SimpleScene() { OVR::Ptr<OVR::ProfileManager> profileManager = *OVR::ProfileManager::Create(); OVR::Ptr<OVR::Profile> profile = *(profileManager->GetDeviceDefaultProfile( OVR::ProfileType::Profile_RiftDK1)); ipd = profile->GetIPD(); eyeHeight = profile->GetEyeHeight(); // setup the initial player location player = glm::inverse(glm::lookAt( glm::vec3(0, eyeHeight, ipd * 4.0f), glm::vec3(0, eyeHeight, 0), GlUtils::Y_AXIS)); OVR::Util::Render::StereoConfig ovrStereoConfig; ovrStereoConfig.SetHMDInfo(ovrHmdInfo); gl::Stacks::projection().top() = glm::perspective(ovrStereoConfig.GetYFOVRadians(), glm::aspect(eyeSize), 0.01f, 1000.0f); eyes[LEFT].viewportPosition = glm::uvec2(0, 0); eyes[LEFT].modelviewOffset = glm::translate(glm::mat4(), glm::vec3(ipd / 2.0f, 0, 0)); eyes[LEFT].projectionOffset = glm::translate(glm::mat4(), glm::vec3(ovrStereoConfig.GetProjectionCenterOffset(), 0, 0)); eyes[RIGHT].viewportPosition = glm::uvec2(hmdNativeResolution.x / 2, 0); eyes[RIGHT].modelviewOffset = glm::translate(glm::mat4(), glm::vec3(-ipd / 2.0f, 0, 0)); eyes[RIGHT].projectionOffset = glm::translate(glm::mat4(), glm::vec3(-ovrStereoConfig.GetProjectionCenterOffset(), 0, 0)); distortionScale = ovrStereoConfig.GetDistortionScale(); ovrSensor = *ovrManager->EnumerateDevices<OVR::SensorDevice>(). CreateDevice(); if (ovrSensor) { sensorFusion.AttachToSensor(ovrSensor); } if (!sensorFusion.IsAttachedToSensor()) { SAY_ERR("Could not attach to sensor device"); } }
SimpleScene() : eyes({ { PerEyeArg(LEFT), PerEyeArg(RIGHT) } }) { eyeHeight = 1.0f; applyProjectionOffset = true; applyModelviewOffset = true; { OVR::Ptr<OVR::ProfileManager> profileManager = *OVR::ProfileManager::Create(); OVR::Ptr<OVR::Profile> profile = *(profileManager->GetDeviceDefaultProfile(OVR::ProfileType::Profile_RiftDK1)); ipd = profile->GetIPD(); eyeHeight = profile->GetEyeHeight(); glm::mat4 modelviewOffset = glm::translate(glm::mat4(), glm::vec3(ipd / 2.0f, 0, 0)); eyes[LEFT].modelviewOffset = modelviewOffset; eyes[RIGHT].modelviewOffset = glm::inverse(modelviewOffset); } if (ovrManager) { ovrSensor = *ovrManager->EnumerateDevices<OVR::SensorDevice>().CreateDevice(); if (ovrSensor) { sensorFusion.AttachToSensor(ovrSensor); } } if (sensorFusion.IsAttachedToSensor()) { SAY("Attached"); } else { SAY("Attach failed"); } { OVR::HMDInfo hmdInfo; Rift::getHmdInfo(ovrManager, hmdInfo); OVR::Util::Render::StereoConfig config; config.SetHMDInfo(hmdInfo); gl::Stacks::projection().top() = glm::perspective(config.GetYFOVRadians(), eyeAspect, 0.01f, 1000.0f); glm::mat4 projectionOffset = glm::translate(glm::mat4(), glm::vec3(config.GetProjectionCenterOffset(), 0, 0)); eyes[LEFT].projectionOffset = projectionOffset; eyes[RIGHT].projectionOffset = glm::inverse(projectionOffset); } glm::vec3 playerPosition(0, eyeHeight, ipd * 4.0f); player = glm::inverse(glm::lookAt(playerPosition, glm::vec3(0, eyeHeight, 0), GlUtils::Y_AXIS)); CameraControl::instance().enableHydra(true); }
HelloRift() : useTracker(false) { ovrManager = *OVR::DeviceManager::Create(); if (!ovrManager) { FAIL("Unable to initialize OVR Device Manager"); } OVR::Ptr<OVR::HMDDevice> ovrHmd = *ovrManager->EnumerateDevices<OVR::HMDDevice>().CreateDevice(); OVR::HMDInfo hmdInfo; if (ovrHmd) { ovrHmd->GetDeviceInfo(&hmdInfo); ovrSensor = *ovrHmd->GetSensor(); } else { Rift::getDk1HmdValues(hmdInfo); } ovrHmd.Clear(); if (!ovrSensor) { ovrSensor = *ovrManager->EnumerateDevices<OVR::SensorDevice>().CreateDevice(); } if (ovrSensor) { sensorFusion.AttachToSensor(ovrSensor); useTracker = sensorFusion.IsAttachedToSensor(); } ipd = hmdInfo.InterpupillaryDistance; distortionCoefficients = glm::vec4( hmdInfo.DistortionK[0], hmdInfo.DistortionK[1], hmdInfo.DistortionK[2], hmdInfo.DistortionK[3]); windowPosition = glm::ivec2(hmdInfo.DesktopX, hmdInfo.DesktopY); // The HMDInfo gives us the position of the Rift in desktop // coordinates as well as the native resolution of the Rift // display panel, but NOT the current resolution of the signal // being sent to the Rift. GLFWmonitor * hmdMonitor = GlfwApp::getMonitorAtPosition(windowPosition); if (!hmdMonitor) { FAIL("Unable to find Rift display"); } // For the current resoltuion we must find the appropriate GLFW monitor const GLFWvidmode * videoMode = glfwGetVideoMode(hmdMonitor); windowSize = glm::ivec2(videoMode->width, videoMode->height); // The eyeSize is used to help us set the viewport when rendering to // each eye. This should be based off the video mode that is / will // be sent to the Rift // We also use the eyeSize to set up the framebuffer which will be // used to render the scene to a texture for distortion and display // on the Rift. The Framebuffer resolution does not have to match // the Physical display resolution in either aspect ratio or // resolution, but using a resolution less than the native pixels can // negatively impact image quality. eyeSize = windowSize; eyeSize.x /= 2; eyeArgs[1].viewportLocation = glm::ivec2(eyeSize.x, 0); eyeArgs[0].viewportLocation = glm::ivec2(0, 0); // Notice that the eyeAspect we calculate is based on the physical // display resolution, regardless of the current resolution being // sent to the Rift. The Rift scales the image sent to it to fit // the display panel, so a 1920x1080 image (with an aspect ratio of // 16:9 will be displayed with the aspect ratio of the Rift display // (16:10 for the DK1). This means that if you're cloning a // 1920x1080 output to the rift and an conventional monitor of those // dimensions the conventional monitor's image will appear a bit // squished. This is expected and correct. eyeAspect = (float)(hmdInfo.HResolution / 2) / (float)hmdInfo.VResolution; // Some of the values needed by the rendering or distortion need some // calculation to find, but the OVR SDK includes a utility class to // do them, so we use it here to get the ProjectionOffset and the // post distortion scale. OVR::Util::Render::StereoConfig stereoConfig; stereoConfig.SetHMDInfo(hmdInfo); // The overall distortion effect has a shrinking effect. postDistortionScale = 1.0f / stereoConfig.GetDistortionScale(); // The projection offset and lens offset are both in normalized // device coordinates, i.e. [-1, 1] on both the X and Y axis glm::vec3 projectionOffsetVector = glm::vec3(stereoConfig.GetProjectionCenterOffset() / 2.0f, 0, 0); eyeArgs[0].projectionOffset = glm::translate(glm::mat4(), projectionOffsetVector); eyeArgs[1].projectionOffset = glm::translate(glm::mat4(), -projectionOffsetVector); eyeArgs[0].lensOffset = 1.0f - (2.0f * hmdInfo.LensSeparationDistance / hmdInfo.HScreenSize); eyeArgs[1].lensOffset = -eyeArgs[0].lensOffset; // The IPD and the modelview offset are in meters. If you wish to have a // different unit for the scale of your world coordinates, you would need // to apply the conversion factor here. glm::vec3 modelviewOffsetVector = glm::vec3(stereoConfig.GetIPD() / 2.0f, 0, 0); eyeArgs[0].modelviewOffset = glm::translate(glm::mat4(), modelviewOffsetVector); eyeArgs[1].modelviewOffset = glm::translate(glm::mat4(), -modelviewOffsetVector); gl::Stacks::projection().top() = glm::perspective( stereoConfig.GetYFOVDegrees() * DEGREES_TO_RADIANS, eyeAspect, Rift::ZNEAR, Rift::ZFAR); }