コード例 #1
0
ファイル: RBGen_ISVDUDV.cpp プロジェクト: Tech-XCorp/Trilinos
 void ISVDUDV::Initialize( const Teuchos::RCP< Teuchos::ParameterList >& params,
                           const Teuchos::RCP< const Epetra_MultiVector >& ss,
                           const Teuchos::RCP< RBGen::FileIOHandler< Epetra_Operator > >& fileio) 
 {
   workU_ = Teuchos::rcp( new Epetra_MultiVector(ss->Map(),maxBasisSize_,false) );
   Epetra_LocalMap lclmap(ss->NumVectors(),0,ss->Comm());
   workV_ = Teuchos::rcp( new Epetra_MultiVector(lclmap,maxBasisSize_,false) );
 }
コード例 #2
0
ZoltanLibClass::ZoltanLibClass(Teuchos::RCP<const Epetra_MultiVector> input_coords,
                               Teuchos::RCP<const Epetra_MultiVector> weights,
                               int inputType):
  Library(input_coords, weights, inputType)
{
  int weightDim = weights->NumVectors();

  if (weightDim > 1){
    if (input_coords->Comm().MyPID() == 0){
      std::cout << "WARNING: Zoltan will only use the first weight of the "<< weightDim << " supplied for each object" << std::endl;
    }
  }
}
コード例 #3
0
//EpetraMap_To_TpetraMap: takes in Epetra_Map object, converts it to its equivalent Tpetra::Map object,
//and returns an RCP pointer to this Tpetra::Map
Teuchos::RCP<const Tpetra_Map> Petra::EpetraMap_To_TpetraMap(const Teuchos::RCP<const Epetra_Map>& epetraMap_,
                                                      const Teuchos::RCP<const Teuchos::Comm<int> >& commT_)
{
  const std::size_t numElements = Teuchos::as<std::size_t>(epetraMap_->NumMyElements());
  const auto indexBase = Teuchos::as<GO>(epetraMap_->IndexBase());
  if (epetraMap_->DistributedGlobal() || epetraMap_->Comm().NumProc() == Teuchos::OrdinalTraits<int>::one()) {
    Teuchos::Array<Tpetra_GO> indices(numElements);
    int *epetra_indices = epetraMap_->MyGlobalElements();
    for(LO i=0; i < numElements; i++)
       indices[i] = epetra_indices[i];
    const Tpetra::global_size_t computeGlobalElements = Teuchos::OrdinalTraits<Tpetra::global_size_t>::invalid();
    return Teuchos::rcp(new Tpetra_Map(computeGlobalElements, indices, indexBase, commT_));
  } else {
    return Teuchos::rcp(new Tpetra_Map(numElements, indexBase, commT_, Tpetra::LocallyReplicated));
  }
}
コード例 #4
0
LOCA::Epetra::CompactWYOp::CompactWYOp(
        const Teuchos::RCP<LOCA::GlobalData>& global_data,
	const Teuchos::RCP<const Epetra_Operator>& jacOperator, 
	const Teuchos::RCP<const Epetra_MultiVector>& A_multiVec, 
	const Teuchos::RCP<const Epetra_MultiVector>& Y_x_multiVec,
	const Teuchos::RCP<const NOX::Abstract::MultiVector::DenseMatrix>& Y_p_matrix,
	const Teuchos::RCP<const NOX::Abstract::MultiVector::DenseMatrix>& T_matrix) :
  globalData(global_data),
  label("LOCA::Epetra::CompactWYOp"),
  localMap(Y_x_multiVec->NumVectors(), 0, jacOperator->Comm()),
  J(jacOperator),
  A(A_multiVec),
  Y_x(Y_x_multiVec),
  Y_p(View, localMap, Y_p_matrix->values(), Y_p_matrix->stride(), 
      Y_p_matrix->numCols()),
  T(View, localMap, T_matrix->values(), T_matrix->stride(), 
    T_matrix->numCols()),
  tmpMat1(NULL),
  tmpMV(NULL),
  dblas()
{
}
コード例 #5
0
NOX::Abstract::Group::ReturnType
LOCA::Epetra::Group::computeComplex(double frequency)
{
  std::string callingFunction = 
    "LOCA::Epetra::Group::computeComplex()";

  // We must have the time-dependent interface
  if (userInterfaceTime == Teuchos::null)
    return NOX::Abstract::Group::BadDependency;

#ifdef HAVE_NOX_EPETRAEXT
  if (isValidComplex)
    return NOX::Abstract::Group::Ok;

  NOX::Abstract::Group::ReturnType finalStatus = NOX::Abstract::Group::Ok;
  NOX::Abstract::Group::ReturnType status;

  // Get Jacobian matrix
  Teuchos::RCP<Epetra_RowMatrix> jac = Teuchos::rcp_dynamic_cast<Epetra_RowMatrix>(sharedLinearSystem.getObject(this)->getJacobianOperator());
   
  // Create complex matrix
  if (complexMatrix == Teuchos::null) {
    std::vector< std::vector<int> >rowStencil(2);
    std::vector<int> rowIndex;

    rowStencil[0].push_back(0); rowStencil[0].push_back(1);
    rowStencil[1].push_back(-1);  rowStencil[1].push_back(0);
    rowIndex.push_back(0); rowIndex.push_back(1);

    complexMatrix = Teuchos::rcp(new EpetraExt::BlockCrsMatrix(*jac,
							       rowStencil, 
							       rowIndex, 
							       jac->Comm()));

    // Construct global solution vector, the overlap vector, and importer between them
   complexVec = 
     Teuchos::rcp(new EpetraExt::BlockVector(jac->RowMatrixRowMap(), 
					     complexMatrix->RowMap()));  
  }

  // Get mass matrix M
  Teuchos::RCP<Epetra_RowMatrix> mass = Teuchos::rcp_dynamic_cast<Epetra_RowMatrix>(shiftedSharedLinearSystem->getObject(this)->getJacobianOperator());

  // Compute w*M
  status = computeShiftedMatrix(0.0, frequency);
  finalStatus = 
    globalData->locaErrorCheck->combineAndCheckReturnTypes(status, 
							   finalStatus,
							   callingFunction);

  // Load w*M in complex matrix
  complexMatrix->LoadBlock(*mass, 1, 0);

  // Compute -w*M
  status = computeShiftedMatrix(0.0, -frequency);
  finalStatus = 
    globalData->locaErrorCheck->combineAndCheckReturnTypes(status, 
							   finalStatus,
							   callingFunction);

  // Load -w*M in complex matrix
  complexMatrix->LoadBlock(*mass, 0, 1);

  // Compute J
  status = computeJacobian();
  finalStatus = 
    globalData->locaErrorCheck->combineAndCheckReturnTypes(status, 
							   finalStatus,
							   callingFunction);

  // Load J in complex matrix
  complexMatrix->LoadBlock(*jac, 0, 0);
  complexMatrix->LoadBlock(*jac, 1, 1);

  // Create linear system
  if (complexSharedLinearSystem == Teuchos::null) {

    NOX::Epetra::Vector nev(complexVec, NOX::Epetra::Vector::CreateView);

    Teuchos::RCP<Teuchos::ParameterList> lsParams = 
      globalData->parsedParams->getSublist("Linear Solver");

    // Create the Linear System
    Teuchos::RCP<NOX::Epetra::Interface::Required> iReq;
    Teuchos::RCP<NOX::Epetra::Interface::Jacobian> iJac;
    Teuchos::RCP<NOX::Epetra::LinearSystem> complexLinSys = 
      Teuchos::rcp(new NOX::Epetra::LinearSystemAztecOO(printParams, 
							*lsParams,
							iReq, 
							iJac, 
							complexMatrix, 
							nev));
    complexLinSys->setJacobianOperatorForSolve(complexMatrix);
    complexSharedLinearSystem = 
      Teuchos::rcp(new NOX::SharedObject<NOX::Epetra::LinearSystem, 
		                         LOCA::Epetra::Group>(complexLinSys));
  }

  if (finalStatus == NOX::Abstract::Group::Ok)
    isValidComplex = true;

  return finalStatus;

#else

  globalData->locaErrorCheck->throwError(callingFunction, 
					 "Must have EpetraExt support for Hopf tracking.  Configure trilinos with --enable-epetraext");
  return NOX::Abstract::Group::BadDependency;

#endif
}
コード例 #6
0
  void IncSVDPOD::Initialize( const Teuchos::RCP< Teuchos::ParameterList >& params,
                              const Teuchos::RCP< const Epetra_MultiVector >& ss,
                              const Teuchos::RCP< RBGen::FileIOHandler< Epetra_Operator > >& fileio ) {

    using Teuchos::rcp;

    // Get the "Reduced Basis Method" sublist.
    Teuchos::ParameterList rbmethod_params = params->sublist( "Reduced Basis Method" );

    // Get the maximum basis size
    maxBasisSize_ = rbmethod_params.get<int>("Max Basis Size");
    TEUCHOS_TEST_FOR_EXCEPTION(maxBasisSize_ < 2,std::invalid_argument,"\"Max Basis Size\" must be at least 2.");

    // Get a filter
    filter_ = rbmethod_params.get<Teuchos::RCP<Filter<double> > >("Filter",Teuchos::null);
    if (filter_ == Teuchos::null) {
      int k = rbmethod_params.get("Rank",(int)5);
      filter_ = rcp( new RangeFilter<double>(LARGEST,k,k) );
    }

    // Get convergence tolerance
    tol_ = rbmethod_params.get<double>("Convergence Tolerance",tol_);

    // Get debugging flag
    debug_ = rbmethod_params.get<bool>("IncSVD Debug",debug_);

    // Get verbosity level
    verbLevel_ = rbmethod_params.get<int>("IncSVD Verbosity Level",verbLevel_);

    // Get an Anasazi orthomanager
    if (rbmethod_params.isType<
          Teuchos::RCP< Anasazi::OrthoManager<double,Epetra_MultiVector> > 
        >("Ortho Manager")
       ) 
    {
      ortho_ = rbmethod_params.get< 
                Teuchos::RCP<Anasazi::OrthoManager<double,Epetra_MultiVector> >
               >("Ortho Manager");
      TEUCHOS_TEST_FOR_EXCEPTION(ortho_ == Teuchos::null,std::invalid_argument,"User specified null ortho manager.");
    }
    else {
      std::string omstr = rbmethod_params.get("Ortho Manager","DGKS");
      if (omstr == "SVQB") {
        ortho_ = rcp( new Anasazi::SVQBOrthoManager<double,Epetra_MultiVector,Epetra_Operator>() );
      }
      else { // if omstr == "DGKS"
        ortho_ = rcp( new Anasazi::BasicOrthoManager<double,Epetra_MultiVector,Epetra_Operator>() );
      }
    }

    // Lmin,Lmax,Kstart
    lmin_ = rbmethod_params.get("Min Update Size",1);
    TEUCHOS_TEST_FOR_EXCEPTION(lmin_ < 1 || lmin_ >= maxBasisSize_,std::invalid_argument,
                       "Method requires 1 <= min update size < max basis size.");
    lmax_ = rbmethod_params.get("Max Update Size",maxBasisSize_);
    TEUCHOS_TEST_FOR_EXCEPTION(lmin_ > lmax_,std::invalid_argument,"Max update size must be >= min update size.");

    startRank_ = rbmethod_params.get("Start Rank",lmin_);
    TEUCHOS_TEST_FOR_EXCEPTION(startRank_ < 1 || startRank_ > maxBasisSize_,std::invalid_argument,
                       "Starting rank must be in [1,maxBasisSize_)");
    // MaxNumPasses
    maxNumPasses_ = rbmethod_params.get("Maximum Number Passes",maxNumPasses_);
    TEUCHOS_TEST_FOR_EXCEPTION(maxNumPasses_ != -1 && maxNumPasses_ <= 0, std::invalid_argument,
                       "Maximum number passes must be -1 or > 0.");
    // Save the pointer to the snapshot matrix
    TEUCHOS_TEST_FOR_EXCEPTION(ss == Teuchos::null,std::invalid_argument,"Input snapshot matrix cannot be null.");
    A_ = ss;

    // MaxNumCols
    maxNumCols_ = A_->NumVectors();
    maxNumCols_ = rbmethod_params.get("Maximum Number Columns",maxNumCols_);
    TEUCHOS_TEST_FOR_EXCEPTION(maxNumCols_ < A_->NumVectors(), std::invalid_argument,
                       "Maximum number of columns must be at least as many as in the initializing data set.");

    // V locally replicated or globally distributed
    // this must be true for now
    // Vlocal_ = rbmethod_params.get("V Local",Vlocal_);

    // Allocate space for the factorization
    sigma_.reserve( maxBasisSize_ );
    U_ = Teuchos::null;
    V_ = Teuchos::null;
    U_ = rcp( new Epetra_MultiVector(ss->Map(),maxBasisSize_,false) );
    if (Vlocal_) {
      Epetra_LocalMap lclmap(maxNumCols_,0,ss->Comm());
      V_ = rcp( new Epetra_MultiVector(lclmap,maxBasisSize_,false) );
    }
    else {
      Epetra_Map gblmap(maxNumCols_,0,ss->Comm());
      V_ = rcp( new Epetra_MultiVector(gblmap,maxBasisSize_,false) );
    }
    B_ = rcp( new Epetra_SerialDenseMatrix(maxBasisSize_,maxBasisSize_) );
    resNorms_.reserve(maxBasisSize_);

    // clear counters
    numProc_ = 0;
    curNumPasses_ = 0;

    // we are now initialized, albeit with null rank
    isInitialized_ = true;
  }
コード例 #7
0
static int run_test(Teuchos::RCP<Epetra_CrsMatrix> matrix,
	  bool verbose,           // display the graph before & after
	  bool contract,          // set global number of partitions to 1/2 num procs
	  int partitioningType,   // hypergraph or graph partitioning, or simple
	  int vertexWeightType,   // use vertex weights?
	  int edgeWeightType,     // use edge/hyperedge weights?
	  int objectType)         // use isorropia's CrsMatrix or CrsGraph
{
  int rc=0, fail = 0;
#ifdef HAVE_EPETRAEXT
  int localProc = 0;
  double balance1, balance2, cutn1, cutn2, cutl1, cutl2;
  double balance3, cutn3, cutl3;
  double cutWgt1, cutWgt2, cutWgt3;
  int numCuts1, numCuts2, numCuts3, valid;
  int numPartitions = 0;
  int keepDenseEdges = 0;
  int numProcs = 1;

#ifdef HAVE_MPI
  const Epetra_MpiComm &Comm = dynamic_cast<const Epetra_MpiComm &>(matrix->Comm());
  localProc = Comm.MyPID();
  numProcs = Comm.NumProc();
#else
  const Epetra_SerialComm &Comm = dynamic_cast<const Epetra_SerialComm &>(matrix->Comm());
#endif

  int numRows = matrix->NumGlobalRows();

  if (numRows < (numProcs * 100)){
    // By default Zoltan throws out dense edges, defined as those
    // whose number of non-zeros exceeds 25% of the number of vertices.
    //
    // If dense edges are thrown out of a small matrix, there may be nothing left.
    keepDenseEdges = 1;
  }

  double myShareBefore = 1.0 / numProcs;
  double myShare = myShareBefore;

  if (contract){
    numPartitions = numProcs / 2;

    if (numPartitions > numRows)
      numPartitions = numRows;

    if (numPartitions > 0){
      if (localProc < numPartitions){
	myShare = 1.0 / numPartitions;
      }
      else{
	myShare = 0.0;
      }
    }
    else{
      contract = 0;
    }
  }

  // If we want Zoltan's or Isorropia's default weights, then we don't
  // need to supply a CostDescriber object to createBalancedCopy,
  // so we get to test the API functions that don't take a CostDescriber.

  bool noCosts = ((vertexWeightType == NO_APPLICATION_SUPPLIED_WEIGHTS) &&
		   (edgeWeightType == NO_APPLICATION_SUPPLIED_WEIGHTS));

  // Test the interface that has no parameters, if possible

  bool noParams =
    ((partitioningType == HYPERGRAPH_PARTITIONING) && // default, so requires no params
     (numPartitions == 0) &&                          // >0 would require a parameter
     (keepDenseEdges == 0));                          // >0 would require a parameter

  // Maps for original object
  const Epetra_Map &sourceRowMap = matrix->RowMap();
  const Epetra_Map &sourceRangeMap = matrix->RangeMap();
//   const Epetra_Map &sourceColMap = matrix->ColMap();
  const Epetra_Map &sourceDomainMap = matrix->DomainMap();

  int numCols = matrix->NumGlobalCols();
  int nMyRows = sourceRowMap.NumMyElements();
  int base = sourceRowMap.IndexBase();

  // Compute vertex and edge weights

  Isorropia::Epetra::CostDescriber costs;

  Teuchos::RCP<Epetra_Vector> vptr;

  Teuchos::RCP<Epetra_CrsMatrix> eptr;

  Teuchos::RCP<Epetra_Vector> hyperEdgeWeights;

  if (edgeWeightType != NO_APPLICATION_SUPPLIED_WEIGHTS){

    if (partitioningType == GRAPH_PARTITIONING){

      // Create graph edge weights.

      eptr = Teuchos::rcp(new Epetra_CrsMatrix(*matrix));

      if (vertexWeightType == SUPPLY_EQUAL_WEIGHTS){
	eptr->PutScalar(1.0);   // set all nonzeros to 1.0
      }
      else{
	int maxRowSize = eptr->MaxNumEntries();
	double *newVal = NULL;
	if (maxRowSize > 0){
	  newVal = new double [maxRowSize];
	  for (int j=0; j<maxRowSize; j++){
	    newVal[j] = localProc + 1 + j;
	  }
	}
	int numEntries;
	int *idx;
	double *val;
	for (int i=0; i<nMyRows; i++){
	  rc = eptr->ExtractMyRowView(i, numEntries, val, idx);
	  for (int j=0; j<numEntries; j++){
	    val[j] = newVal[j];
	  }
	}
	if (newVal) delete [] newVal;
      }

      eptr->FillComplete(sourceDomainMap, sourceRangeMap);

      costs.setGraphEdgeWeights(eptr);
    }
    else{
      // Create hyperedge weights.  (Note that the list of hyperedges that a
      // process provides weights for has no relation to the columns
      // that it has non-zeroes for, or the rows that is has.  Hypergraphs
      // in general are not square.  Also more than one process can provide
      // a weight for the same edge.  Zoltan combines the weights according
      // to the value of the PHG_EDGE_WEIGHT_OPERATION parameter.  The default
      // for this parameter is to use the maximum edge weight provided by any
      // process for a given hyperedge.)

      Epetra_Map hyperEdgeMap(numCols, base, Comm);

      hyperEdgeWeights = Teuchos::rcp(new Epetra_Vector(hyperEdgeMap));

      int *edgeGIDs = NULL;
      double *weights = NULL;
      int numHEweights = hyperEdgeMap.NumMyElements();

      if (numHEweights){
	edgeGIDs = new int [numHEweights];
	weights = new double [numHEweights];

	if (edgeWeightType == SUPPLY_EQUAL_WEIGHTS){
	  for (int i=0; i<numHEweights; i++){
	    edgeGIDs[i] = hyperEdgeMap.GID(i);
	    weights[i] = 1.0;
	  }
	}
	else{
	  int hiVolumeStart = matrix->NumGlobalCols() / 3;
	  int hiVolumeEnd = hiVolumeStart * 2;
	  for (int i=0; i<numHEweights; i++){
	    edgeGIDs[i] = hyperEdgeMap.GID(i);
	    if ((edgeGIDs[i] < hiVolumeStart) || (edgeGIDs[i] >= hiVolumeEnd)){
	      weights[i] = 1.0;
	    }
	    else{
	      weights[i] = 3.0;
	    }
	  }
	}
	hyperEdgeWeights->ReplaceGlobalValues(numHEweights, weights, edgeGIDs);
      }

      if (weights){
	delete [] weights;
	delete [] edgeGIDs;
      }

      costs.setHypergraphEdgeWeights(hyperEdgeWeights);
    }
  }

  bool need_importer = false;

  if ((vertexWeightType != NO_APPLICATION_SUPPLIED_WEIGHTS)){

    need_importer = true;  // to redistribute row weights

    double *val = NULL;

    if (nMyRows){
      val = new double [nMyRows];

      if (vertexWeightType == SUPPLY_EQUAL_WEIGHTS){
	for (int i=0; i<nMyRows; i++){
	  val[i] = 1.0;
	}
      }
      else if (vertexWeightType == SUPPLY_UNEQUAL_WEIGHTS){
	for (int i=0; i<nMyRows; i++){
	  val[i] = 1.0 + ((localProc+1) / 2);
	}
      }
    }

    vptr = Teuchos::rcp(new Epetra_Vector(Copy, sourceRowMap, val));

    if (val) delete [] val;

    costs.setVertexWeights(vptr);
  }

  // Calculate partition quality metrics before calling Zoltan

  if (partitioningType == GRAPH_PARTITIONING){
    rc = ispatest::compute_graph_metrics(matrix->Graph(), costs,
	     myShare, balance1, numCuts1, cutWgt1, cutn1, cutl1);
    if (contract){
      // balance wrt target of balancing weight over *all* procs
      rc = ispatest::compute_graph_metrics(matrix->Graph(), costs,
	     myShareBefore, balance3, numCuts3, cutWgt3, cutn3, cutl3);
    }
  }
  else{
    rc = ispatest::compute_hypergraph_metrics(matrix->Graph(), costs,
	     myShare, balance1, cutn1, cutl1);
    if (contract){
      // balance wrt target of balancing weight over *all* procs
      rc = ispatest::compute_hypergraph_metrics(matrix->Graph(), costs,
	     myShareBefore, balance3, cutn3, cutl3);
    }
  }

  if (rc){
    ERROREXIT((localProc==0), "Error in computing partitioning metrics")
  }

  Teuchos::ParameterList params;

#ifdef HAVE_ISORROPIA_ZOLTAN

  if (!noParams){

    // We're using Zoltan for partitioning and supplying
    // parameters, overriding defaults.

    Teuchos::ParameterList &sublist = params.sublist("Zoltan");

    if (partitioningType == GRAPH_PARTITIONING){
      params.set("PARTITIONING METHOD", "GRAPH");
      sublist.set("GRAPH_PACKAGE", "PHG");
    }
    else{
      params.set("PARTITIONING METHOD", "HYPERGRAPH");
      sublist.set("LB_APPROACH", "PARTITION");
      sublist.set("PHG_CUT_OBJECTIVE", "CONNECTIVITY");  // "cutl"
    }

    if (keepDenseEdges){
      // only throw out rows that have no zeroes, default is to
      // throw out if .25 or more of the columns are non-zero
      sublist.set("PHG_EDGE_SIZE_THRESHOLD", "1.0");
    }
     if (numPartitions > 0){
	// test #Partitions < #Processes
	std::ostringstream os;
	os << numPartitions;
	std::string s = os.str();
	//	sublist.set("NUM_GLOBAL_PARTS", s);
	params.set("NUM PARTS", s);
      }

      //sublist.set("DEBUG_LEVEL", "1"); // Zoltan will print out parameters
      //sublist.set("DEBUG_LEVEL", "5");   // proc 0 will trace Zoltan calls
      //sublist.set("DEBUG_MEMORY", "2");  // Zoltan will trace alloc & free
  }

#else
    ERROREXIT((localProc==0),
      "Zoltan partitioning required but Zoltan not available.")
#endif

  // Function scope values

  Teuchos::RCP<Epetra_Vector> newvwgts;
  Teuchos::RCP<Epetra_CrsMatrix> newewgts;

  // Function scope values required for LinearProblem

  Epetra_LinearProblem *problem = NULL;
  Epetra_Map *LHSmap = NULL;
  Epetra_MultiVector *RHS = NULL;
  Epetra_MultiVector *LHS = NULL;

  // Reference counted pointer to balanced object

  Epetra_CrsMatrix *matrixPtr=NULL;
  Epetra_CrsGraph *graphPtr=NULL;
  Epetra_RowMatrix *rowMatrixPtr=NULL;
  Epetra_LinearProblem *problemPtr=NULL;

  // Row map for balanced object
  const Epetra_BlockMap *targetBlockRowMap=NULL;  // for input CrsGraph
  const Epetra_Map *targetRowMap=NULL;            // for all other inputs

  // Column map for balanced object
  const Epetra_BlockMap *targetBlockColMap=NULL;  // for input CrsGraph
  const Epetra_Map *targetColMap=NULL;            // for all other inputs

  if (objectType == EPETRA_CRSMATRIX){
    if (noParams && noCosts){
      matrixPtr = Isorropia::Epetra::createBalancedCopy(*matrix);
    }
    else if (noCosts){
      matrixPtr = Isorropia::Epetra::createBalancedCopy(*matrix, params);
    }
    targetRowMap = &(matrixPtr->RowMap());
    targetColMap = &(matrixPtr->ColMap());
  }
  else if (objectType == EPETRA_CRSGRAPH){
    const Epetra_CrsGraph graph = matrix->Graph();
    if (noParams && noCosts){
      graphPtr = Isorropia::Epetra::createBalancedCopy(graph);
    }
    else if (noCosts){
      graphPtr = Isorropia::Epetra::createBalancedCopy(graph, params);
    }
    targetBlockRowMap = &(graphPtr->RowMap());
    targetBlockColMap = &(graphPtr->ColMap());
  }
  else if (objectType == EPETRA_ROWMATRIX){
    if (noParams && noCosts){
      rowMatrixPtr = Isorropia::Epetra::createBalancedCopy(*matrix);
    }
    else if (noCosts){
      rowMatrixPtr = Isorropia::Epetra::createBalancedCopy(*matrix, params);
    }
    targetRowMap = &(rowMatrixPtr->RowMatrixRowMap());
    targetColMap = &(rowMatrixPtr->RowMatrixColMap());
  }
  else if (objectType == EPETRA_LINEARPROBLEM){

    // Create a linear problem with this matrix.

    LHSmap = new Epetra_Map(numCols, base, Comm);

    int myRHSsize = sourceRowMap.NumMyElements();
    int myLHSsize = LHSmap->NumMyElements();

    int valSize = ((myRHSsize > myLHSsize) ? myRHSsize : myLHSsize);

    double *vals = NULL;

    if (valSize){
      vals = new double [valSize];
    }

    if (valSize){
      for (int i=0; i < valSize; i++){
	// put my rank in my portion of LHS and my portion of RHS
	vals[i] = localProc;
      }
    }

    RHS = new Epetra_MultiVector(Copy, sourceRowMap, vals, 1, 1);

    LHS = new Epetra_MultiVector(Copy, *LHSmap, vals, 1, 1);

    if (valSize){
      delete [] vals;
    }

    problem = new Epetra_LinearProblem(matrix.get(), LHS, RHS);

    Epetra_LinearProblem lp = *problem;

    if (lp.CheckInput()){
      ERROREXIT((localProc==0), "Error creating a LinearProblem");
    }
    if (noParams && noCosts){
      problemPtr = Isorropia::Epetra::createBalancedCopy(lp);
    }
    else if (noCosts){
      problemPtr = Isorropia::Epetra::createBalancedCopy(lp, params);
    }

    targetRowMap = &(problemPtr->GetMatrix()->RowMatrixRowMap());
    targetColMap = &(problemPtr->GetMatrix()->RowMatrixColMap());
  }

  // Redistribute the edge weights
  // Comment this out since we don't redistribute columns

  if (edgeWeightType != NO_APPLICATION_SUPPLIED_WEIGHTS){

    if (partitioningType == GRAPH_PARTITIONING){

      Epetra_Import *importer = NULL;

      if (objectType == EPETRA_CRSGRAPH){
	newewgts = Teuchos::rcp(new Epetra_CrsMatrix(Copy, *graphPtr));
	targetRowMap = &(newewgts->RowMap());
	targetColMap = &(newewgts->ColMap());
      }
      else{
	newewgts = Teuchos::rcp(new Epetra_CrsMatrix(Copy, *targetRowMap, *targetColMap, 0));
      }

      importer = new Epetra_Import(*targetRowMap, sourceRowMap);
      newewgts->Import(*eptr, *importer, Insert);
      newewgts->FillComplete(*targetColMap, *targetRowMap);

      costs.setGraphEdgeWeights(newewgts);
    }
  }

  // Redistribute the vertex weights

  if ((vertexWeightType != NO_APPLICATION_SUPPLIED_WEIGHTS)){

    Epetra_Import *importer = NULL;

    if (objectType == EPETRA_CRSGRAPH){
      newvwgts = Teuchos::rcp(new Epetra_Vector(*targetBlockRowMap));
      importer = new Epetra_Import(*targetBlockRowMap, sourceRowMap);
    }
    else{
      newvwgts = Teuchos::rcp(new Epetra_Vector(*targetRowMap));
      importer = new Epetra_Import(*targetRowMap, sourceRowMap);
    }

    newvwgts->Import(*vptr, *importer, Insert);
    costs.setVertexWeights(newvwgts);
  }

  if (localProc == 0){
    test_type(numPartitions, partitioningType, vertexWeightType, edgeWeightType, objectType);
  }

  if (verbose){

    // Picture of problem before balancing

    if (objectType == EPETRA_LINEARPROBLEM){

      ispatest::show_matrix("Before load balancing", *problem, Comm);
    }
    else{
      ispatest::show_matrix("Before load balancing", matrix->Graph(), Comm);
    }

    // Picture of problem after balancing

    if (objectType == EPETRA_LINEARPROBLEM){
      ispatest::show_matrix("After load balancing (x in Ax=b is not redistributed)", *problemPtr, Comm);
    }
    else if (objectType == EPETRA_ROWMATRIX){
      ispatest::show_matrix("After load balancing", *rowMatrixPtr, Comm);
    }
    else if (objectType == EPETRA_CRSMATRIX){
      ispatest::show_matrix("After load balancing", matrixPtr->Graph(), Comm);
    }
    else if (objectType == EPETRA_CRSGRAPH){
      ispatest::show_matrix("After load balancing", *graphPtr, Comm);
    }
  }

  // After partitioning, recompute the metrics

  if (partitioningType == GRAPH_PARTITIONING){
    if (objectType == EPETRA_LINEARPROBLEM){
      rc = ispatest::compute_graph_metrics(*(problemPtr->GetMatrix()), costs,
	     myShare, balance2, numCuts2, cutWgt2, cutn2, cutl2);
    }
    else if (objectType == EPETRA_ROWMATRIX){
      rc = ispatest::compute_graph_metrics(*rowMatrixPtr, costs,
	     myShare, balance2, numCuts2, cutWgt2, cutn2, cutl2);
    }
    else if (objectType == EPETRA_CRSMATRIX){
      rc = ispatest::compute_graph_metrics(matrixPtr->Graph(), costs,
	     myShare, balance2, numCuts2, cutWgt2, cutn2, cutl2);
    }
    else {
      rc = ispatest::compute_graph_metrics(*graphPtr, costs,
	     myShare, balance2, numCuts2, cutWgt2, cutn2, cutl2);
    }
  }
  else{
    if (objectType == EPETRA_LINEARPROBLEM){
      rc = ispatest::compute_hypergraph_metrics(*(problemPtr->GetMatrix()), costs,
	     myShare, balance2, cutn2, cutl2);
    }
    else if (objectType == EPETRA_ROWMATRIX){
      rc = ispatest::compute_hypergraph_metrics(*rowMatrixPtr, costs,
	     myShare, balance2, cutn2, cutl2);
    }
    else if (objectType == EPETRA_CRSMATRIX){
      rc = ispatest::compute_hypergraph_metrics(matrixPtr->Graph(), costs,
	     myShare, balance2, cutn2, cutl2);
    }
    else{
      rc = ispatest::compute_hypergraph_metrics(*graphPtr, costs,
	     myShare, balance2, cutn2, cutl2);
    }
  }

  if (rc){
    ERROREXIT((localProc==0), "Error in computing partitioning metrics")
  }

  std::string why;

  if (partitioningType == GRAPH_PARTITIONING){
    fail = (cutWgt2 > cutWgt1);
    why = "New weighted edge cuts are worse";

    if (localProc == 0){
      std::cout << "Before partitioning: Balance " << balance1 ;
      std::cout << " cutn " << cutn1 ;
      std::cout << " cutl " << cutl1 ;

      if (contract){
	std::cout << "  (wrt balancing over " << numPartitions << " partitions)" << std::endl;
	std::cout << "Before partitioning: Balance " << balance3 ;
	std::cout << " cutn " << cutn3 ;
	std::cout << " cutl " << cutl3 ;
	std::cout << "  (wrt balancing over " << numProcs << " partitions)" ;
      }
      std::cout << std::endl;

      std::cout << " Total edge cuts: " << numCuts1;
      std::cout << " Total weighted edge cuts: " << cutWgt1 << std::endl;
      std::cout << "After partitioning: Balance " << balance2 ;
      std::cout << " cutn " << cutn2 ;
      std::cout << " cutl " << cutl2 << std::endl;
      std::cout << " Total edge cuts: " << numCuts2;
      std::cout << " Total weighted edge cuts: " << cutWgt2 << std::endl;
    }
  }
  else{
      fail = (cutl2 > cutl1);
      why = "New cutl is worse";

    if (localProc == 0){
      std::cout << "Before partitioning: Balance " << balance1 ;
      std::cout << " cutn " << cutn1 ;
      std::cout << " cutl " << cutl1 ;
      if (contract){
	std::cout << "  (wrt balancing over " << numPartitions << " partitions)" << std::endl;
	std::cout << "Before partitioning: Balance " << balance3 ;
	std::cout << " cutn " << cutn3 ;
	std::cout << " cutl " << cutl3 ;
	std::cout << "  (wrt balancing over " << numProcs << " partitions)" ;
      }
      std::cout << std::endl;
      std::cout << "After partitioning: Balance " << balance2 ;
      std::cout << " cutn " << cutn2 ;
      std::cout << " cutl " << cutl2 << std::endl;
    }
  }

  if (fail){
    if (localProc == 0) std::cout << "ERROR: "+why << std::endl;
  }

  // Check that input matrix is valid.  This test constructs an "x"
  // with the matrix->DomainMap() and a "y" with matrix->RangeMap()
  // and then calculates y = Ax.

  if (objectType == EPETRA_LINEARPROBLEM){
    valid = ispatest::test_matrix_vector_multiply(*problemPtr);
  }
  else if (objectType == EPETRA_ROWMATRIX){
    valid = ispatest::test_row_matrix_vector_multiply(*rowMatrixPtr);
  }
  else if (objectType == EPETRA_CRSMATRIX){
    valid = ispatest::test_matrix_vector_multiply(*matrixPtr);
  }
  else{
    valid = ispatest::test_matrix_vector_multiply(*graphPtr);
  }

  if (!valid){
    if (localProc == 0) std::cout << "Rebalanced matrix is not a valid Epetra matrix" << std::endl;
    fail = 1;
  }
  else{
    if (localProc == 0) std::cout << "Rebalanced matrix is a valid Epetra matrix" << std::endl;
  }

  if (localProc == 0)
    std::cout << std::endl;



#else
  std::cout << "test_simple main: currently can only test "
	 << "with Epetra and EpetraExt enabled." << std::endl;
  rc = -1;
#endif

  return fail;
}
コード例 #8
0
// helper routines
bool SplitMatrix2x2(Teuchos::RCP<const Epetra_CrsMatrix> A,
    const Epetra_Map& A11rowmap,
    const Epetra_Map& A22rowmap,
    Teuchos::RCP<Epetra_CrsMatrix>& A11,
    Teuchos::RCP<Epetra_CrsMatrix>& A12,
    Teuchos::RCP<Epetra_CrsMatrix>& A21,
    Teuchos::RCP<Epetra_CrsMatrix>& A22)
{
  if (A==Teuchos::null)
  {
    std::cout << "ERROR: SplitMatrix2x2: A==null on entry" << std::endl;
    return false;
  }

  const Epetra_Comm& Comm   = A->Comm();
  const Epetra_Map&  A22map = A22rowmap;
  const Epetra_Map&  A11map = A11rowmap;

  //----------------------------- create a parallel redundant map of A22map
  std::map<int,int> a22gmap;
  {
    std::vector<int> a22global(A22map.NumGlobalElements());
    int count=0;
    for (int proc=0; proc<Comm.NumProc(); ++proc)
    {
      int length = 0;
      if (proc==Comm.MyPID())
      {
        for (int i=0; i<A22map.NumMyElements(); ++i)
        {
          a22global[count+length] = A22map.GID(i);
          ++length;
        }
      }
      Comm.Broadcast(&length,1,proc);
      Comm.Broadcast(&a22global[count],length,proc);
      count += length;
    }
    if (count != A22map.NumGlobalElements())
    {
      std::cout << "ERROR SplitMatrix2x2: mismatch in dimensions" << std::endl;
      return false;
    }

    // create the map
    for (int i=0; i<count; ++i)
      a22gmap[a22global[i]] = 1;
    a22global.clear();
  }

  //--------------------------------------------------- create matrix A22
  A22 = Teuchos::rcp(new Epetra_CrsMatrix(Copy,A22map,100));
  {
    std::vector<int>    a22gcindices(100);
    std::vector<double> a22values(100);
    for (int i=0; i<A->NumMyRows(); ++i)
    {
      const int grid = A->GRID(i);
      if (A22map.MyGID(grid)==false)
        continue;
      int     numentries;
      double* values;
      int*    cindices;
      int err = A->ExtractMyRowView(i,numentries,values,cindices);
      if (err)
      {
        std::cout << "ERROR: SplitMatrix2x2: A->ExtractMyRowView returned " << err << std::endl;
        return false;
      }
      if (numentries>(int)a22gcindices.size())
      {
        a22gcindices.resize(numentries);
        a22values.resize(numentries);
      }
      int count=0;
      for (int j=0; j<numentries; ++j)
      {
        const int gcid = A->ColMap().GID(cindices[j]);
        // see whether we have gcid in a22gmap
        std::map<int,int>::iterator curr = a22gmap.find(gcid);
        if (curr==a22gmap.end()) continue;
        //std::cout << gcid << " ";
        a22gcindices[count] = gcid;
        a22values[count]    = values[j];
        ++count;
      }
      //std::cout << std::endl; fflush(stdout);
      // add this filtered row to A22
      err = A22->InsertGlobalValues(grid,count,&a22values[0],&a22gcindices[0]);
      if (err<0)
      {
        std::cout << "ERROR: SplitMatrix2x2: A->InsertGlobalValues returned " << err << std::endl;
        return false;
      }

    } //for (int i=0; i<A->NumMyRows(); ++i)
    a22gcindices.clear();
    a22values.clear();
  }
  A22->FillComplete();
  A22->OptimizeStorage();

  //----------------------------------------------------- create matrix A11
  A11 = Teuchos::rcp(new Epetra_CrsMatrix(Copy,A11map,100));
  {
    std::vector<int>    a11gcindices(100);
    std::vector<double> a11values(100);
    for (int i=0; i<A->NumMyRows(); ++i)
    {
      const int grid = A->GRID(i);
      if (A11map.MyGID(grid)==false) continue;
      int     numentries;
      double* values;
      int*    cindices;
      int err = A->ExtractMyRowView(i,numentries,values,cindices);
      if (err)
      {
        std::cout << "ERROR: SplitMatrix2x2: A->ExtractMyRowView returned " << err << std::endl;
        return false;
      }
      if (numentries>(int)a11gcindices.size())
      {
        a11gcindices.resize(numentries);
        a11values.resize(numentries);
      }
      int count=0;
      for (int j=0; j<numentries; ++j)
      {
        const int gcid = A->ColMap().GID(cindices[j]);
        // see whether we have gcid as part of a22gmap
        std::map<int,int>::iterator curr = a22gmap.find(gcid);
        if (curr!=a22gmap.end()) continue;
        a11gcindices[count] = gcid;
        a11values[count] = values[j];
        ++count;
      }
      err = A11->InsertGlobalValues(grid,count,&a11values[0],&a11gcindices[0]);
      if (err<0)
      {
        std::cout << "ERROR: SplitMatrix2x2: A->InsertGlobalValues returned " << err << std::endl;
        return false;
      }

    } // for (int i=0; i<A->NumMyRows(); ++i)
    a11gcindices.clear();
    a11values.clear();
  }
  A11->FillComplete();
  A11->OptimizeStorage();

  //---------------------------------------------------- create matrix A12
  A12 = Teuchos::rcp(new Epetra_CrsMatrix(Copy,A11map,100));
  {
    std::vector<int>    a12gcindices(100);
    std::vector<double> a12values(100);
    for (int i=0; i<A->NumMyRows(); ++i)
    {
      const int grid = A->GRID(i);
      if (A11map.MyGID(grid)==false) continue;
      int     numentries;
      double* values;
      int*    cindices;
      int err = A->ExtractMyRowView(i,numentries,values,cindices);
      if (err)
      {
        std::cout << "ERROR: SplitMatrix2x2: A->ExtractMyRowView returned " << err << std::endl;
        return false;
      }

      if (numentries>(int)a12gcindices.size())
      {
        a12gcindices.resize(numentries);
        a12values.resize(numentries);
      }
      int count=0;
      for (int j=0; j<numentries; ++j)
      {
        const int gcid = A->ColMap().GID(cindices[j]);
        // see whether we have gcid as part of a22gmap
        std::map<int,int>::iterator curr = a22gmap.find(gcid);
        if (curr==a22gmap.end()) continue;
        a12gcindices[count] = gcid;
        a12values[count] = values[j];
        ++count;
      }
      err = A12->InsertGlobalValues(grid,count,&a12values[0],&a12gcindices[0]);
      if (err<0)
      {
        std::cout << "ERROR: SplitMatrix2x2: A->InsertGlobalValues returned " << err << std::endl;
        return false;
      }

    } // for (int i=0; i<A->NumMyRows(); ++i)
    a12values.clear();
    a12gcindices.clear();
  }
  A12->FillComplete(A22map,A11map);
  A12->OptimizeStorage();

  //----------------------------------------------------------- create A21
  A21 = Teuchos::rcp(new Epetra_CrsMatrix(Copy,A22map,100));
  {
    std::vector<int>    a21gcindices(100);
    std::vector<double> a21values(100);
    for (int i=0; i<A->NumMyRows(); ++i)
    {
      const int grid = A->GRID(i);
      if (A22map.MyGID(grid)==false) continue;
      int     numentries;
      double* values;
      int*    cindices;
      int err = A->ExtractMyRowView(i,numentries,values,cindices);
      if (err)
      {
        std::cout << "ERROR: SplitMatrix2x2: A->ExtractMyRowView returned " << err << std::endl;
        return false;
      }

      if (numentries>(int)a21gcindices.size())
      {
        a21gcindices.resize(numentries);
        a21values.resize(numentries);
      }
      int count=0;
      for (int j=0; j<numentries; ++j)
      {
        const int gcid = A->ColMap().GID(cindices[j]);
        // see whether we have gcid as part of a22gmap
        std::map<int,int>::iterator curr = a22gmap.find(gcid);
        if (curr!=a22gmap.end()) continue;
        a21gcindices[count] = gcid;
        a21values[count] = values[j];
        ++count;
      }
      err = A21->InsertGlobalValues(grid,count,&a21values[0],&a21gcindices[0]);
      if (err<0)
      {
        std::cout << "ERROR: SplitMatrix2x2: A->InsertGlobalValues returned " << err << std::endl;
        return false;
      }

    } // for (int i=0; i<A->NumMyRows(); ++i)
    a21values.clear();
    a21gcindices.clear();
  }
  A21->FillComplete(A11map,A22map);
  A21->OptimizeStorage();

  //-------------------------------------------------------------- tidy up
  a22gmap.clear();
  return true;
}
コード例 #9
0
ファイル: Peridigm_Block.cpp プロジェクト: bbanerjee/ParSim
void PeridigmNS::Block::createMapsFromGlobalMaps(Teuchos::RCP<const Epetra_BlockMap> globalOwnedScalarPointMap,
                                                 Teuchos::RCP<const Epetra_BlockMap> globalOverlapScalarPointMap,
                                                 Teuchos::RCP<const Epetra_BlockMap> globalOwnedVectorPointMap,
                                                 Teuchos::RCP<const Epetra_BlockMap> globalOverlapVectorPointMap,
                                                 Teuchos::RCP<const Epetra_BlockMap> globalOwnedScalarBondMap,
                                                 Teuchos::RCP<const Epetra_Vector>   globalBlockIds,
                                                 Teuchos::RCP<const PeridigmNS::NeighborhoodData> globalNeighborhoodData,
                                                 Teuchos::RCP<const PeridigmNS::NeighborhoodData> globalContactNeighborhoodData)
{
  double* globalBlockIdsPtr;
  globalBlockIds->ExtractView(&globalBlockIdsPtr);

  // Create a list of all the on-processor elements that are part of this block

  vector<int> IDs;
  IDs.reserve(globalOverlapScalarPointMap->NumMyElements()); // upper bound
  vector<int> bondIDs;
  bondIDs.reserve(globalOverlapScalarPointMap->NumMyElements());
  vector<int> bondElementSize;
  bondElementSize.reserve(globalOwnedScalarPointMap->NumMyElements());

  for(int iLID=0 ; iLID<globalOwnedScalarPointMap->NumMyElements() ; ++iLID){
    if(globalBlockIdsPtr[iLID] == blockID) {
      int globalID = globalOwnedScalarPointMap->GID(iLID);
      IDs.push_back(globalID);
    }
  }

  // Record the size of these elements in the bond map
  // Note that if an element has no bonds, it has no entry in the bondMap
  // So, the bond map and the scalar map can have a different number of entries (different local IDs)

  for(int iLID=0 ; iLID<globalOwnedScalarBondMap->NumMyElements() ; ++iLID){
    int globalID = globalOwnedScalarBondMap->GID(iLID);
    int localID = globalOwnedScalarPointMap->LID(globalID);
    if(globalBlockIdsPtr[localID] == blockID){
      bondIDs.push_back(globalID);
      bondElementSize.push_back(globalOwnedScalarBondMap->ElementSize(iLID));
    }
  }

  // Create the owned scalar point map, the owned vector point map, and the owned scalar bond map

  int numGlobalElements = -1;
  int numMyElements = IDs.size();
  int* myGlobalElements = 0;
  if(numMyElements > 0)
    myGlobalElements = &IDs.at(0);
  int elementSize = 1;
  int indexBase = 0;
  ownedScalarPointMap =
    Teuchos::rcp(new Epetra_BlockMap(numGlobalElements, numMyElements, myGlobalElements, elementSize, indexBase, globalOwnedScalarPointMap->Comm()));

  elementSize = 3;
  ownedVectorPointMap =
    Teuchos::rcp(new Epetra_BlockMap(numGlobalElements, numMyElements, myGlobalElements, elementSize, indexBase, globalOwnedScalarPointMap->Comm()));

  numMyElements = bondElementSize.size();
  myGlobalElements = 0;
  int* elementSizeList = 0;
  if(numMyElements > 0){
    myGlobalElements = &bondIDs.at(0);
    elementSizeList = &bondElementSize.at(0);
  }
  ownedScalarBondMap =
    Teuchos::rcp(new Epetra_BlockMap(numGlobalElements, numMyElements, myGlobalElements, elementSizeList, indexBase, globalOwnedScalarPointMap->Comm()));

  // Create a list of nodes that need to be ghosted (both across material boundaries and across processor boundaries)
  set<int> ghosts;

  // Check the neighborhood list for things that need to be ghosted
  int* const globalNeighborhoodList = globalNeighborhoodData->NeighborhoodList();
  int globalNeighborhoodListIndex = 0;
  for(int iLID=0 ; iLID<globalNeighborhoodData->NumOwnedPoints() ; ++iLID){
    int numNeighbors = globalNeighborhoodList[globalNeighborhoodListIndex++];
    if(globalBlockIdsPtr[iLID] == blockID) {
      for(int i=0 ; i<numNeighbors ; ++i){
        int neighborGlobalID = globalOverlapScalarPointMap->GID( globalNeighborhoodList[globalNeighborhoodListIndex + i] );
        ghosts.insert(neighborGlobalID);
      }
    }
    globalNeighborhoodListIndex += numNeighbors;
  }

  // Check the contact neighborhood list for things that need to be ghosted
  if(!globalContactNeighborhoodData.is_null()){
    int* const globalContactNeighborhoodList = globalContactNeighborhoodData->NeighborhoodList();
    int globalContactNeighborhoodListIndex = 0;
    for(int iLID=0 ; iLID<globalContactNeighborhoodData->NumOwnedPoints() ; ++iLID){
      int numNeighbors = globalContactNeighborhoodList[globalContactNeighborhoodListIndex++];
      if(globalBlockIdsPtr[iLID] == blockID) {
        for(int i=0 ; i<numNeighbors ; ++i){
          int neighborGlobalID = globalOverlapScalarPointMap->GID( globalContactNeighborhoodList[globalContactNeighborhoodListIndex + i] );
          ghosts.insert(neighborGlobalID);
        }
      }
      globalContactNeighborhoodListIndex += numNeighbors;
    }
  }

  // Remove entries from ghosts that are already in IDs
  for(unsigned int i=0 ; i<IDs.size() ; ++i)
    ghosts.erase(IDs[i]);

  // Copy IDs, this is the owned global ID list
  vector<int> ownedIDs(IDs.begin(), IDs.end());

  // Append ghosts to IDs
  // This creates the overlap global ID list
  for(set<int>::iterator it=ghosts.begin() ; it!=ghosts.end() ; ++it)
    IDs.push_back(*it);

  // Create the overlap scalar point map and the overlap vector point map

  numMyElements = IDs.size();
  myGlobalElements = 0;
  if(numMyElements > 0)
    myGlobalElements = &IDs.at(0);
  elementSize = 1;
  overlapScalarPointMap =
    Teuchos::rcp(new Epetra_BlockMap(numGlobalElements, numMyElements, myGlobalElements, elementSize, indexBase, globalOwnedScalarPointMap->Comm()));

  elementSize = 3;
  overlapVectorPointMap =
    Teuchos::rcp(new Epetra_BlockMap(numGlobalElements, numMyElements, myGlobalElements, elementSize, indexBase, globalOwnedScalarPointMap->Comm()));

  // Invalidate the importers
  oneDimensionalImporter = Teuchos::RCP<Epetra_Import>();
  threeDimensionalImporter = Teuchos::RCP<Epetra_Import>();
}
コード例 #10
0
AmesosBTFGlobal_LinearProblem::NewTypeRef
AmesosBTFGlobal_LinearProblem::
operator()( OriginalTypeRef orig )
{
  origObj_ = &orig;

  // Extract the matrix and vectors from the linear problem
  OldRHS_ = Teuchos::rcp( orig.GetRHS(), false );
  OldLHS_ = Teuchos::rcp( orig.GetLHS(), false );
  OldMatrix_ = Teuchos::rcp( dynamic_cast<Epetra_CrsMatrix *>( orig.GetMatrix() ), false );
	
  int nGlobal = OldMatrix_->NumGlobalRows(); 
  int n = OldMatrix_->NumMyRows();

  // Check if the matrix is on one processor.
  int myMatProc = -1, matProc = -1;
  int myPID = OldMatrix_->Comm().MyPID();
  int numProcs = OldMatrix_->Comm().NumProc();

  const Epetra_BlockMap& oldRowMap = OldMatrix_->RowMap();

  // Get some information about the parallel distribution.
  int maxMyRows = 0;
  std::vector<int> numGlobalElem( numProcs );
  OldMatrix_->Comm().GatherAll(&n, &numGlobalElem[0], 1);
  OldMatrix_->Comm().MaxAll(&n, &maxMyRows, 1);

  for (int proc=0; proc<numProcs; proc++) 
  {
    if (OldMatrix_->NumGlobalNonzeros() == OldMatrix_->NumMyNonzeros())
      myMatProc = myPID;
  }

  OldMatrix_->Comm().MaxAll( &myMatProc, &matProc, 1 );

  Teuchos::RCP<Epetra_CrsMatrix> serialMatrix;
  Teuchos::RCP<Epetra_Map> serialMap;	
  if( oldRowMap.DistributedGlobal() && matProc == -1) 
  {
    // The matrix is distributed and needs to be moved to processor zero.
    // Set the zero processor as the master.
    matProc = 0;
    serialMap = Teuchos::rcp( new Epetra_Map( Epetra_Util::Create_Root_Map( OldMatrix_->RowMap(), matProc ) ) );
    
    Epetra_Import serialImporter( *serialMap, OldMatrix_->RowMap() );
    serialMatrix = Teuchos::rcp( new Epetra_CrsMatrix( Copy, *serialMap, 0 ) );
    serialMatrix->Import( *OldMatrix_, serialImporter, Insert );
    serialMatrix->FillComplete();
  }
  else {
    // The old matrix has already been moved to one processor (matProc).
    serialMatrix = OldMatrix_;
  }

  if( debug_ )
  {
    cout << "Original (serial) Matrix:\n";
    cout << *serialMatrix << endl;
  }

  // Obtain the current row and column orderings
  std::vector<int> origGlobalRows(nGlobal), origGlobalCols(nGlobal);
  serialMatrix->RowMap().MyGlobalElements( &origGlobalRows[0] );
  serialMatrix->ColMap().MyGlobalElements( &origGlobalCols[0] );
  
  // Perform reindexing on the full serial matrix (needed for BTF).
  Epetra_Map reIdxMap( serialMatrix->RowMap().NumGlobalElements(), serialMatrix->RowMap().NumMyElements(), 0, serialMatrix->Comm() );
  Teuchos::RCP<EpetraExt::ViewTransform<Epetra_CrsMatrix> > reIdxTrans =
    Teuchos::rcp( new EpetraExt::CrsMatrix_Reindex( reIdxMap ) );
  Epetra_CrsMatrix newSerialMatrix = (*reIdxTrans)( *serialMatrix );
  reIdxTrans->fwd();
  
  // Compute and apply BTF to the serial CrsMatrix and has been filtered by the threshold
  EpetraExt::AmesosBTF_CrsMatrix BTFTrans( threshold_, upperTri_, verbose_, debug_ );
  Epetra_CrsMatrix newSerialMatrixBTF = BTFTrans( newSerialMatrix );
  
  rowPerm_ = BTFTrans.RowPerm();
  colPerm_ = BTFTrans.ColPerm();
  blockPtr_ = BTFTrans.BlockPtr();
  numBlocks_ = BTFTrans.NumBlocks();
 
  if (myPID == matProc && verbose_) {
    bool isSym = true;
    for (int i=0; i<nGlobal; ++i) {
      if (rowPerm_[i] != colPerm_[i]) {
        isSym = false;
        break;
      }
    }
    std::cout << "The BTF permutation symmetry (0=false,1=true) is : " << isSym << std::endl;
  }
  
  // Compute the permutation w.r.t. the original row and column GIDs.
  std::vector<int> origGlobalRowsPerm(nGlobal), origGlobalColsPerm(nGlobal);
  if (myPID == matProc) {
    for (int i=0; i<nGlobal; ++i) {
      origGlobalRowsPerm[i] = origGlobalRows[ rowPerm_[i] ];
      origGlobalColsPerm[i] = origGlobalCols[ colPerm_[i] ];
    }
  }
  OldMatrix_->Comm().Broadcast( &origGlobalRowsPerm[0], nGlobal, matProc );
  OldMatrix_->Comm().Broadcast( &origGlobalColsPerm[0], nGlobal, matProc );

  // Generate the full serial matrix that imports according to the previously computed BTF.
  Epetra_CrsMatrix newSerialMatrixT( Copy, newSerialMatrixBTF.RowMap(), 0 );
  newSerialMatrixT.Import( newSerialMatrix, *(BTFTrans.Importer()), Insert );
  newSerialMatrixT.FillComplete();
  
  if( debug_ )
  {
    cout << "Original (serial) Matrix permuted via BTF:\n";
    cout << newSerialMatrixT << endl;
  }

  // Perform reindexing on the full serial matrix (needed for balancing).
  Epetra_Map reIdxMap2( newSerialMatrixT.RowMap().NumGlobalElements(), newSerialMatrixT.RowMap().NumMyElements(), 0, newSerialMatrixT.Comm() );
  Teuchos::RCP<EpetraExt::ViewTransform<Epetra_CrsMatrix> > reIdxTrans2 =
    Teuchos::rcp( new EpetraExt::CrsMatrix_Reindex( reIdxMap2 ) );
  Epetra_CrsMatrix tNewSerialMatrixT = (*reIdxTrans2)( newSerialMatrixT );
  reIdxTrans2->fwd();

  Teuchos::RCP<Epetra_Map> balancedMap;
  
  if (balance_ == "linear") {
    
    // Distribute block somewhat evenly across processors
    std::vector<int> rowDist(numProcs+1,0);
    int balRows = nGlobal / numProcs + 1;
    int numRows = balRows, currProc = 1;
    for ( int i=0; i<numBlocks_ || currProc < numProcs; ++i ) {
      if (blockPtr_[i] > numRows) {
	rowDist[currProc++] = blockPtr_[i-1];
	numRows = blockPtr_[i-1] + balRows;
      }      
    }
    rowDist[numProcs] = nGlobal;
   
    // Create new Map based on this linear distribution.
    int numMyBalancedRows = rowDist[myPID+1]-rowDist[myPID];

    NewRowMap_ = Teuchos::rcp( new Epetra_Map( nGlobal, numMyBalancedRows, &origGlobalRowsPerm[ rowDist[myPID] ], 0, OldMatrix_->Comm() ) );
    // Right now we do not explicitly build the column map and assume the BTF permutation is symmetric!
    //NewColMap_ = Teuchos::rcp( new Epetra_Map( nGlobal, nGlobal, &colPerm_[0], 0, OldMatrix_->Comm() ) );
    
    if ( verbose_ ) 
      std::cout << "Processor " << myPID << " has " << numMyBalancedRows << " rows." << std::endl;    
    //balancedMap = Teuchos::rcp( new Epetra_Map( nGlobal, numMyBalancedRows, 0, serialMatrix->Comm() ) );
  }
  else if (balance_ == "isorropia") {
	
    // Compute block adjacency graph for partitioning.
    std::vector<double> weight;
    Teuchos::RCP<Epetra_CrsGraph> blkGraph;
    EpetraExt::BlockAdjacencyGraph adjGraph;
    blkGraph = adjGraph.compute( const_cast<Epetra_CrsGraph&>(tNewSerialMatrixT.Graph()), 
							numBlocks_, blockPtr_, weight, verbose_);
    Epetra_Vector rowWeights( View, blkGraph->Map(), &weight[0] );
    
    // Call Isorropia to rebalance this graph.
    Teuchos::RCP<Epetra_CrsGraph> balancedGraph =
      Isorropia::Epetra::create_balanced_copy( *blkGraph, rowWeights );
    
    int myNumBlkRows = balancedGraph->NumMyRows();    
    
    //std::vector<int> myGlobalElements(nGlobal);
    std::vector<int> newRangeElements(nGlobal), newDomainElements(nGlobal);
    int grid = 0, myElements = 0;
    for (int i=0; i<myNumBlkRows; ++i) {
      grid = balancedGraph->GRID( i );
      for (int j=blockPtr_[grid]; j<blockPtr_[grid+1]; ++j) {
	newRangeElements[myElements++] = origGlobalRowsPerm[j];
	//myGlobalElements[myElements++] = j;
      }
    }

    NewRowMap_ = Teuchos::rcp( new Epetra_Map( nGlobal, myElements, &newRangeElements[0], 0, OldMatrix_->Comm() ) );
    // Right now we do not explicitly build the column map and assume the BTF permutation is symmetric!
    //NewColMap_ = Teuchos::rcp( new Epetra_Map( nGlobal, nGlobal, &colPerm_[0], 0, OldMatrix_->Comm() ) );
    //balancedMap = Teuchos::rcp( new Epetra_Map( nGlobal, myElements, &myGlobalElements[0], 0, serialMatrix->Comm() ) );

    if ( verbose_ ) 
      std::cout << "Processor " << myPID << " has " << myElements << " rows." << std::endl;
  }
  
  // Use New Domain and Range Maps to Generate Importer
  //for now, assume they start out as identical
  Epetra_Map OldRowMap = OldMatrix_->RowMap();
  Epetra_Map OldColMap = OldMatrix_->ColMap();
  
  if( debug_ )
  {
    cout << "New Row Map\n";
    cout << *NewRowMap_ << endl;
    //cout << "New Col Map\n";
    //cout << *NewColMap_ << endl;
  }

  // Generate New Graph
  // NOTE:  Right now we are creating the graph, assuming that the permutation is symmetric!
  // NewGraph_ = Teuchos::rcp( new Epetra_CrsGraph( Copy, *NewRowMap_, *NewColMap_, 0 ) );
  NewGraph_ = Teuchos::rcp( new Epetra_CrsGraph( Copy, *NewRowMap_, 0 ) );
  Importer_ = Teuchos::rcp( new Epetra_Import( *NewRowMap_, OldRowMap ) );
  Importer2_ = Teuchos::rcp( new Epetra_Import( OldRowMap, *NewRowMap_ ) );
  NewGraph_->Import( OldMatrix_->Graph(), *Importer_, Insert );
  NewGraph_->FillComplete();

  if( debug_ )
  {
    cout << "NewGraph\n";
    cout << *NewGraph_;
  }

  // Create new linear problem and import information from old linear problem
  NewMatrix_ = Teuchos::rcp( new Epetra_CrsMatrix( Copy, *NewGraph_ ) );
  NewMatrix_->Import( *OldMatrix_, *Importer_, Insert );
  NewMatrix_->FillComplete();

  NewLHS_ = Teuchos::rcp( new Epetra_MultiVector( *NewRowMap_, OldLHS_->NumVectors() ) );
  NewLHS_->Import( *OldLHS_, *Importer_, Insert );
  
  NewRHS_ = Teuchos::rcp( new Epetra_MultiVector( *NewRowMap_, OldRHS_->NumVectors() ) );
  NewRHS_->Import( *OldRHS_, *Importer_, Insert );

  if( debug_ )
  {
    cout << "New Matrix\n";
    cout << *NewMatrix_ << endl;
  }

  newObj_ = new Epetra_LinearProblem( &*NewMatrix_, &*NewLHS_, &*NewRHS_ );

  return *newObj_;
}