void ISVDUDV::Initialize( const Teuchos::RCP< Teuchos::ParameterList >& params, const Teuchos::RCP< const Epetra_MultiVector >& ss, const Teuchos::RCP< RBGen::FileIOHandler< Epetra_Operator > >& fileio) { workU_ = Teuchos::rcp( new Epetra_MultiVector(ss->Map(),maxBasisSize_,false) ); Epetra_LocalMap lclmap(ss->NumVectors(),0,ss->Comm()); workV_ = Teuchos::rcp( new Epetra_MultiVector(lclmap,maxBasisSize_,false) ); }
ZoltanLibClass::ZoltanLibClass(Teuchos::RCP<const Epetra_MultiVector> input_coords, Teuchos::RCP<const Epetra_MultiVector> weights, int inputType): Library(input_coords, weights, inputType) { int weightDim = weights->NumVectors(); if (weightDim > 1){ if (input_coords->Comm().MyPID() == 0){ std::cout << "WARNING: Zoltan will only use the first weight of the "<< weightDim << " supplied for each object" << std::endl; } } }
//EpetraMap_To_TpetraMap: takes in Epetra_Map object, converts it to its equivalent Tpetra::Map object, //and returns an RCP pointer to this Tpetra::Map Teuchos::RCP<const Tpetra_Map> Petra::EpetraMap_To_TpetraMap(const Teuchos::RCP<const Epetra_Map>& epetraMap_, const Teuchos::RCP<const Teuchos::Comm<int> >& commT_) { const std::size_t numElements = Teuchos::as<std::size_t>(epetraMap_->NumMyElements()); const auto indexBase = Teuchos::as<GO>(epetraMap_->IndexBase()); if (epetraMap_->DistributedGlobal() || epetraMap_->Comm().NumProc() == Teuchos::OrdinalTraits<int>::one()) { Teuchos::Array<Tpetra_GO> indices(numElements); int *epetra_indices = epetraMap_->MyGlobalElements(); for(LO i=0; i < numElements; i++) indices[i] = epetra_indices[i]; const Tpetra::global_size_t computeGlobalElements = Teuchos::OrdinalTraits<Tpetra::global_size_t>::invalid(); return Teuchos::rcp(new Tpetra_Map(computeGlobalElements, indices, indexBase, commT_)); } else { return Teuchos::rcp(new Tpetra_Map(numElements, indexBase, commT_, Tpetra::LocallyReplicated)); } }
LOCA::Epetra::CompactWYOp::CompactWYOp( const Teuchos::RCP<LOCA::GlobalData>& global_data, const Teuchos::RCP<const Epetra_Operator>& jacOperator, const Teuchos::RCP<const Epetra_MultiVector>& A_multiVec, const Teuchos::RCP<const Epetra_MultiVector>& Y_x_multiVec, const Teuchos::RCP<const NOX::Abstract::MultiVector::DenseMatrix>& Y_p_matrix, const Teuchos::RCP<const NOX::Abstract::MultiVector::DenseMatrix>& T_matrix) : globalData(global_data), label("LOCA::Epetra::CompactWYOp"), localMap(Y_x_multiVec->NumVectors(), 0, jacOperator->Comm()), J(jacOperator), A(A_multiVec), Y_x(Y_x_multiVec), Y_p(View, localMap, Y_p_matrix->values(), Y_p_matrix->stride(), Y_p_matrix->numCols()), T(View, localMap, T_matrix->values(), T_matrix->stride(), T_matrix->numCols()), tmpMat1(NULL), tmpMV(NULL), dblas() { }
NOX::Abstract::Group::ReturnType LOCA::Epetra::Group::computeComplex(double frequency) { std::string callingFunction = "LOCA::Epetra::Group::computeComplex()"; // We must have the time-dependent interface if (userInterfaceTime == Teuchos::null) return NOX::Abstract::Group::BadDependency; #ifdef HAVE_NOX_EPETRAEXT if (isValidComplex) return NOX::Abstract::Group::Ok; NOX::Abstract::Group::ReturnType finalStatus = NOX::Abstract::Group::Ok; NOX::Abstract::Group::ReturnType status; // Get Jacobian matrix Teuchos::RCP<Epetra_RowMatrix> jac = Teuchos::rcp_dynamic_cast<Epetra_RowMatrix>(sharedLinearSystem.getObject(this)->getJacobianOperator()); // Create complex matrix if (complexMatrix == Teuchos::null) { std::vector< std::vector<int> >rowStencil(2); std::vector<int> rowIndex; rowStencil[0].push_back(0); rowStencil[0].push_back(1); rowStencil[1].push_back(-1); rowStencil[1].push_back(0); rowIndex.push_back(0); rowIndex.push_back(1); complexMatrix = Teuchos::rcp(new EpetraExt::BlockCrsMatrix(*jac, rowStencil, rowIndex, jac->Comm())); // Construct global solution vector, the overlap vector, and importer between them complexVec = Teuchos::rcp(new EpetraExt::BlockVector(jac->RowMatrixRowMap(), complexMatrix->RowMap())); } // Get mass matrix M Teuchos::RCP<Epetra_RowMatrix> mass = Teuchos::rcp_dynamic_cast<Epetra_RowMatrix>(shiftedSharedLinearSystem->getObject(this)->getJacobianOperator()); // Compute w*M status = computeShiftedMatrix(0.0, frequency); finalStatus = globalData->locaErrorCheck->combineAndCheckReturnTypes(status, finalStatus, callingFunction); // Load w*M in complex matrix complexMatrix->LoadBlock(*mass, 1, 0); // Compute -w*M status = computeShiftedMatrix(0.0, -frequency); finalStatus = globalData->locaErrorCheck->combineAndCheckReturnTypes(status, finalStatus, callingFunction); // Load -w*M in complex matrix complexMatrix->LoadBlock(*mass, 0, 1); // Compute J status = computeJacobian(); finalStatus = globalData->locaErrorCheck->combineAndCheckReturnTypes(status, finalStatus, callingFunction); // Load J in complex matrix complexMatrix->LoadBlock(*jac, 0, 0); complexMatrix->LoadBlock(*jac, 1, 1); // Create linear system if (complexSharedLinearSystem == Teuchos::null) { NOX::Epetra::Vector nev(complexVec, NOX::Epetra::Vector::CreateView); Teuchos::RCP<Teuchos::ParameterList> lsParams = globalData->parsedParams->getSublist("Linear Solver"); // Create the Linear System Teuchos::RCP<NOX::Epetra::Interface::Required> iReq; Teuchos::RCP<NOX::Epetra::Interface::Jacobian> iJac; Teuchos::RCP<NOX::Epetra::LinearSystem> complexLinSys = Teuchos::rcp(new NOX::Epetra::LinearSystemAztecOO(printParams, *lsParams, iReq, iJac, complexMatrix, nev)); complexLinSys->setJacobianOperatorForSolve(complexMatrix); complexSharedLinearSystem = Teuchos::rcp(new NOX::SharedObject<NOX::Epetra::LinearSystem, LOCA::Epetra::Group>(complexLinSys)); } if (finalStatus == NOX::Abstract::Group::Ok) isValidComplex = true; return finalStatus; #else globalData->locaErrorCheck->throwError(callingFunction, "Must have EpetraExt support for Hopf tracking. Configure trilinos with --enable-epetraext"); return NOX::Abstract::Group::BadDependency; #endif }
void IncSVDPOD::Initialize( const Teuchos::RCP< Teuchos::ParameterList >& params, const Teuchos::RCP< const Epetra_MultiVector >& ss, const Teuchos::RCP< RBGen::FileIOHandler< Epetra_Operator > >& fileio ) { using Teuchos::rcp; // Get the "Reduced Basis Method" sublist. Teuchos::ParameterList rbmethod_params = params->sublist( "Reduced Basis Method" ); // Get the maximum basis size maxBasisSize_ = rbmethod_params.get<int>("Max Basis Size"); TEUCHOS_TEST_FOR_EXCEPTION(maxBasisSize_ < 2,std::invalid_argument,"\"Max Basis Size\" must be at least 2."); // Get a filter filter_ = rbmethod_params.get<Teuchos::RCP<Filter<double> > >("Filter",Teuchos::null); if (filter_ == Teuchos::null) { int k = rbmethod_params.get("Rank",(int)5); filter_ = rcp( new RangeFilter<double>(LARGEST,k,k) ); } // Get convergence tolerance tol_ = rbmethod_params.get<double>("Convergence Tolerance",tol_); // Get debugging flag debug_ = rbmethod_params.get<bool>("IncSVD Debug",debug_); // Get verbosity level verbLevel_ = rbmethod_params.get<int>("IncSVD Verbosity Level",verbLevel_); // Get an Anasazi orthomanager if (rbmethod_params.isType< Teuchos::RCP< Anasazi::OrthoManager<double,Epetra_MultiVector> > >("Ortho Manager") ) { ortho_ = rbmethod_params.get< Teuchos::RCP<Anasazi::OrthoManager<double,Epetra_MultiVector> > >("Ortho Manager"); TEUCHOS_TEST_FOR_EXCEPTION(ortho_ == Teuchos::null,std::invalid_argument,"User specified null ortho manager."); } else { std::string omstr = rbmethod_params.get("Ortho Manager","DGKS"); if (omstr == "SVQB") { ortho_ = rcp( new Anasazi::SVQBOrthoManager<double,Epetra_MultiVector,Epetra_Operator>() ); } else { // if omstr == "DGKS" ortho_ = rcp( new Anasazi::BasicOrthoManager<double,Epetra_MultiVector,Epetra_Operator>() ); } } // Lmin,Lmax,Kstart lmin_ = rbmethod_params.get("Min Update Size",1); TEUCHOS_TEST_FOR_EXCEPTION(lmin_ < 1 || lmin_ >= maxBasisSize_,std::invalid_argument, "Method requires 1 <= min update size < max basis size."); lmax_ = rbmethod_params.get("Max Update Size",maxBasisSize_); TEUCHOS_TEST_FOR_EXCEPTION(lmin_ > lmax_,std::invalid_argument,"Max update size must be >= min update size."); startRank_ = rbmethod_params.get("Start Rank",lmin_); TEUCHOS_TEST_FOR_EXCEPTION(startRank_ < 1 || startRank_ > maxBasisSize_,std::invalid_argument, "Starting rank must be in [1,maxBasisSize_)"); // MaxNumPasses maxNumPasses_ = rbmethod_params.get("Maximum Number Passes",maxNumPasses_); TEUCHOS_TEST_FOR_EXCEPTION(maxNumPasses_ != -1 && maxNumPasses_ <= 0, std::invalid_argument, "Maximum number passes must be -1 or > 0."); // Save the pointer to the snapshot matrix TEUCHOS_TEST_FOR_EXCEPTION(ss == Teuchos::null,std::invalid_argument,"Input snapshot matrix cannot be null."); A_ = ss; // MaxNumCols maxNumCols_ = A_->NumVectors(); maxNumCols_ = rbmethod_params.get("Maximum Number Columns",maxNumCols_); TEUCHOS_TEST_FOR_EXCEPTION(maxNumCols_ < A_->NumVectors(), std::invalid_argument, "Maximum number of columns must be at least as many as in the initializing data set."); // V locally replicated or globally distributed // this must be true for now // Vlocal_ = rbmethod_params.get("V Local",Vlocal_); // Allocate space for the factorization sigma_.reserve( maxBasisSize_ ); U_ = Teuchos::null; V_ = Teuchos::null; U_ = rcp( new Epetra_MultiVector(ss->Map(),maxBasisSize_,false) ); if (Vlocal_) { Epetra_LocalMap lclmap(maxNumCols_,0,ss->Comm()); V_ = rcp( new Epetra_MultiVector(lclmap,maxBasisSize_,false) ); } else { Epetra_Map gblmap(maxNumCols_,0,ss->Comm()); V_ = rcp( new Epetra_MultiVector(gblmap,maxBasisSize_,false) ); } B_ = rcp( new Epetra_SerialDenseMatrix(maxBasisSize_,maxBasisSize_) ); resNorms_.reserve(maxBasisSize_); // clear counters numProc_ = 0; curNumPasses_ = 0; // we are now initialized, albeit with null rank isInitialized_ = true; }
static int run_test(Teuchos::RCP<Epetra_CrsMatrix> matrix, bool verbose, // display the graph before & after bool contract, // set global number of partitions to 1/2 num procs int partitioningType, // hypergraph or graph partitioning, or simple int vertexWeightType, // use vertex weights? int edgeWeightType, // use edge/hyperedge weights? int objectType) // use isorropia's CrsMatrix or CrsGraph { int rc=0, fail = 0; #ifdef HAVE_EPETRAEXT int localProc = 0; double balance1, balance2, cutn1, cutn2, cutl1, cutl2; double balance3, cutn3, cutl3; double cutWgt1, cutWgt2, cutWgt3; int numCuts1, numCuts2, numCuts3, valid; int numPartitions = 0; int keepDenseEdges = 0; int numProcs = 1; #ifdef HAVE_MPI const Epetra_MpiComm &Comm = dynamic_cast<const Epetra_MpiComm &>(matrix->Comm()); localProc = Comm.MyPID(); numProcs = Comm.NumProc(); #else const Epetra_SerialComm &Comm = dynamic_cast<const Epetra_SerialComm &>(matrix->Comm()); #endif int numRows = matrix->NumGlobalRows(); if (numRows < (numProcs * 100)){ // By default Zoltan throws out dense edges, defined as those // whose number of non-zeros exceeds 25% of the number of vertices. // // If dense edges are thrown out of a small matrix, there may be nothing left. keepDenseEdges = 1; } double myShareBefore = 1.0 / numProcs; double myShare = myShareBefore; if (contract){ numPartitions = numProcs / 2; if (numPartitions > numRows) numPartitions = numRows; if (numPartitions > 0){ if (localProc < numPartitions){ myShare = 1.0 / numPartitions; } else{ myShare = 0.0; } } else{ contract = 0; } } // If we want Zoltan's or Isorropia's default weights, then we don't // need to supply a CostDescriber object to createBalancedCopy, // so we get to test the API functions that don't take a CostDescriber. bool noCosts = ((vertexWeightType == NO_APPLICATION_SUPPLIED_WEIGHTS) && (edgeWeightType == NO_APPLICATION_SUPPLIED_WEIGHTS)); // Test the interface that has no parameters, if possible bool noParams = ((partitioningType == HYPERGRAPH_PARTITIONING) && // default, so requires no params (numPartitions == 0) && // >0 would require a parameter (keepDenseEdges == 0)); // >0 would require a parameter // Maps for original object const Epetra_Map &sourceRowMap = matrix->RowMap(); const Epetra_Map &sourceRangeMap = matrix->RangeMap(); // const Epetra_Map &sourceColMap = matrix->ColMap(); const Epetra_Map &sourceDomainMap = matrix->DomainMap(); int numCols = matrix->NumGlobalCols(); int nMyRows = sourceRowMap.NumMyElements(); int base = sourceRowMap.IndexBase(); // Compute vertex and edge weights Isorropia::Epetra::CostDescriber costs; Teuchos::RCP<Epetra_Vector> vptr; Teuchos::RCP<Epetra_CrsMatrix> eptr; Teuchos::RCP<Epetra_Vector> hyperEdgeWeights; if (edgeWeightType != NO_APPLICATION_SUPPLIED_WEIGHTS){ if (partitioningType == GRAPH_PARTITIONING){ // Create graph edge weights. eptr = Teuchos::rcp(new Epetra_CrsMatrix(*matrix)); if (vertexWeightType == SUPPLY_EQUAL_WEIGHTS){ eptr->PutScalar(1.0); // set all nonzeros to 1.0 } else{ int maxRowSize = eptr->MaxNumEntries(); double *newVal = NULL; if (maxRowSize > 0){ newVal = new double [maxRowSize]; for (int j=0; j<maxRowSize; j++){ newVal[j] = localProc + 1 + j; } } int numEntries; int *idx; double *val; for (int i=0; i<nMyRows; i++){ rc = eptr->ExtractMyRowView(i, numEntries, val, idx); for (int j=0; j<numEntries; j++){ val[j] = newVal[j]; } } if (newVal) delete [] newVal; } eptr->FillComplete(sourceDomainMap, sourceRangeMap); costs.setGraphEdgeWeights(eptr); } else{ // Create hyperedge weights. (Note that the list of hyperedges that a // process provides weights for has no relation to the columns // that it has non-zeroes for, or the rows that is has. Hypergraphs // in general are not square. Also more than one process can provide // a weight for the same edge. Zoltan combines the weights according // to the value of the PHG_EDGE_WEIGHT_OPERATION parameter. The default // for this parameter is to use the maximum edge weight provided by any // process for a given hyperedge.) Epetra_Map hyperEdgeMap(numCols, base, Comm); hyperEdgeWeights = Teuchos::rcp(new Epetra_Vector(hyperEdgeMap)); int *edgeGIDs = NULL; double *weights = NULL; int numHEweights = hyperEdgeMap.NumMyElements(); if (numHEweights){ edgeGIDs = new int [numHEweights]; weights = new double [numHEweights]; if (edgeWeightType == SUPPLY_EQUAL_WEIGHTS){ for (int i=0; i<numHEweights; i++){ edgeGIDs[i] = hyperEdgeMap.GID(i); weights[i] = 1.0; } } else{ int hiVolumeStart = matrix->NumGlobalCols() / 3; int hiVolumeEnd = hiVolumeStart * 2; for (int i=0; i<numHEweights; i++){ edgeGIDs[i] = hyperEdgeMap.GID(i); if ((edgeGIDs[i] < hiVolumeStart) || (edgeGIDs[i] >= hiVolumeEnd)){ weights[i] = 1.0; } else{ weights[i] = 3.0; } } } hyperEdgeWeights->ReplaceGlobalValues(numHEweights, weights, edgeGIDs); } if (weights){ delete [] weights; delete [] edgeGIDs; } costs.setHypergraphEdgeWeights(hyperEdgeWeights); } } bool need_importer = false; if ((vertexWeightType != NO_APPLICATION_SUPPLIED_WEIGHTS)){ need_importer = true; // to redistribute row weights double *val = NULL; if (nMyRows){ val = new double [nMyRows]; if (vertexWeightType == SUPPLY_EQUAL_WEIGHTS){ for (int i=0; i<nMyRows; i++){ val[i] = 1.0; } } else if (vertexWeightType == SUPPLY_UNEQUAL_WEIGHTS){ for (int i=0; i<nMyRows; i++){ val[i] = 1.0 + ((localProc+1) / 2); } } } vptr = Teuchos::rcp(new Epetra_Vector(Copy, sourceRowMap, val)); if (val) delete [] val; costs.setVertexWeights(vptr); } // Calculate partition quality metrics before calling Zoltan if (partitioningType == GRAPH_PARTITIONING){ rc = ispatest::compute_graph_metrics(matrix->Graph(), costs, myShare, balance1, numCuts1, cutWgt1, cutn1, cutl1); if (contract){ // balance wrt target of balancing weight over *all* procs rc = ispatest::compute_graph_metrics(matrix->Graph(), costs, myShareBefore, balance3, numCuts3, cutWgt3, cutn3, cutl3); } } else{ rc = ispatest::compute_hypergraph_metrics(matrix->Graph(), costs, myShare, balance1, cutn1, cutl1); if (contract){ // balance wrt target of balancing weight over *all* procs rc = ispatest::compute_hypergraph_metrics(matrix->Graph(), costs, myShareBefore, balance3, cutn3, cutl3); } } if (rc){ ERROREXIT((localProc==0), "Error in computing partitioning metrics") } Teuchos::ParameterList params; #ifdef HAVE_ISORROPIA_ZOLTAN if (!noParams){ // We're using Zoltan for partitioning and supplying // parameters, overriding defaults. Teuchos::ParameterList &sublist = params.sublist("Zoltan"); if (partitioningType == GRAPH_PARTITIONING){ params.set("PARTITIONING METHOD", "GRAPH"); sublist.set("GRAPH_PACKAGE", "PHG"); } else{ params.set("PARTITIONING METHOD", "HYPERGRAPH"); sublist.set("LB_APPROACH", "PARTITION"); sublist.set("PHG_CUT_OBJECTIVE", "CONNECTIVITY"); // "cutl" } if (keepDenseEdges){ // only throw out rows that have no zeroes, default is to // throw out if .25 or more of the columns are non-zero sublist.set("PHG_EDGE_SIZE_THRESHOLD", "1.0"); } if (numPartitions > 0){ // test #Partitions < #Processes std::ostringstream os; os << numPartitions; std::string s = os.str(); // sublist.set("NUM_GLOBAL_PARTS", s); params.set("NUM PARTS", s); } //sublist.set("DEBUG_LEVEL", "1"); // Zoltan will print out parameters //sublist.set("DEBUG_LEVEL", "5"); // proc 0 will trace Zoltan calls //sublist.set("DEBUG_MEMORY", "2"); // Zoltan will trace alloc & free } #else ERROREXIT((localProc==0), "Zoltan partitioning required but Zoltan not available.") #endif // Function scope values Teuchos::RCP<Epetra_Vector> newvwgts; Teuchos::RCP<Epetra_CrsMatrix> newewgts; // Function scope values required for LinearProblem Epetra_LinearProblem *problem = NULL; Epetra_Map *LHSmap = NULL; Epetra_MultiVector *RHS = NULL; Epetra_MultiVector *LHS = NULL; // Reference counted pointer to balanced object Epetra_CrsMatrix *matrixPtr=NULL; Epetra_CrsGraph *graphPtr=NULL; Epetra_RowMatrix *rowMatrixPtr=NULL; Epetra_LinearProblem *problemPtr=NULL; // Row map for balanced object const Epetra_BlockMap *targetBlockRowMap=NULL; // for input CrsGraph const Epetra_Map *targetRowMap=NULL; // for all other inputs // Column map for balanced object const Epetra_BlockMap *targetBlockColMap=NULL; // for input CrsGraph const Epetra_Map *targetColMap=NULL; // for all other inputs if (objectType == EPETRA_CRSMATRIX){ if (noParams && noCosts){ matrixPtr = Isorropia::Epetra::createBalancedCopy(*matrix); } else if (noCosts){ matrixPtr = Isorropia::Epetra::createBalancedCopy(*matrix, params); } targetRowMap = &(matrixPtr->RowMap()); targetColMap = &(matrixPtr->ColMap()); } else if (objectType == EPETRA_CRSGRAPH){ const Epetra_CrsGraph graph = matrix->Graph(); if (noParams && noCosts){ graphPtr = Isorropia::Epetra::createBalancedCopy(graph); } else if (noCosts){ graphPtr = Isorropia::Epetra::createBalancedCopy(graph, params); } targetBlockRowMap = &(graphPtr->RowMap()); targetBlockColMap = &(graphPtr->ColMap()); } else if (objectType == EPETRA_ROWMATRIX){ if (noParams && noCosts){ rowMatrixPtr = Isorropia::Epetra::createBalancedCopy(*matrix); } else if (noCosts){ rowMatrixPtr = Isorropia::Epetra::createBalancedCopy(*matrix, params); } targetRowMap = &(rowMatrixPtr->RowMatrixRowMap()); targetColMap = &(rowMatrixPtr->RowMatrixColMap()); } else if (objectType == EPETRA_LINEARPROBLEM){ // Create a linear problem with this matrix. LHSmap = new Epetra_Map(numCols, base, Comm); int myRHSsize = sourceRowMap.NumMyElements(); int myLHSsize = LHSmap->NumMyElements(); int valSize = ((myRHSsize > myLHSsize) ? myRHSsize : myLHSsize); double *vals = NULL; if (valSize){ vals = new double [valSize]; } if (valSize){ for (int i=0; i < valSize; i++){ // put my rank in my portion of LHS and my portion of RHS vals[i] = localProc; } } RHS = new Epetra_MultiVector(Copy, sourceRowMap, vals, 1, 1); LHS = new Epetra_MultiVector(Copy, *LHSmap, vals, 1, 1); if (valSize){ delete [] vals; } problem = new Epetra_LinearProblem(matrix.get(), LHS, RHS); Epetra_LinearProblem lp = *problem; if (lp.CheckInput()){ ERROREXIT((localProc==0), "Error creating a LinearProblem"); } if (noParams && noCosts){ problemPtr = Isorropia::Epetra::createBalancedCopy(lp); } else if (noCosts){ problemPtr = Isorropia::Epetra::createBalancedCopy(lp, params); } targetRowMap = &(problemPtr->GetMatrix()->RowMatrixRowMap()); targetColMap = &(problemPtr->GetMatrix()->RowMatrixColMap()); } // Redistribute the edge weights // Comment this out since we don't redistribute columns if (edgeWeightType != NO_APPLICATION_SUPPLIED_WEIGHTS){ if (partitioningType == GRAPH_PARTITIONING){ Epetra_Import *importer = NULL; if (objectType == EPETRA_CRSGRAPH){ newewgts = Teuchos::rcp(new Epetra_CrsMatrix(Copy, *graphPtr)); targetRowMap = &(newewgts->RowMap()); targetColMap = &(newewgts->ColMap()); } else{ newewgts = Teuchos::rcp(new Epetra_CrsMatrix(Copy, *targetRowMap, *targetColMap, 0)); } importer = new Epetra_Import(*targetRowMap, sourceRowMap); newewgts->Import(*eptr, *importer, Insert); newewgts->FillComplete(*targetColMap, *targetRowMap); costs.setGraphEdgeWeights(newewgts); } } // Redistribute the vertex weights if ((vertexWeightType != NO_APPLICATION_SUPPLIED_WEIGHTS)){ Epetra_Import *importer = NULL; if (objectType == EPETRA_CRSGRAPH){ newvwgts = Teuchos::rcp(new Epetra_Vector(*targetBlockRowMap)); importer = new Epetra_Import(*targetBlockRowMap, sourceRowMap); } else{ newvwgts = Teuchos::rcp(new Epetra_Vector(*targetRowMap)); importer = new Epetra_Import(*targetRowMap, sourceRowMap); } newvwgts->Import(*vptr, *importer, Insert); costs.setVertexWeights(newvwgts); } if (localProc == 0){ test_type(numPartitions, partitioningType, vertexWeightType, edgeWeightType, objectType); } if (verbose){ // Picture of problem before balancing if (objectType == EPETRA_LINEARPROBLEM){ ispatest::show_matrix("Before load balancing", *problem, Comm); } else{ ispatest::show_matrix("Before load balancing", matrix->Graph(), Comm); } // Picture of problem after balancing if (objectType == EPETRA_LINEARPROBLEM){ ispatest::show_matrix("After load balancing (x in Ax=b is not redistributed)", *problemPtr, Comm); } else if (objectType == EPETRA_ROWMATRIX){ ispatest::show_matrix("After load balancing", *rowMatrixPtr, Comm); } else if (objectType == EPETRA_CRSMATRIX){ ispatest::show_matrix("After load balancing", matrixPtr->Graph(), Comm); } else if (objectType == EPETRA_CRSGRAPH){ ispatest::show_matrix("After load balancing", *graphPtr, Comm); } } // After partitioning, recompute the metrics if (partitioningType == GRAPH_PARTITIONING){ if (objectType == EPETRA_LINEARPROBLEM){ rc = ispatest::compute_graph_metrics(*(problemPtr->GetMatrix()), costs, myShare, balance2, numCuts2, cutWgt2, cutn2, cutl2); } else if (objectType == EPETRA_ROWMATRIX){ rc = ispatest::compute_graph_metrics(*rowMatrixPtr, costs, myShare, balance2, numCuts2, cutWgt2, cutn2, cutl2); } else if (objectType == EPETRA_CRSMATRIX){ rc = ispatest::compute_graph_metrics(matrixPtr->Graph(), costs, myShare, balance2, numCuts2, cutWgt2, cutn2, cutl2); } else { rc = ispatest::compute_graph_metrics(*graphPtr, costs, myShare, balance2, numCuts2, cutWgt2, cutn2, cutl2); } } else{ if (objectType == EPETRA_LINEARPROBLEM){ rc = ispatest::compute_hypergraph_metrics(*(problemPtr->GetMatrix()), costs, myShare, balance2, cutn2, cutl2); } else if (objectType == EPETRA_ROWMATRIX){ rc = ispatest::compute_hypergraph_metrics(*rowMatrixPtr, costs, myShare, balance2, cutn2, cutl2); } else if (objectType == EPETRA_CRSMATRIX){ rc = ispatest::compute_hypergraph_metrics(matrixPtr->Graph(), costs, myShare, balance2, cutn2, cutl2); } else{ rc = ispatest::compute_hypergraph_metrics(*graphPtr, costs, myShare, balance2, cutn2, cutl2); } } if (rc){ ERROREXIT((localProc==0), "Error in computing partitioning metrics") } std::string why; if (partitioningType == GRAPH_PARTITIONING){ fail = (cutWgt2 > cutWgt1); why = "New weighted edge cuts are worse"; if (localProc == 0){ std::cout << "Before partitioning: Balance " << balance1 ; std::cout << " cutn " << cutn1 ; std::cout << " cutl " << cutl1 ; if (contract){ std::cout << " (wrt balancing over " << numPartitions << " partitions)" << std::endl; std::cout << "Before partitioning: Balance " << balance3 ; std::cout << " cutn " << cutn3 ; std::cout << " cutl " << cutl3 ; std::cout << " (wrt balancing over " << numProcs << " partitions)" ; } std::cout << std::endl; std::cout << " Total edge cuts: " << numCuts1; std::cout << " Total weighted edge cuts: " << cutWgt1 << std::endl; std::cout << "After partitioning: Balance " << balance2 ; std::cout << " cutn " << cutn2 ; std::cout << " cutl " << cutl2 << std::endl; std::cout << " Total edge cuts: " << numCuts2; std::cout << " Total weighted edge cuts: " << cutWgt2 << std::endl; } } else{ fail = (cutl2 > cutl1); why = "New cutl is worse"; if (localProc == 0){ std::cout << "Before partitioning: Balance " << balance1 ; std::cout << " cutn " << cutn1 ; std::cout << " cutl " << cutl1 ; if (contract){ std::cout << " (wrt balancing over " << numPartitions << " partitions)" << std::endl; std::cout << "Before partitioning: Balance " << balance3 ; std::cout << " cutn " << cutn3 ; std::cout << " cutl " << cutl3 ; std::cout << " (wrt balancing over " << numProcs << " partitions)" ; } std::cout << std::endl; std::cout << "After partitioning: Balance " << balance2 ; std::cout << " cutn " << cutn2 ; std::cout << " cutl " << cutl2 << std::endl; } } if (fail){ if (localProc == 0) std::cout << "ERROR: "+why << std::endl; } // Check that input matrix is valid. This test constructs an "x" // with the matrix->DomainMap() and a "y" with matrix->RangeMap() // and then calculates y = Ax. if (objectType == EPETRA_LINEARPROBLEM){ valid = ispatest::test_matrix_vector_multiply(*problemPtr); } else if (objectType == EPETRA_ROWMATRIX){ valid = ispatest::test_row_matrix_vector_multiply(*rowMatrixPtr); } else if (objectType == EPETRA_CRSMATRIX){ valid = ispatest::test_matrix_vector_multiply(*matrixPtr); } else{ valid = ispatest::test_matrix_vector_multiply(*graphPtr); } if (!valid){ if (localProc == 0) std::cout << "Rebalanced matrix is not a valid Epetra matrix" << std::endl; fail = 1; } else{ if (localProc == 0) std::cout << "Rebalanced matrix is a valid Epetra matrix" << std::endl; } if (localProc == 0) std::cout << std::endl; #else std::cout << "test_simple main: currently can only test " << "with Epetra and EpetraExt enabled." << std::endl; rc = -1; #endif return fail; }
// helper routines bool SplitMatrix2x2(Teuchos::RCP<const Epetra_CrsMatrix> A, const Epetra_Map& A11rowmap, const Epetra_Map& A22rowmap, Teuchos::RCP<Epetra_CrsMatrix>& A11, Teuchos::RCP<Epetra_CrsMatrix>& A12, Teuchos::RCP<Epetra_CrsMatrix>& A21, Teuchos::RCP<Epetra_CrsMatrix>& A22) { if (A==Teuchos::null) { std::cout << "ERROR: SplitMatrix2x2: A==null on entry" << std::endl; return false; } const Epetra_Comm& Comm = A->Comm(); const Epetra_Map& A22map = A22rowmap; const Epetra_Map& A11map = A11rowmap; //----------------------------- create a parallel redundant map of A22map std::map<int,int> a22gmap; { std::vector<int> a22global(A22map.NumGlobalElements()); int count=0; for (int proc=0; proc<Comm.NumProc(); ++proc) { int length = 0; if (proc==Comm.MyPID()) { for (int i=0; i<A22map.NumMyElements(); ++i) { a22global[count+length] = A22map.GID(i); ++length; } } Comm.Broadcast(&length,1,proc); Comm.Broadcast(&a22global[count],length,proc); count += length; } if (count != A22map.NumGlobalElements()) { std::cout << "ERROR SplitMatrix2x2: mismatch in dimensions" << std::endl; return false; } // create the map for (int i=0; i<count; ++i) a22gmap[a22global[i]] = 1; a22global.clear(); } //--------------------------------------------------- create matrix A22 A22 = Teuchos::rcp(new Epetra_CrsMatrix(Copy,A22map,100)); { std::vector<int> a22gcindices(100); std::vector<double> a22values(100); for (int i=0; i<A->NumMyRows(); ++i) { const int grid = A->GRID(i); if (A22map.MyGID(grid)==false) continue; int numentries; double* values; int* cindices; int err = A->ExtractMyRowView(i,numentries,values,cindices); if (err) { std::cout << "ERROR: SplitMatrix2x2: A->ExtractMyRowView returned " << err << std::endl; return false; } if (numentries>(int)a22gcindices.size()) { a22gcindices.resize(numentries); a22values.resize(numentries); } int count=0; for (int j=0; j<numentries; ++j) { const int gcid = A->ColMap().GID(cindices[j]); // see whether we have gcid in a22gmap std::map<int,int>::iterator curr = a22gmap.find(gcid); if (curr==a22gmap.end()) continue; //std::cout << gcid << " "; a22gcindices[count] = gcid; a22values[count] = values[j]; ++count; } //std::cout << std::endl; fflush(stdout); // add this filtered row to A22 err = A22->InsertGlobalValues(grid,count,&a22values[0],&a22gcindices[0]); if (err<0) { std::cout << "ERROR: SplitMatrix2x2: A->InsertGlobalValues returned " << err << std::endl; return false; } } //for (int i=0; i<A->NumMyRows(); ++i) a22gcindices.clear(); a22values.clear(); } A22->FillComplete(); A22->OptimizeStorage(); //----------------------------------------------------- create matrix A11 A11 = Teuchos::rcp(new Epetra_CrsMatrix(Copy,A11map,100)); { std::vector<int> a11gcindices(100); std::vector<double> a11values(100); for (int i=0; i<A->NumMyRows(); ++i) { const int grid = A->GRID(i); if (A11map.MyGID(grid)==false) continue; int numentries; double* values; int* cindices; int err = A->ExtractMyRowView(i,numentries,values,cindices); if (err) { std::cout << "ERROR: SplitMatrix2x2: A->ExtractMyRowView returned " << err << std::endl; return false; } if (numentries>(int)a11gcindices.size()) { a11gcindices.resize(numentries); a11values.resize(numentries); } int count=0; for (int j=0; j<numentries; ++j) { const int gcid = A->ColMap().GID(cindices[j]); // see whether we have gcid as part of a22gmap std::map<int,int>::iterator curr = a22gmap.find(gcid); if (curr!=a22gmap.end()) continue; a11gcindices[count] = gcid; a11values[count] = values[j]; ++count; } err = A11->InsertGlobalValues(grid,count,&a11values[0],&a11gcindices[0]); if (err<0) { std::cout << "ERROR: SplitMatrix2x2: A->InsertGlobalValues returned " << err << std::endl; return false; } } // for (int i=0; i<A->NumMyRows(); ++i) a11gcindices.clear(); a11values.clear(); } A11->FillComplete(); A11->OptimizeStorage(); //---------------------------------------------------- create matrix A12 A12 = Teuchos::rcp(new Epetra_CrsMatrix(Copy,A11map,100)); { std::vector<int> a12gcindices(100); std::vector<double> a12values(100); for (int i=0; i<A->NumMyRows(); ++i) { const int grid = A->GRID(i); if (A11map.MyGID(grid)==false) continue; int numentries; double* values; int* cindices; int err = A->ExtractMyRowView(i,numentries,values,cindices); if (err) { std::cout << "ERROR: SplitMatrix2x2: A->ExtractMyRowView returned " << err << std::endl; return false; } if (numentries>(int)a12gcindices.size()) { a12gcindices.resize(numentries); a12values.resize(numentries); } int count=0; for (int j=0; j<numentries; ++j) { const int gcid = A->ColMap().GID(cindices[j]); // see whether we have gcid as part of a22gmap std::map<int,int>::iterator curr = a22gmap.find(gcid); if (curr==a22gmap.end()) continue; a12gcindices[count] = gcid; a12values[count] = values[j]; ++count; } err = A12->InsertGlobalValues(grid,count,&a12values[0],&a12gcindices[0]); if (err<0) { std::cout << "ERROR: SplitMatrix2x2: A->InsertGlobalValues returned " << err << std::endl; return false; } } // for (int i=0; i<A->NumMyRows(); ++i) a12values.clear(); a12gcindices.clear(); } A12->FillComplete(A22map,A11map); A12->OptimizeStorage(); //----------------------------------------------------------- create A21 A21 = Teuchos::rcp(new Epetra_CrsMatrix(Copy,A22map,100)); { std::vector<int> a21gcindices(100); std::vector<double> a21values(100); for (int i=0; i<A->NumMyRows(); ++i) { const int grid = A->GRID(i); if (A22map.MyGID(grid)==false) continue; int numentries; double* values; int* cindices; int err = A->ExtractMyRowView(i,numentries,values,cindices); if (err) { std::cout << "ERROR: SplitMatrix2x2: A->ExtractMyRowView returned " << err << std::endl; return false; } if (numentries>(int)a21gcindices.size()) { a21gcindices.resize(numentries); a21values.resize(numentries); } int count=0; for (int j=0; j<numentries; ++j) { const int gcid = A->ColMap().GID(cindices[j]); // see whether we have gcid as part of a22gmap std::map<int,int>::iterator curr = a22gmap.find(gcid); if (curr!=a22gmap.end()) continue; a21gcindices[count] = gcid; a21values[count] = values[j]; ++count; } err = A21->InsertGlobalValues(grid,count,&a21values[0],&a21gcindices[0]); if (err<0) { std::cout << "ERROR: SplitMatrix2x2: A->InsertGlobalValues returned " << err << std::endl; return false; } } // for (int i=0; i<A->NumMyRows(); ++i) a21values.clear(); a21gcindices.clear(); } A21->FillComplete(A11map,A22map); A21->OptimizeStorage(); //-------------------------------------------------------------- tidy up a22gmap.clear(); return true; }
void PeridigmNS::Block::createMapsFromGlobalMaps(Teuchos::RCP<const Epetra_BlockMap> globalOwnedScalarPointMap, Teuchos::RCP<const Epetra_BlockMap> globalOverlapScalarPointMap, Teuchos::RCP<const Epetra_BlockMap> globalOwnedVectorPointMap, Teuchos::RCP<const Epetra_BlockMap> globalOverlapVectorPointMap, Teuchos::RCP<const Epetra_BlockMap> globalOwnedScalarBondMap, Teuchos::RCP<const Epetra_Vector> globalBlockIds, Teuchos::RCP<const PeridigmNS::NeighborhoodData> globalNeighborhoodData, Teuchos::RCP<const PeridigmNS::NeighborhoodData> globalContactNeighborhoodData) { double* globalBlockIdsPtr; globalBlockIds->ExtractView(&globalBlockIdsPtr); // Create a list of all the on-processor elements that are part of this block vector<int> IDs; IDs.reserve(globalOverlapScalarPointMap->NumMyElements()); // upper bound vector<int> bondIDs; bondIDs.reserve(globalOverlapScalarPointMap->NumMyElements()); vector<int> bondElementSize; bondElementSize.reserve(globalOwnedScalarPointMap->NumMyElements()); for(int iLID=0 ; iLID<globalOwnedScalarPointMap->NumMyElements() ; ++iLID){ if(globalBlockIdsPtr[iLID] == blockID) { int globalID = globalOwnedScalarPointMap->GID(iLID); IDs.push_back(globalID); } } // Record the size of these elements in the bond map // Note that if an element has no bonds, it has no entry in the bondMap // So, the bond map and the scalar map can have a different number of entries (different local IDs) for(int iLID=0 ; iLID<globalOwnedScalarBondMap->NumMyElements() ; ++iLID){ int globalID = globalOwnedScalarBondMap->GID(iLID); int localID = globalOwnedScalarPointMap->LID(globalID); if(globalBlockIdsPtr[localID] == blockID){ bondIDs.push_back(globalID); bondElementSize.push_back(globalOwnedScalarBondMap->ElementSize(iLID)); } } // Create the owned scalar point map, the owned vector point map, and the owned scalar bond map int numGlobalElements = -1; int numMyElements = IDs.size(); int* myGlobalElements = 0; if(numMyElements > 0) myGlobalElements = &IDs.at(0); int elementSize = 1; int indexBase = 0; ownedScalarPointMap = Teuchos::rcp(new Epetra_BlockMap(numGlobalElements, numMyElements, myGlobalElements, elementSize, indexBase, globalOwnedScalarPointMap->Comm())); elementSize = 3; ownedVectorPointMap = Teuchos::rcp(new Epetra_BlockMap(numGlobalElements, numMyElements, myGlobalElements, elementSize, indexBase, globalOwnedScalarPointMap->Comm())); numMyElements = bondElementSize.size(); myGlobalElements = 0; int* elementSizeList = 0; if(numMyElements > 0){ myGlobalElements = &bondIDs.at(0); elementSizeList = &bondElementSize.at(0); } ownedScalarBondMap = Teuchos::rcp(new Epetra_BlockMap(numGlobalElements, numMyElements, myGlobalElements, elementSizeList, indexBase, globalOwnedScalarPointMap->Comm())); // Create a list of nodes that need to be ghosted (both across material boundaries and across processor boundaries) set<int> ghosts; // Check the neighborhood list for things that need to be ghosted int* const globalNeighborhoodList = globalNeighborhoodData->NeighborhoodList(); int globalNeighborhoodListIndex = 0; for(int iLID=0 ; iLID<globalNeighborhoodData->NumOwnedPoints() ; ++iLID){ int numNeighbors = globalNeighborhoodList[globalNeighborhoodListIndex++]; if(globalBlockIdsPtr[iLID] == blockID) { for(int i=0 ; i<numNeighbors ; ++i){ int neighborGlobalID = globalOverlapScalarPointMap->GID( globalNeighborhoodList[globalNeighborhoodListIndex + i] ); ghosts.insert(neighborGlobalID); } } globalNeighborhoodListIndex += numNeighbors; } // Check the contact neighborhood list for things that need to be ghosted if(!globalContactNeighborhoodData.is_null()){ int* const globalContactNeighborhoodList = globalContactNeighborhoodData->NeighborhoodList(); int globalContactNeighborhoodListIndex = 0; for(int iLID=0 ; iLID<globalContactNeighborhoodData->NumOwnedPoints() ; ++iLID){ int numNeighbors = globalContactNeighborhoodList[globalContactNeighborhoodListIndex++]; if(globalBlockIdsPtr[iLID] == blockID) { for(int i=0 ; i<numNeighbors ; ++i){ int neighborGlobalID = globalOverlapScalarPointMap->GID( globalContactNeighborhoodList[globalContactNeighborhoodListIndex + i] ); ghosts.insert(neighborGlobalID); } } globalContactNeighborhoodListIndex += numNeighbors; } } // Remove entries from ghosts that are already in IDs for(unsigned int i=0 ; i<IDs.size() ; ++i) ghosts.erase(IDs[i]); // Copy IDs, this is the owned global ID list vector<int> ownedIDs(IDs.begin(), IDs.end()); // Append ghosts to IDs // This creates the overlap global ID list for(set<int>::iterator it=ghosts.begin() ; it!=ghosts.end() ; ++it) IDs.push_back(*it); // Create the overlap scalar point map and the overlap vector point map numMyElements = IDs.size(); myGlobalElements = 0; if(numMyElements > 0) myGlobalElements = &IDs.at(0); elementSize = 1; overlapScalarPointMap = Teuchos::rcp(new Epetra_BlockMap(numGlobalElements, numMyElements, myGlobalElements, elementSize, indexBase, globalOwnedScalarPointMap->Comm())); elementSize = 3; overlapVectorPointMap = Teuchos::rcp(new Epetra_BlockMap(numGlobalElements, numMyElements, myGlobalElements, elementSize, indexBase, globalOwnedScalarPointMap->Comm())); // Invalidate the importers oneDimensionalImporter = Teuchos::RCP<Epetra_Import>(); threeDimensionalImporter = Teuchos::RCP<Epetra_Import>(); }
AmesosBTFGlobal_LinearProblem::NewTypeRef AmesosBTFGlobal_LinearProblem:: operator()( OriginalTypeRef orig ) { origObj_ = &orig; // Extract the matrix and vectors from the linear problem OldRHS_ = Teuchos::rcp( orig.GetRHS(), false ); OldLHS_ = Teuchos::rcp( orig.GetLHS(), false ); OldMatrix_ = Teuchos::rcp( dynamic_cast<Epetra_CrsMatrix *>( orig.GetMatrix() ), false ); int nGlobal = OldMatrix_->NumGlobalRows(); int n = OldMatrix_->NumMyRows(); // Check if the matrix is on one processor. int myMatProc = -1, matProc = -1; int myPID = OldMatrix_->Comm().MyPID(); int numProcs = OldMatrix_->Comm().NumProc(); const Epetra_BlockMap& oldRowMap = OldMatrix_->RowMap(); // Get some information about the parallel distribution. int maxMyRows = 0; std::vector<int> numGlobalElem( numProcs ); OldMatrix_->Comm().GatherAll(&n, &numGlobalElem[0], 1); OldMatrix_->Comm().MaxAll(&n, &maxMyRows, 1); for (int proc=0; proc<numProcs; proc++) { if (OldMatrix_->NumGlobalNonzeros() == OldMatrix_->NumMyNonzeros()) myMatProc = myPID; } OldMatrix_->Comm().MaxAll( &myMatProc, &matProc, 1 ); Teuchos::RCP<Epetra_CrsMatrix> serialMatrix; Teuchos::RCP<Epetra_Map> serialMap; if( oldRowMap.DistributedGlobal() && matProc == -1) { // The matrix is distributed and needs to be moved to processor zero. // Set the zero processor as the master. matProc = 0; serialMap = Teuchos::rcp( new Epetra_Map( Epetra_Util::Create_Root_Map( OldMatrix_->RowMap(), matProc ) ) ); Epetra_Import serialImporter( *serialMap, OldMatrix_->RowMap() ); serialMatrix = Teuchos::rcp( new Epetra_CrsMatrix( Copy, *serialMap, 0 ) ); serialMatrix->Import( *OldMatrix_, serialImporter, Insert ); serialMatrix->FillComplete(); } else { // The old matrix has already been moved to one processor (matProc). serialMatrix = OldMatrix_; } if( debug_ ) { cout << "Original (serial) Matrix:\n"; cout << *serialMatrix << endl; } // Obtain the current row and column orderings std::vector<int> origGlobalRows(nGlobal), origGlobalCols(nGlobal); serialMatrix->RowMap().MyGlobalElements( &origGlobalRows[0] ); serialMatrix->ColMap().MyGlobalElements( &origGlobalCols[0] ); // Perform reindexing on the full serial matrix (needed for BTF). Epetra_Map reIdxMap( serialMatrix->RowMap().NumGlobalElements(), serialMatrix->RowMap().NumMyElements(), 0, serialMatrix->Comm() ); Teuchos::RCP<EpetraExt::ViewTransform<Epetra_CrsMatrix> > reIdxTrans = Teuchos::rcp( new EpetraExt::CrsMatrix_Reindex( reIdxMap ) ); Epetra_CrsMatrix newSerialMatrix = (*reIdxTrans)( *serialMatrix ); reIdxTrans->fwd(); // Compute and apply BTF to the serial CrsMatrix and has been filtered by the threshold EpetraExt::AmesosBTF_CrsMatrix BTFTrans( threshold_, upperTri_, verbose_, debug_ ); Epetra_CrsMatrix newSerialMatrixBTF = BTFTrans( newSerialMatrix ); rowPerm_ = BTFTrans.RowPerm(); colPerm_ = BTFTrans.ColPerm(); blockPtr_ = BTFTrans.BlockPtr(); numBlocks_ = BTFTrans.NumBlocks(); if (myPID == matProc && verbose_) { bool isSym = true; for (int i=0; i<nGlobal; ++i) { if (rowPerm_[i] != colPerm_[i]) { isSym = false; break; } } std::cout << "The BTF permutation symmetry (0=false,1=true) is : " << isSym << std::endl; } // Compute the permutation w.r.t. the original row and column GIDs. std::vector<int> origGlobalRowsPerm(nGlobal), origGlobalColsPerm(nGlobal); if (myPID == matProc) { for (int i=0; i<nGlobal; ++i) { origGlobalRowsPerm[i] = origGlobalRows[ rowPerm_[i] ]; origGlobalColsPerm[i] = origGlobalCols[ colPerm_[i] ]; } } OldMatrix_->Comm().Broadcast( &origGlobalRowsPerm[0], nGlobal, matProc ); OldMatrix_->Comm().Broadcast( &origGlobalColsPerm[0], nGlobal, matProc ); // Generate the full serial matrix that imports according to the previously computed BTF. Epetra_CrsMatrix newSerialMatrixT( Copy, newSerialMatrixBTF.RowMap(), 0 ); newSerialMatrixT.Import( newSerialMatrix, *(BTFTrans.Importer()), Insert ); newSerialMatrixT.FillComplete(); if( debug_ ) { cout << "Original (serial) Matrix permuted via BTF:\n"; cout << newSerialMatrixT << endl; } // Perform reindexing on the full serial matrix (needed for balancing). Epetra_Map reIdxMap2( newSerialMatrixT.RowMap().NumGlobalElements(), newSerialMatrixT.RowMap().NumMyElements(), 0, newSerialMatrixT.Comm() ); Teuchos::RCP<EpetraExt::ViewTransform<Epetra_CrsMatrix> > reIdxTrans2 = Teuchos::rcp( new EpetraExt::CrsMatrix_Reindex( reIdxMap2 ) ); Epetra_CrsMatrix tNewSerialMatrixT = (*reIdxTrans2)( newSerialMatrixT ); reIdxTrans2->fwd(); Teuchos::RCP<Epetra_Map> balancedMap; if (balance_ == "linear") { // Distribute block somewhat evenly across processors std::vector<int> rowDist(numProcs+1,0); int balRows = nGlobal / numProcs + 1; int numRows = balRows, currProc = 1; for ( int i=0; i<numBlocks_ || currProc < numProcs; ++i ) { if (blockPtr_[i] > numRows) { rowDist[currProc++] = blockPtr_[i-1]; numRows = blockPtr_[i-1] + balRows; } } rowDist[numProcs] = nGlobal; // Create new Map based on this linear distribution. int numMyBalancedRows = rowDist[myPID+1]-rowDist[myPID]; NewRowMap_ = Teuchos::rcp( new Epetra_Map( nGlobal, numMyBalancedRows, &origGlobalRowsPerm[ rowDist[myPID] ], 0, OldMatrix_->Comm() ) ); // Right now we do not explicitly build the column map and assume the BTF permutation is symmetric! //NewColMap_ = Teuchos::rcp( new Epetra_Map( nGlobal, nGlobal, &colPerm_[0], 0, OldMatrix_->Comm() ) ); if ( verbose_ ) std::cout << "Processor " << myPID << " has " << numMyBalancedRows << " rows." << std::endl; //balancedMap = Teuchos::rcp( new Epetra_Map( nGlobal, numMyBalancedRows, 0, serialMatrix->Comm() ) ); } else if (balance_ == "isorropia") { // Compute block adjacency graph for partitioning. std::vector<double> weight; Teuchos::RCP<Epetra_CrsGraph> blkGraph; EpetraExt::BlockAdjacencyGraph adjGraph; blkGraph = adjGraph.compute( const_cast<Epetra_CrsGraph&>(tNewSerialMatrixT.Graph()), numBlocks_, blockPtr_, weight, verbose_); Epetra_Vector rowWeights( View, blkGraph->Map(), &weight[0] ); // Call Isorropia to rebalance this graph. Teuchos::RCP<Epetra_CrsGraph> balancedGraph = Isorropia::Epetra::create_balanced_copy( *blkGraph, rowWeights ); int myNumBlkRows = balancedGraph->NumMyRows(); //std::vector<int> myGlobalElements(nGlobal); std::vector<int> newRangeElements(nGlobal), newDomainElements(nGlobal); int grid = 0, myElements = 0; for (int i=0; i<myNumBlkRows; ++i) { grid = balancedGraph->GRID( i ); for (int j=blockPtr_[grid]; j<blockPtr_[grid+1]; ++j) { newRangeElements[myElements++] = origGlobalRowsPerm[j]; //myGlobalElements[myElements++] = j; } } NewRowMap_ = Teuchos::rcp( new Epetra_Map( nGlobal, myElements, &newRangeElements[0], 0, OldMatrix_->Comm() ) ); // Right now we do not explicitly build the column map and assume the BTF permutation is symmetric! //NewColMap_ = Teuchos::rcp( new Epetra_Map( nGlobal, nGlobal, &colPerm_[0], 0, OldMatrix_->Comm() ) ); //balancedMap = Teuchos::rcp( new Epetra_Map( nGlobal, myElements, &myGlobalElements[0], 0, serialMatrix->Comm() ) ); if ( verbose_ ) std::cout << "Processor " << myPID << " has " << myElements << " rows." << std::endl; } // Use New Domain and Range Maps to Generate Importer //for now, assume they start out as identical Epetra_Map OldRowMap = OldMatrix_->RowMap(); Epetra_Map OldColMap = OldMatrix_->ColMap(); if( debug_ ) { cout << "New Row Map\n"; cout << *NewRowMap_ << endl; //cout << "New Col Map\n"; //cout << *NewColMap_ << endl; } // Generate New Graph // NOTE: Right now we are creating the graph, assuming that the permutation is symmetric! // NewGraph_ = Teuchos::rcp( new Epetra_CrsGraph( Copy, *NewRowMap_, *NewColMap_, 0 ) ); NewGraph_ = Teuchos::rcp( new Epetra_CrsGraph( Copy, *NewRowMap_, 0 ) ); Importer_ = Teuchos::rcp( new Epetra_Import( *NewRowMap_, OldRowMap ) ); Importer2_ = Teuchos::rcp( new Epetra_Import( OldRowMap, *NewRowMap_ ) ); NewGraph_->Import( OldMatrix_->Graph(), *Importer_, Insert ); NewGraph_->FillComplete(); if( debug_ ) { cout << "NewGraph\n"; cout << *NewGraph_; } // Create new linear problem and import information from old linear problem NewMatrix_ = Teuchos::rcp( new Epetra_CrsMatrix( Copy, *NewGraph_ ) ); NewMatrix_->Import( *OldMatrix_, *Importer_, Insert ); NewMatrix_->FillComplete(); NewLHS_ = Teuchos::rcp( new Epetra_MultiVector( *NewRowMap_, OldLHS_->NumVectors() ) ); NewLHS_->Import( *OldLHS_, *Importer_, Insert ); NewRHS_ = Teuchos::rcp( new Epetra_MultiVector( *NewRowMap_, OldRHS_->NumVectors() ) ); NewRHS_->Import( *OldRHS_, *Importer_, Insert ); if( debug_ ) { cout << "New Matrix\n"; cout << *NewMatrix_ << endl; } newObj_ = new Epetra_LinearProblem( &*NewMatrix_, &*NewLHS_, &*NewRHS_ ); return *newObj_; }