void toggleRenderScale() { if(renderScale != 1) { setRenderScale(1); } else { setRenderScale(stereo.GetDistortionScale()); } }
ShaderLookupDistort() : lookupTextureSize(512, 512), chroma(true) { OVR::Util::Render::StereoConfig stereoConfig; stereoConfig.SetHMDInfo(ovrHmdInfo); const OVR::Util::Render::DistortionConfig & distortion = stereoConfig.GetDistortionConfig(); // The Rift examples use a post-distortion scale to resize the // image upward after distorting it because their K values have // been chosen such that they always result in a scale > 1.0, and // thus shrink the image. However, we can correct for that by // finding the distortion scale the same way the OVR examples do, // and then pre-multiplying the constants by it. double postDistortionScale = 1.0 / stereoConfig.GetDistortionScale(); for (int i = 0; i < 4; ++i) { K[i] = (float)(distortion.K[i] * postDistortionScale); } // red channel correction chromaK[0] = glm::vec2( ovrHmdInfo.ChromaAbCorrection[0], ovrHmdInfo.ChromaAbCorrection[1]); // blue channel correction chromaK[1] = glm::vec2( ovrHmdInfo.ChromaAbCorrection[2], ovrHmdInfo.ChromaAbCorrection[3]); for (int i = 0; i < 2; ++i) { chromaK[i][0] = ((1.0 - chromaK[i][0]) * postDistortionScale) + 1.0; chromaK[i][1] *= postDistortionScale; } lensOffset = 1.0f - (2.0f * ovrHmdInfo.LensSeparationDistance / ovrHmdInfo.HScreenSize); }
DistortionHelper(const OVR::HMDInfo & ovrHmdInfo) { OVR::Util::Render::StereoConfig stereoConfig; stereoConfig.SetHMDInfo(ovrHmdInfo); const OVR::Util::Render::DistortionConfig & distortion = stereoConfig.GetDistortionConfig(); double postDistortionScale = 1.0 / stereoConfig.GetDistortionScale(); for (int i = 0; i < 4; ++i) { K[i] = distortion.K[i] * postDistortionScale; } lensOffset = distortion.XCenterOffset; eyeAspect = ovrHmdInfo.HScreenSize / 2.0f / ovrHmdInfo.VScreenSize; }
SimpleScene() { OVR::Ptr<OVR::ProfileManager> profileManager = *OVR::ProfileManager::Create(); OVR::Ptr<OVR::Profile> profile = *(profileManager->GetDeviceDefaultProfile( OVR::ProfileType::Profile_RiftDK1)); ipd = profile->GetIPD(); eyeHeight = profile->GetEyeHeight(); // setup the initial player location player = glm::inverse(glm::lookAt( glm::vec3(0, eyeHeight, ipd * 4.0f), glm::vec3(0, eyeHeight, 0), GlUtils::Y_AXIS)); OVR::Util::Render::StereoConfig ovrStereoConfig; ovrStereoConfig.SetHMDInfo(ovrHmdInfo); gl::Stacks::projection().top() = glm::perspective(ovrStereoConfig.GetYFOVRadians(), glm::aspect(eyeSize), 0.01f, 1000.0f); eyes[LEFT].viewportPosition = glm::uvec2(0, 0); eyes[LEFT].modelviewOffset = glm::translate(glm::mat4(), glm::vec3(ipd / 2.0f, 0, 0)); eyes[LEFT].projectionOffset = glm::translate(glm::mat4(), glm::vec3(ovrStereoConfig.GetProjectionCenterOffset(), 0, 0)); eyes[RIGHT].viewportPosition = glm::uvec2(hmdNativeResolution.x / 2, 0); eyes[RIGHT].modelviewOffset = glm::translate(glm::mat4(), glm::vec3(-ipd / 2.0f, 0, 0)); eyes[RIGHT].projectionOffset = glm::translate(glm::mat4(), glm::vec3(-ovrStereoConfig.GetProjectionCenterOffset(), 0, 0)); distortionScale = ovrStereoConfig.GetDistortionScale(); ovrSensor = *ovrManager->EnumerateDevices<OVR::SensorDevice>(). CreateDevice(); if (ovrSensor) { sensorFusion.AttachToSensor(ovrSensor); } if (!sensorFusion.IsAttachedToSensor()) { SAY_ERR("Could not attach to sensor device"); } }
void initRift() { OVR::System::Init(OVR::Log::ConfigureDefaultLog(OVR::LogMask_All)); pFusionResult = new OVR::SensorFusion(); pManager = *OVR::DeviceManager::Create(); //pManager->SetMessageHandler(this); pHMD = *pManager->EnumerateDevices<OVR::HMDDevice>().CreateDevice(); stereo.Set2DAreaFov(OVR::DegreeToRad(50.0f)); stereo.SetFullViewport(OVR::Util::Render::Viewport(0,0, width, height)); stereo.SetStereoMode(OVR::Util::Render::Stereo_LeftRight_Multipass); stereo.SetDistortionFitPointVP(-1.0f, 0.0f); renderScale = stereo.GetDistortionScale(); if (pHMD) { pSensor = *pHMD->GetSensor(); InfoLoaded = pHMD->GetDeviceInfo(&Info); strncpy(Info.DisplayDeviceName, RiftMonitorName, 32); RiftDisplayId = Info.DisplayId; EyeDistance = Info.InterpupillaryDistance; for(int i = 0; i < 4; ++i) { DistortionK[i] = Info.DistortionK[i]; DistortionChromaticAberration[i] = Info.ChromaAbCorrection[i]; } stereo.SetHMDInfo(Info); stereo.SetDistortionFitPointVP(-1.0f, 0.0f); renderScale = stereo.GetDistortionScale(); } else { pSensor = *pManager->EnumerateDevices<OVR::SensorDevice>().CreateDevice(); } textureWidth = width * renderScale; textureHeight = height * renderScale; leftEye = stereo.GetEyeRenderParams(OVR::Util::Render::StereoEye_Left); rightEye = stereo.GetEyeRenderParams(OVR::Util::Render::StereoEye_Right); // Left eye rendering parameters leftVP = leftEye.VP; leftProjection = leftEye.Projection; leftViewAdjust = leftEye.ViewAdjust; // Right eye rendering parameters rightVP = leftEye.VP; rightProjection = leftEye.Projection; rightViewAdjust = leftEye.ViewAdjust; if (pSensor) { pFusionResult->AttachToSensor(pSensor); pFusionResult->SetPredictionEnabled(true); float motionPred = pFusionResult->GetPredictionDelta(); // adjust in 0.01 increments if(motionPred < 0) motionPred = 0; pFusionResult->SetPrediction(motionPred); if(InfoLoaded) { riftConnected = true; riftX = Info.DesktopX; riftY = Info.DesktopY; riftResolutionX = Info.HResolution; riftResolutionY = Info.VResolution; } } #ifdef WIN32 getRiftDisplay(); #endif }
HelloRift() : useTracker(false) { ovrManager = *OVR::DeviceManager::Create(); if (!ovrManager) { FAIL("Unable to initialize OVR Device Manager"); } OVR::Ptr<OVR::HMDDevice> ovrHmd = *ovrManager->EnumerateDevices<OVR::HMDDevice>().CreateDevice(); OVR::HMDInfo hmdInfo; if (ovrHmd) { ovrHmd->GetDeviceInfo(&hmdInfo); ovrSensor = *ovrHmd->GetSensor(); } else { Rift::getDk1HmdValues(hmdInfo); } ovrHmd.Clear(); if (!ovrSensor) { ovrSensor = *ovrManager->EnumerateDevices<OVR::SensorDevice>().CreateDevice(); } if (ovrSensor) { sensorFusion.AttachToSensor(ovrSensor); useTracker = sensorFusion.IsAttachedToSensor(); } ipd = hmdInfo.InterpupillaryDistance; distortionCoefficients = glm::vec4( hmdInfo.DistortionK[0], hmdInfo.DistortionK[1], hmdInfo.DistortionK[2], hmdInfo.DistortionK[3]); windowPosition = glm::ivec2(hmdInfo.DesktopX, hmdInfo.DesktopY); // The HMDInfo gives us the position of the Rift in desktop // coordinates as well as the native resolution of the Rift // display panel, but NOT the current resolution of the signal // being sent to the Rift. GLFWmonitor * hmdMonitor = GlfwApp::getMonitorAtPosition(windowPosition); if (!hmdMonitor) { FAIL("Unable to find Rift display"); } // For the current resoltuion we must find the appropriate GLFW monitor const GLFWvidmode * videoMode = glfwGetVideoMode(hmdMonitor); windowSize = glm::ivec2(videoMode->width, videoMode->height); // The eyeSize is used to help us set the viewport when rendering to // each eye. This should be based off the video mode that is / will // be sent to the Rift // We also use the eyeSize to set up the framebuffer which will be // used to render the scene to a texture for distortion and display // on the Rift. The Framebuffer resolution does not have to match // the Physical display resolution in either aspect ratio or // resolution, but using a resolution less than the native pixels can // negatively impact image quality. eyeSize = windowSize; eyeSize.x /= 2; eyeArgs[1].viewportLocation = glm::ivec2(eyeSize.x, 0); eyeArgs[0].viewportLocation = glm::ivec2(0, 0); // Notice that the eyeAspect we calculate is based on the physical // display resolution, regardless of the current resolution being // sent to the Rift. The Rift scales the image sent to it to fit // the display panel, so a 1920x1080 image (with an aspect ratio of // 16:9 will be displayed with the aspect ratio of the Rift display // (16:10 for the DK1). This means that if you're cloning a // 1920x1080 output to the rift and an conventional monitor of those // dimensions the conventional monitor's image will appear a bit // squished. This is expected and correct. eyeAspect = (float)(hmdInfo.HResolution / 2) / (float)hmdInfo.VResolution; // Some of the values needed by the rendering or distortion need some // calculation to find, but the OVR SDK includes a utility class to // do them, so we use it here to get the ProjectionOffset and the // post distortion scale. OVR::Util::Render::StereoConfig stereoConfig; stereoConfig.SetHMDInfo(hmdInfo); // The overall distortion effect has a shrinking effect. postDistortionScale = 1.0f / stereoConfig.GetDistortionScale(); // The projection offset and lens offset are both in normalized // device coordinates, i.e. [-1, 1] on both the X and Y axis glm::vec3 projectionOffsetVector = glm::vec3(stereoConfig.GetProjectionCenterOffset() / 2.0f, 0, 0); eyeArgs[0].projectionOffset = glm::translate(glm::mat4(), projectionOffsetVector); eyeArgs[1].projectionOffset = glm::translate(glm::mat4(), -projectionOffsetVector); eyeArgs[0].lensOffset = 1.0f - (2.0f * hmdInfo.LensSeparationDistance / hmdInfo.HScreenSize); eyeArgs[1].lensOffset = -eyeArgs[0].lensOffset; // The IPD and the modelview offset are in meters. If you wish to have a // different unit for the scale of your world coordinates, you would need // to apply the conversion factor here. glm::vec3 modelviewOffsetVector = glm::vec3(stereoConfig.GetIPD() / 2.0f, 0, 0); eyeArgs[0].modelviewOffset = glm::translate(glm::mat4(), modelviewOffsetVector); eyeArgs[1].modelviewOffset = glm::translate(glm::mat4(), -modelviewOffsetVector); gl::Stacks::projection().top() = glm::perspective( stereoConfig.GetYFOVDegrees() * DEGREES_TO_RADIANS, eyeAspect, Rift::ZNEAR, Rift::ZFAR); }