspace_sptr temp = getProperty("InputWorkspace"); // First, we need to clean the input workspace for nan's and inf's in order // to treat the data correctly later. This will create a new private // workspace that will be retrieved as mutable. IAlgorithm_sptr alg = this->createChildAlgorithm("ReplaceSpecialValues"); alg->setProperty<MatrixWorkspace_sptr>("InputWorkspace", temp); std::string outName = "_" + temp->getName() + "_clean"; alg->setProperty("OutputWorkspace", outName); alg->setProperty("NaNValue", 0.0); alg->setProperty("NaNError", 0.0); alg->setProperty("InfinityValue", 0.0); alg->setProperty("InfinityError", 0.0); alg->executeAsChildAlg(); MatrixWorkspace_sptr localworkspace = alg->getProperty("OutputWorkspace"); // Transform to real workspace types RebinnedOutput_sptr inWS = boost::dynamic_pointer_cast<RebinnedOutput>(localworkspace); RebinnedOutput_sptr outWS = boost::dynamic_pointer_cast<RebinnedOutput>(outputWorkspace); // Get references to the output workspaces's data vectors ISpectrum *outSpec = outputWorkspace->getSpectrum(0); MantidVec &YSum = outSpec->dataY(); MantidVec &YError = outSpec->dataE(); MantidVec &FracSum = outWS->dataF(0); MantidVec Weight; std::vector<size_t> nZeros; if (m_calculateWeightedSum) { Weight.assign(YSum.size(), 0); nZeros.assign(YSum.size(), 0); } numSpectra = 0; numMasked = 0; numZeros = 0; // Loop over spectra std::set<int>::iterator it; // for (int i = m_minSpec; i <= m_maxSpec; ++i) for (it = m_indices.begin(); it != m_indices.end(); ++it) { int i = *it; // Don't go outside the range. if ((i >= m_numberOfSpectra) || (i < 0)) { g_log.error() << "Invalid index " << i << " was specified. Sum was aborted.\n"; break; } try { // Get the detector object for this spectrum Geometry::IDetector_const_sptr det = localworkspace->getDetector(i); // Skip monitors, if the property is set to do so if (!m_keepMonitors && det->isMonitor()) continue; // Skip masked detectors if (det->isMasked()) { numMasked++; continue; } } catch (...) { // if the detector not found just carry on } numSpectra++; // Retrieve the spectrum into a vector const MantidVec &YValues = localworkspace->readY(i); const MantidVec &YErrors = localworkspace->readE(i); const MantidVec &FracArea = inWS->readF(i); if (m_calculateWeightedSum) { for (int k = 0; k < this->m_yLength; ++k) { if (YErrors[k] != 0) { double errsq = YErrors[k] * YErrors[k] * FracArea[k] * FracArea[k]; YError[k] += errsq; Weight[k] += 1. / errsq; YSum[k] += YValues[k] * FracArea[k] / errsq; FracSum[k] += FracArea[k]; } else { nZeros[k]++; FracSum[k] += FracArea[k]; } } } else { for (int k = 0; k < this->m_yLength; ++k) { YSum[k] += YValues[k] * FracArea[k]; YError[k] += YErrors[k] * YErrors[k] * FracArea[k] * FracArea[k]; FracSum[k] += FracArea[k]; } } // Map all the detectors onto the spectrum of the output outSpec->addDetectorIDs(localworkspace->getSpectrum(i)->getDetectorIDs()); progress.report(); } if (m_calculateWeightedSum) { numZeros = 0; for (size_t i = 0; i < Weight.size(); i++) { if (nZeros[i] == 0) YSum[i] *= double(numSpectra) / Weight[i]; else numZeros += nZeros[i]; } } // Create the correct representation outWS->finalize(); }
/** * This function deals with the logic necessary for summing a Workspace2D. * @param localworkspace The input workspace for summing. * @param outSpec The spectrum for the summed output. * @param progress The progress indicator. * @param numSpectra The number of spectra contributed to the sum. * @param numMasked The spectra dropped from the summations because they are * masked. * @param numZeros The number of zero bins in histogram workspace or empty * spectra for event workspace. */ void SumSpectra::doWorkspace2D(MatrixWorkspace_const_sptr localworkspace, ISpectrum *outSpec, Progress &progress, size_t &numSpectra, size_t &numMasked, size_t &numZeros) { // Get references to the output workspaces's data vectors MantidVec &YSum = outSpec->dataY(); MantidVec &YError = outSpec->dataE(); MantidVec Weight; std::vector<size_t> nZeros; if (m_calculateWeightedSum) { Weight.assign(YSum.size(), 0); nZeros.assign(YSum.size(), 0); } numSpectra = 0; numMasked = 0; numZeros = 0; // Loop over spectra std::set<int>::iterator it; // for (int i = m_minSpec; i <= m_maxSpec; ++i) for (it = this->m_indices.begin(); it != this->m_indices.end(); ++it) { int i = *it; // Don't go outside the range. if ((i >= this->m_numberOfSpectra) || (i < 0)) { g_log.error() << "Invalid index " << i << " was specified. Sum was aborted.\n"; break; } try { // Get the detector object for this spectrum Geometry::IDetector_const_sptr det = localworkspace->getDetector(i); // Skip monitors, if the property is set to do so if (!m_keepMonitors && det->isMonitor()) continue; // Skip masked detectors if (det->isMasked()) { numMasked++; continue; } } catch (...) { // if the detector not found just carry on } numSpectra++; // Retrieve the spectrum into a vector const MantidVec &YValues = localworkspace->readY(i); const MantidVec &YErrors = localworkspace->readE(i); if (m_calculateWeightedSum) { for (int k = 0; k < this->m_yLength; ++k) { if (YErrors[k] != 0) { double errsq = YErrors[k] * YErrors[k]; YError[k] += errsq; Weight[k] += 1. / errsq; YSum[k] += YValues[k] / errsq; } else { nZeros[k]++; } } } else { for (int k = 0; k < this->m_yLength; ++k) { YSum[k] += YValues[k]; YError[k] += YErrors[k] * YErrors[k]; } } // Map all the detectors onto the spectrum of the output outSpec->addDetectorIDs(localworkspace->getSpectrum(i)->getDetectorIDs()); progress.report(); } if (m_calculateWeightedSum) { numZeros = 0; for (size_t i = 0; i < Weight.size(); i++) { if (nZeros[i] == 0) YSum[i] *= double(numSpectra) / Weight[i]; else numZeros += nZeros[i]; } } }
/** Write GSAS file based on user-specified request */ void SaveGSS::writeGSASFile(const std::string &outfilename, bool append, int basebanknumber, bool multiplybybinwidth, bool split, const std::string &outputFormat) { // Initialize the file stream using std::ios_base; ios_base::openmode mode = (append ? (ios_base::out | ios_base::app) : ios_base::out); // Instrument related Geometry::Instrument_const_sptr instrument = inputWS->getInstrument(); Geometry::IComponent_const_sptr source; Geometry::IComponent_const_sptr sample; bool has_instrument = false; if (instrument != NULL) { source = instrument->getSource(); sample = instrument->getSample(); if (source && sample) has_instrument = true; } // Write GSAS file for each histogram (spectrum) std::stringstream outbuffer; int nHist = static_cast<int>(inputWS->getNumberHistograms()); Progress p(this, 0.0, 1.0, nHist); for (int iws = 0; iws < nHist; iws++) { // Determine whether to skip the spectrum due to being masked if (has_instrument) { try { Geometry::IDetector_const_sptr det = inputWS->getDetector(static_cast<size_t>(iws)); if (det->isMasked()) continue; } catch (const Kernel::Exception::NotFoundError &) { has_instrument = false; g_log.warning() << "There is no detector associated with spectrum " << iws << ". Workspace is treated as NO-INSTRUMENT case. \n"; } } // Obtain detector information double l1, l2, tth, difc; if (has_instrument) getFocusedPos(inputWS, iws, l1, l2, tth, difc); else l1 = l2 = tth = difc = 0; g_log.debug() << "Spectrum " << iws << ": L1 = " << l1 << " L2 = " << l2 << " 2theta = " << tth << "\n"; std::stringstream tmpbuffer; // Header: 2 cases requires header: (1) first bank in non-append mode and // (2) split g_log.debug() << "[DB9933] Append = " << append << ", split = " << split << "\n"; bool writeheader = false; std::string splitfilename(""); if (!split && iws == 0 && !append) { // Non-split mode and first spectrum and in non-append mode writeheader = true; } else if (split) { std::stringstream number; number << "-" << iws; Poco::Path path(outfilename); std::string basename = path.getBaseName(); // Filename minus extension std::string ext = path.getExtension(); // Chop off filename path.makeParent(); path.append(basename + number.str() + "." + ext); Poco::File fileobj(path); const bool exists = fileobj.exists(); if (!exists || !append) writeheader = true; if (fileobj.exists() && !append) g_log.warning() << "File " << path.getFileName() << " exists and will be overwritten." << "\n"; splitfilename = path.toString(); } // Create header if (writeheader) writeHeaders(outputFormat, tmpbuffer, l1); // Write bank header if (has_instrument) { tmpbuffer << "# Total flight path " << (l1 + l2) << "m, tth " << (tth * 180. / M_PI) << "deg, DIFC " << difc << "\n"; } tmpbuffer << "# Data for spectrum :" << iws << "\n"; // Determine bank number into GSAS file int bankid; if (m_useSpecAsBank) { bankid = static_cast<int>(inputWS->getSpectrum(iws)->getSpectrumNo()); } else { bankid = basebanknumber + iws; } // Write data if (RALF.compare(outputFormat) == 0) { this->writeRALFdata(bankid, multiplybybinwidth, tmpbuffer, inputWS->readX(iws), inputWS->readY(iws), inputWS->readE(iws)); } else if (SLOG.compare(outputFormat) == 0) { this->writeSLOGdata(bankid, multiplybybinwidth, tmpbuffer, inputWS->readX(iws), inputWS->readY(iws), inputWS->readE(iws)); } else { throw std::runtime_error("Cannot write to the unknown " + outputFormat + "output format"); } // Write out to file if necessary if (split) { // Create a new file name and a new file with ofstream std::ofstream out; out.open(splitfilename.c_str(), mode); out.write(tmpbuffer.str().c_str(), tmpbuffer.str().size()); out.close(); } else { outbuffer << tmpbuffer.str(); } p.report(); } // ENDFOR (iws) // Write file if (!split) { std::ofstream out; out.open(outfilename.c_str(), mode); out.write(outbuffer.str().c_str(), outbuffer.str().length()); out.close(); } return; }
/** method does preliminary calculations of the detectors positions to convert results into k-dE space ; and places the results into static cash to be used in subsequent calls to this algorithm */ void PreprocessDetectorsToMD::processDetectorsPositions( const API::MatrixWorkspace_const_sptr &inputWS, DataObjects::TableWorkspace_sptr &targWS) { g_log.information() << "Preprocessing detector locations in a target reciprocal space\n"; // Geometry::Instrument_const_sptr instrument = inputWS->getInstrument(); // this->pBaseInstr = instrument->baseInstrument(); // Geometry::IComponent_const_sptr source = instrument->getSource(); Geometry::IComponent_const_sptr sample = instrument->getSample(); if ((!source) || (!sample)) { g_log.error() << " Instrument is not fully defined. Can not identify " "source or sample\n"; throw Kernel::Exception::InstrumentDefinitionError( "Instrument not sufficiently defined: failed to get source and/or " "sample"); } // L1 try { double L1 = source->getDistance(*sample); targWS->logs()->addProperty<double>("L1", L1, true); g_log.debug() << "Source-sample distance: " << L1 << std::endl; } catch (Kernel::Exception::NotFoundError &) { throw Kernel::Exception::InstrumentDefinitionError( "Unable to calculate source-sample distance for workspace", inputWS->getTitle()); } // Instrument name std::string InstrName = instrument->getName(); targWS->logs()->addProperty<std::string>( "InstrumentName", InstrName, true); // "The name which should unique identify current instrument"); targWS->logs()->addProperty<bool>("FakeDetectors", false, true); // get access to the workspace memory auto &sp2detMap = targWS->getColVector<size_t>("spec2detMap"); auto &detId = targWS->getColVector<int32_t>("DetectorID"); auto &detIDMap = targWS->getColVector<size_t>("detIDMap"); auto &L2 = targWS->getColVector<double>("L2"); auto &TwoTheta = targWS->getColVector<double>("TwoTheta"); auto &Azimuthal = targWS->getColVector<double>("Azimuthal"); auto &detDir = targWS->getColVector<Kernel::V3D>("DetDirections"); // Efixed; do we need one and does one exist? double Efi = targWS->getLogs()->getPropertyValueAsType<double>("Ei"); float *pEfixedArray(nullptr); const Geometry::ParameterMap &pmap = inputWS->constInstrumentParameters(); if (m_getEFixed) pEfixedArray = targWS->getColDataArray<float>("eFixed"); // check if one needs to generate masked detectors column. int *pMasksArray(nullptr); if (m_getIsMasked) pMasksArray = targWS->getColDataArray<int>("detMask"); //// progress message appearance size_t div = 100; size_t nHist = targWS->rowCount(); Mantid::API::Progress theProgress(this, 0, 1, nHist); //// Loop over the spectra uint32_t liveDetectorsCount(0); for (size_t i = 0; i < nHist; i++) { sp2detMap[i] = std::numeric_limits<uint64_t>::quiet_NaN(); detId[i] = std::numeric_limits<int32_t>::quiet_NaN(); detIDMap[i] = std::numeric_limits<uint64_t>::quiet_NaN(); L2[i] = std::numeric_limits<double>::quiet_NaN(); TwoTheta[i] = std::numeric_limits<double>::quiet_NaN(); Azimuthal[i] = std::numeric_limits<double>::quiet_NaN(); // detMask[i] = true; // get detector or detector group which corresponds to the spectra i Geometry::IDetector_const_sptr spDet; try { spDet = inputWS->getDetector(i); } catch (Kernel::Exception::NotFoundError &) { continue; } // Check that we aren't dealing with monitor... if (spDet->isMonitor()) continue; // if masked detectors state is not used, masked detectors just ignored; bool maskDetector = spDet->isMasked(); if (m_getIsMasked) *(pMasksArray + liveDetectorsCount) = maskDetector ? 1 : 0; else if (maskDetector) continue; // calculate the requested values; sp2detMap[i] = liveDetectorsCount; detId[liveDetectorsCount] = int32_t(spDet->getID()); detIDMap[liveDetectorsCount] = i; L2[liveDetectorsCount] = spDet->getDistance(*sample); double polar = inputWS->detectorTwoTheta(spDet); double azim = spDet->getPhi(); TwoTheta[liveDetectorsCount] = polar; Azimuthal[liveDetectorsCount] = azim; double sPhi = sin(polar); double ez = cos(polar); double ex = sPhi * cos(azim); double ey = sPhi * sin(azim); detDir[liveDetectorsCount].setX(ex); detDir[liveDetectorsCount].setY(ey); detDir[liveDetectorsCount].setZ(ez); // double sinTheta=sin(0.5*polar); // this->SinThetaSq[liveDetectorsCount] = sinTheta*sinTheta; // specific code which should work and makes sense // for indirect instrument but may be deployed on any code with Ei property // defined; if (pEfixedArray) { try { Geometry::Parameter_sptr par = pmap.getRecursive(spDet.get(), "eFixed"); if (par) Efi = par->value<double>(); } catch (std::runtime_error &) { } // set efixed for each existing detector *(pEfixedArray + liveDetectorsCount) = static_cast<float>(Efi); } liveDetectorsCount++; if (i % div == 0) theProgress.report(i, "Preprocessing detectors"); } targWS->logs()->addProperty<uint32_t>("ActualDetectorsNum", liveDetectorsCount, true); theProgress.report(); g_log.information() << "Finished preprocessing detector locations. Found: " << liveDetectorsCount << " detectors out of: " << nHist << " histograms\n"; }