コード例 #1
0
int main(int argc, char *argv[]) {
  //
  int MyPID = 0;
#ifdef EPETRA_MPI
  // Initialize MPI
  MPI_Init(&argc,&argv);
  Epetra_MpiComm Comm(MPI_COMM_WORLD);
  MyPID = Comm.MyPID();
#else
  Epetra_SerialComm Comm;
#endif
  //
  typedef double                            ST;
  typedef Teuchos::ScalarTraits<ST>        SCT;
  typedef SCT::magnitudeType                MT;
  typedef Epetra_MultiVector                MV;
  typedef Epetra_Operator                   OP;
  typedef Belos::MultiVecTraits<ST,MV>     MVT;
  typedef Belos::OperatorTraits<ST,MV,OP>  OPT;

  using Teuchos::ParameterList;
  using Teuchos::RCP;
  using Teuchos::rcp;

bool verbose = false;
bool success = true;
try {
bool proc_verbose = false;
  bool debug = false;
  bool leftprec = true;      // left preconditioning or right.
  int frequency = -1;        // frequency of status test output.
  int numrhs = 1;            // number of right-hand sides to solve for
  int maxiters = -1;         // maximum number of iterations allowed per linear system
  int maxsubspace = 250;     // maximum number of blocks the solver can use for the subspace
  int recycle = 50;          // maximum size of recycle space
  int maxrestarts = 15;      // maximum number of restarts allowed
  std::string filename("sherman5.hb");
  std::string ortho("IMGS");
  MT tol = 1.0e-10;          // relative residual tolerance

  Teuchos::CommandLineProcessor cmdp(false,true);
  cmdp.setOption("verbose","quiet",&verbose,"Print messages and results.");
  cmdp.setOption("debug","nondebug",&debug, "Print debugging information from solver.");
  cmdp.setOption("left-prec","right-prec",&leftprec,"Left preconditioning or right.");
  cmdp.setOption("frequency",&frequency,"Solvers frequency for printing residuals (#iters).");
  cmdp.setOption("filename",&filename,"Filename for test matrix.  Acceptable file extensions: *.hb,*.mtx,*.triU,*.triS");
  cmdp.setOption("tol",&tol,"Relative residual tolerance used by GMRES solver.");
  cmdp.setOption("num-rhs",&numrhs,"Number of right-hand sides to be solved for.");
  cmdp.setOption("max-iters",&maxiters,"Maximum number of iterations per linear system (-1 = adapted to problem/block size).");
  cmdp.setOption("max-subspace",&maxsubspace,"Maximum number of blocks the solver can use for the subspace.");
  cmdp.setOption("recycle",&recycle,"Number of vectors in recycle space.");
  cmdp.setOption("max-cycles",&maxrestarts,"Maximum number of cycles allowed for GCRO-DR solver.");
  cmdp.setOption("ortho-type",&ortho,"Orthogonalization type. Must be one of DGKS, ICGS, IMGS.");
  if (cmdp.parse(argc,argv) != Teuchos::CommandLineProcessor::PARSE_SUCCESSFUL) {
    return -1;
  }
  if (!verbose)
    frequency = -1;  // reset frequency if test is not verbose

  //
  // *************Get the problem*********************
  //
  RCP<Epetra_CrsMatrix> A;
  RCP<Epetra_MultiVector> B, X;
  int return_val =Belos::Util::createEpetraProblem(filename,NULL,&A,NULL,NULL,&MyPID);
  const Epetra_Map &Map = A->RowMap();
  if(return_val != 0) return return_val;
  proc_verbose = verbose && (MyPID==0); /* Only print on zero processor */
  X = rcp( new Epetra_MultiVector( Map, numrhs ) );
  B = rcp( new Epetra_MultiVector( Map, numrhs ) );
  X->Random();
  OPT::Apply( *A, *X, *B );
  X->PutScalar( 0.0 );
  //
  // ************Construct preconditioner*************
  //
  if (proc_verbose) std::cout << std::endl << std::endl;
  if (proc_verbose) std::cout << "Constructing ILU preconditioner" << std::endl;
  int Lfill = 2;
  if (proc_verbose) std::cout << "Using Lfill = " << Lfill << std::endl;
  int Overlap = 2;
  if (proc_verbose) std::cout << "Using Level Overlap = " << Overlap << std::endl;
  double Athresh = 0.0;
  if (proc_verbose) std::cout << "Using Absolute Threshold Value of " << Athresh << std::endl;
  double Rthresh = 1.0;
  if (proc_verbose) std::cout << "Using Relative Threshold Value of " << Rthresh << std::endl;
  //
  Teuchos::RCP<Ifpack_IlukGraph> ilukGraph;
  Teuchos::RCP<Ifpack_CrsRiluk> ilukFactors;
  //
  ilukGraph = Teuchos::rcp(new Ifpack_IlukGraph(A->Graph(), Lfill, Overlap));
  int info = ilukGraph->ConstructFilledGraph();
  assert( info == 0 );
  ilukFactors = Teuchos::rcp(new Ifpack_CrsRiluk(*ilukGraph));
  int initerr = ilukFactors->InitValues(*A);
  if (initerr != 0) std::cout << "InitValues error = " << initerr;
  info = ilukFactors->Factor();
  assert( info == 0 );
  bool transA = false;
  double Cond_Est;
  ilukFactors->Condest(transA, Cond_Est);
  if (proc_verbose) {
    std::cout << "Condition number estimate for this preconditoner = " << Cond_Est << std::endl;
    std::cout << std::endl;
  }

  // Create the Belos preconditioned operator from the Ifpack preconditioner.
  // NOTE:  This is necessary because Belos expects an operator to apply the
  //        preconditioner with Apply() NOT ApplyInverse().
  RCP<Belos::EpetraPrecOp> belosPrec = rcp( new Belos::EpetraPrecOp( ilukFactors ) );

  //
  // ********Other information used by block solver***********
  // *****************(can be user specified)******************
  //
  const int NumGlobalElements = B->GlobalLength();
  if (maxiters == -1)
    maxiters = NumGlobalElements - 1; // maximum number of iterations to run
  //
  ParameterList belosList;
  belosList.set( "Num Blocks", maxsubspace );            // Maximum number of blocks in Krylov factorization
  belosList.set( "Maximum Iterations", maxiters );       // Maximum number of iterations allowed
  belosList.set( "Maximum Restarts", maxrestarts );      // Maximum number of restarts allowed
  belosList.set( "Convergence Tolerance", tol );         // Relative convergence tolerance requested
  belosList.set( "Num Recycled Blocks", recycle );       // Number of vectors in recycle space
  belosList.set( "Orthogonalization", ortho );           // Orthogonalization type
  if (numrhs > 1) {
    belosList.set( "Show Maximum Residual Norm Only", true );  // Show only the maximum residual norm
  }
  int verbosity = Belos::Errors + Belos::Warnings;
  if (verbose) {
    verbosity += Belos::TimingDetails + Belos::StatusTestDetails;
    if (frequency > 0)
      belosList.set( "Output Frequency", frequency );
  }
  if (debug) {
    verbosity += Belos::Debug;
  }
  belosList.set( "Verbosity", verbosity );
  //
  // *******Construct a preconditioned linear problem********
  //
  RCP<Belos::LinearProblem<double,MV,OP> > problem
    = rcp( new Belos::LinearProblem<double,MV,OP>( A, X, B ) );
  if (leftprec) {
    problem->setLeftPrec( belosPrec );
  }
  else {
    problem->setRightPrec( belosPrec );
  }
  bool set = problem->setProblem();
  if (set == false) {
    if (proc_verbose)
      std::cout << std::endl << "ERROR:  Belos::LinearProblem failed to set up correctly!" << std::endl;
    return -1;
  }

  // Create an iterative solver manager.
  RCP< Belos::SolverManager<double,MV,OP> > solver
    = rcp( new Belos::GCRODRSolMgr<double,MV,OP>(problem, rcp(&belosList,false)));

  //
  // *******************************************************************
  // *************Start the block Gmres iteration*************************
  // *******************************************************************
  //
  if (proc_verbose) {
    std::cout << std::endl << std::endl;
    std::cout << "Dimension of matrix: " << NumGlobalElements << std::endl;
    std::cout << "Number of right-hand sides: " << numrhs << std::endl;
    std::cout << "Number of restarts allowed: " << maxrestarts << std::endl;
    std::cout << "Max number of Gmres iterations per restart cycle: " << maxiters << std::endl;
    std::cout << "Relative residual tolerance: " << tol << std::endl;
    std::cout << std::endl;
  }
  //
  // Perform solve
  //
  Belos::ReturnType ret = solver->solve();
  //
  // Compute actual residuals.
  //
  bool badRes = false;
  std::vector<double> actual_resids( numrhs );
  std::vector<double> rhs_norm( numrhs );
  Epetra_MultiVector resid(Map, numrhs);
  OPT::Apply( *A, *X, resid );
  MVT::MvAddMv( -1.0, resid, 1.0, *B, resid );
  MVT::MvNorm( resid, actual_resids );
  MVT::MvNorm( *B, rhs_norm );
  if (proc_verbose) {
    std::cout<< "---------- Actual Residuals (normalized) ----------"<<std::endl<<std::endl;
    for ( int i=0; i<numrhs; i++) {
      double actRes = actual_resids[i]/rhs_norm[i];
      std::cout<<"Problem "<<i<<" : \t"<< actRes <<std::endl;
      if (actRes > tol) badRes = true;
    }
  }

if (ret!=Belos::Converged || badRes) {
  success = false;
  if (proc_verbose)
    std::cout << std::endl << "ERROR:  Belos did not converge!" << std::endl;
} else {
  success = true;
  if (proc_verbose)
    std::cout << std::endl << "SUCCESS:  Belos converged!" << std::endl;
}
}
TEUCHOS_STANDARD_CATCH_STATEMENTS(verbose, std::cerr, success);

#ifdef EPETRA_MPI
MPI_Finalize();
#endif

return success ? EXIT_SUCCESS : EXIT_FAILURE;
}
コード例 #2
0
int main(int argc, char *argv[]) {
  //
  Teuchos::GlobalMPISession session(&argc, &argv, NULL);
  //
  typedef double                            ST;
  typedef Teuchos::ScalarTraits<ST>        SCT;
  typedef SCT::magnitudeType                MT;
  typedef Epetra_MultiVector                MV;
  typedef Epetra_Operator                   OP;
  typedef Belos::MultiVecTraits<ST,MV>     MVT;
  typedef Belos::OperatorTraits<ST,MV,OP>  OPT;

  using Teuchos::ParameterList;
  using Teuchos::RCP;
  using Teuchos::rcp;

  bool verbose = false;
  bool success = true;
  try {
    bool proc_verbose = false;
    bool leftprec = true; // use left preconditioning to solve these linear systems
    int frequency = -1;  // how often residuals are printed by solver
    int numrhs = 1;
    int maxiters = -1;    // maximum iterations allowed
    std::string filename("orsirr1.hb");
    MT tol = 1.0e-5;  // relative residual tolerance

    Teuchos::CommandLineProcessor cmdp(false,true);
    cmdp.setOption("verbose","quiet",&verbose,"Print messages and results.");
    cmdp.setOption("left-prec","right-prec",&leftprec,"Left preconditioning or right.");
    cmdp.setOption("frequency",&frequency,"Solvers frequency for printing residuals (#iters).");
    cmdp.setOption("filename",&filename,"Filename for Harwell-Boeing test matrix.");
    cmdp.setOption("tol",&tol,"Relative residual tolerance used by GMRES solver.");
    cmdp.setOption("num-rhs",&numrhs,"Number of right-hand sides to be solved for.");
    cmdp.setOption("maxiters",&maxiters,"Maximum number of iterations per linear system (-1 = adapted to problem/block size).");
    if (cmdp.parse(argc,argv) != Teuchos::CommandLineProcessor::PARSE_SUCCESSFUL) {
      return -1;
    }
    if (!verbose)
      frequency = -1;  // reset frequency if test is not verbose
    //
    // Get the problem
    //
    int MyPID;
    RCP<Epetra_CrsMatrix> A;
    int return_val =Belos::Util::createEpetraProblem(filename,NULL,&A,NULL,NULL,&MyPID);
    const Epetra_Map &Map = A->RowMap();
    if(return_val != 0) return return_val;
    proc_verbose = verbose && (MyPID==0); /* Only print on zero processor */
    //
    // *****Construct the Preconditioner*****
    //
    if (proc_verbose) std::cout << std::endl << std::endl;
    if (proc_verbose) std::cout << "Constructing ILU preconditioner" << std::endl;
    int Lfill = 2;
    // if (argc > 2) Lfill = atoi(argv[2]);
    if (proc_verbose) std::cout << "Using Lfill = " << Lfill << std::endl;
    int Overlap = 2;
    // if (argc > 3) Overlap = atoi(argv[3]);
    if (proc_verbose) std::cout << "Using Level Overlap = " << Overlap << std::endl;
    double Athresh = 0.0;
    // if (argc > 4) Athresh = atof(argv[4]);
    if (proc_verbose) std::cout << "Using Absolute Threshold Value of " << Athresh << std::endl;
    double Rthresh = 1.0;
    // if (argc >5) Rthresh = atof(argv[5]);
    if (proc_verbose) std::cout << "Using Relative Threshold Value of " << Rthresh << std::endl;
    //
    Teuchos::RCP<Ifpack_IlukGraph> ilukGraph;
    Teuchos::RCP<Ifpack_CrsRiluk> ilukFactors;
    //
    if (Lfill > -1) {
      ilukGraph = Teuchos::rcp(new Ifpack_IlukGraph(A->Graph(), Lfill, Overlap));
      int info = ilukGraph->ConstructFilledGraph();
      assert( info == 0 );
      ilukFactors = Teuchos::rcp(new Ifpack_CrsRiluk(*ilukGraph));
      int initerr = ilukFactors->InitValues(*A);
      if (initerr != 0) std::cout << "InitValues error = " << initerr;
      info = ilukFactors->Factor();
      assert( info == 0 );
    }
    //
    bool transA = false;
    double Cond_Est;
    ilukFactors->Condest(transA, Cond_Est);
    if (proc_verbose) {
      std::cout << "Condition number estimate for this preconditoner = " << Cond_Est << std::endl;
      std::cout << std::endl;
    }

    //
    // Create the Belos preconditioned operator from the Ifpack preconditioner.
    // NOTE:  This is necessary because Belos expects an operator to apply the
    //        preconditioner with Apply() NOT ApplyInverse().
    RCP<Belos::EpetraPrecOp> Prec = rcp( new Belos::EpetraPrecOp( ilukFactors ) );

    //
    // ********Other information used by block solver***********
    // *****************(can be user specified)******************
    //
    const int NumGlobalElements = Map.NumGlobalElements();
    if (maxiters == -1)
      maxiters = NumGlobalElements - 1; // maximum number of iterations to run
    //
    ParameterList belosList;
    belosList.set( "Maximum Iterations", maxiters );       // Maximum number of iterations allowed
    belosList.set( "Convergence Tolerance", tol );         // Relative convergence tolerance requested
    if (leftprec)
      belosList.set( "Explicit Residual Test", true );     // Need to check for the explicit residual before returning
    if (verbose) {
      belosList.set( "Verbosity", Belos::Errors + Belos::Warnings +
          Belos::TimingDetails + Belos::StatusTestDetails );
      if (frequency > 0)
        belosList.set( "Output Frequency", frequency );
    }
    else
      belosList.set( "Verbosity", Belos::Errors + Belos::Warnings );
    //
    // *****Construct solution std::vector and random right-hand-sides *****
    //
    RCP<Epetra_MultiVector> X = rcp( new Epetra_MultiVector(Map, numrhs) );
    X->PutScalar( 0.0 );
    RCP<Epetra_MultiVector> B = rcp( new Epetra_MultiVector(Map, numrhs) );
    B->Random();
    Belos::LinearProblem<double,MV,OP> problem( A, X, B );
    if (leftprec)
      problem.setLeftPrec( Prec );
    else
      problem.setRightPrec( Prec );

    bool set = problem.setProblem();
    if (set == false) {
      if (proc_verbose)
        std::cout << std::endl << "ERROR:  Belos::LinearProblem failed to set up correctly!" << std::endl;
      return -1;
    }
    //
    // *******************************************************************
    // *****************Start the TFQMR iteration*************************
    // *******************************************************************
    //
    Teuchos::RCP< Belos::TFQMRSolMgr<double,MV,OP> > solver =
      Teuchos::rcp( new Belos::TFQMRSolMgr<double,MV,OP>( rcp(&problem,false), rcp(&belosList,false) ) );
    //
    // **********Print out information about problem*******************
    //
    if (proc_verbose) {
      std::cout << std::endl << std::endl;
      std::cout << "Dimension of matrix: " << NumGlobalElements << std::endl;
      std::cout << "Number of right-hand sides: " << numrhs << std::endl;
      std::cout << "Max number of TFQMR iterations: " << maxiters << std::endl;
      std::cout << "Relative residual tolerance: " << tol << std::endl;
      std::cout << std::endl;
    }
    //
    // Perform solve
    //
    Belos::ReturnType ret = solver->solve();

    //
    // Compute actual residuals.
    //
    bool badRes = false;
    std::vector<double> actual_resids( numrhs );
    std::vector<double> rhs_norm( numrhs );
    Epetra_MultiVector R(Map, numrhs);
    OPT::Apply( *A, *X, R );
    MVT::MvAddMv( -1.0, R, 1.0, *B, R );
    MVT::MvNorm( R, actual_resids );
    MVT::MvNorm( *B, rhs_norm );
    if (proc_verbose) {
      std::cout<< "---------- Actual Residuals (normalized) ----------"<<std::endl<<std::endl;
      for ( int i=0; i<numrhs; i++) {
        double actRes = actual_resids[i]/rhs_norm[i];
        std::cout<<"Problem "<<i<<" : \t"<< actRes <<std::endl;
        if (actRes > tol ) badRes = true;
      }
    }

    if (ret!=Belos::Converged || badRes) {
      success = false;
      if (proc_verbose)
        std::cout << std::endl << "ERROR:  Belos did not converge!" << std::endl;
    } else {
      success = true;
      if (proc_verbose)
        std::cout << std::endl << "SUCCESS:  Belos converged!" << std::endl;
    }
  }
  TEUCHOS_STANDARD_CATCH_STATEMENTS(verbose, std::cerr, success);

  return success ? EXIT_SUCCESS : EXIT_FAILURE;
}
コード例 #3
0
int main(int argc, char *argv[]) {
  //
#ifdef EPETRA_MPI	
  MPI_Init(&argc,&argv);
  Belos::MPIFinalize mpiFinalize; // Will call finalize with *any* return
  (void)mpiFinalize;
#endif	
  //
  typedef double                            ST;
  typedef Teuchos::ScalarTraits<ST>        SCT;
  typedef SCT::magnitudeType                MT;
  typedef Epetra_MultiVector                MV;
  typedef Epetra_Operator                   OP;
  typedef Belos::MultiVecTraits<ST,MV>     MVT;
  typedef Belos::OperatorTraits<ST,MV,OP>  OPT;

  using Teuchos::ParameterList;
  using Teuchos::RCP;
  using Teuchos::rcp;

  bool verbose = false, proc_verbose = false;
  bool pseudo = false;   // use pseudo block GMRES to solve this linear system.
  bool leftprec = true; // use left preconditioning to solve these linear systems
  int frequency = -1;  // how often residuals are printed by solver
  int blocksize = 4;
  int numrhs = 15;
  int maxrestarts = 15; // number of restarts allowed 
  int length = 25;
  int maxiters = -1;    // maximum iterations allowed
  std::string filename("orsirr1.hb");
  MT tol = 1.0e-5;  // relative residual tolerance

  Teuchos::CommandLineProcessor cmdp(false,true);
  cmdp.setOption("verbose","quiet",&verbose,"Print messages and results.");
  cmdp.setOption("pseudo","regular",&pseudo,"Use pseudo-block GMRES to solve the linear systems.");
  cmdp.setOption("left-prec","right-prec",&leftprec,"Left preconditioning or right.");
  cmdp.setOption("frequency",&frequency,"Solvers frequency for printing residuals (#iters).");
  cmdp.setOption("filename",&filename,"Filename for Harwell-Boeing test matrix.");
  cmdp.setOption("tol",&tol,"Relative residual tolerance used by GMRES solver.");
  cmdp.setOption("num-rhs",&numrhs,"Number of right-hand sides to be solved for.");
  cmdp.setOption("max-restarts",&maxrestarts,"Maximum number of restarts allowed for GMRES solver.");
  cmdp.setOption("blocksize",&blocksize,"Block size used by GMRES.");
  cmdp.setOption("maxiters",&maxiters,"Maximum number of iterations per linear system (-1 = adapted to problem/block size).");
  cmdp.setOption("subspace-size",&length,"Dimension of Krylov subspace used by GMRES.");  
  if (cmdp.parse(argc,argv) != Teuchos::CommandLineProcessor::PARSE_SUCCESSFUL) {
    return -1;
  }
  if (!verbose)
    frequency = -1;  // reset frequency if test is not verbose
  //
  // Get the problem
  //
  int MyPID;
  RCP<Epetra_CrsMatrix> A;
  int return_val =Belos::createEpetraProblem(filename,NULL,&A,NULL,NULL,&MyPID);
  const Epetra_Map &Map = A->RowMap();
  if(return_val != 0) return return_val;
  proc_verbose = verbose && (MyPID==0); /* Only print on zero processor */
  //
  // *****Construct the Preconditioner*****
  //
  if (proc_verbose) std::cout << std::endl << std::endl;
  if (proc_verbose) std::cout << "Constructing ILU preconditioner" << std::endl;
  int Lfill = 2;
  // if (argc > 2) Lfill = atoi(argv[2]);
  if (proc_verbose) std::cout << "Using Lfill = " << Lfill << std::endl;
  int Overlap = 2;
  // if (argc > 3) Overlap = atoi(argv[3]);
  if (proc_verbose) std::cout << "Using Level Overlap = " << Overlap << std::endl;
  double Athresh = 0.0;
  // if (argc > 4) Athresh = atof(argv[4]);
  if (proc_verbose) std::cout << "Using Absolute Threshold Value of " << Athresh << std::endl;
  double Rthresh = 1.0;
  // if (argc >5) Rthresh = atof(argv[5]);
  if (proc_verbose) std::cout << "Using Relative Threshold Value of " << Rthresh << std::endl;
  //
  Teuchos::RCP<Ifpack_IlukGraph> ilukGraph;
  Teuchos::RCP<Ifpack_CrsRiluk> ilukFactors;
  //
  if (Lfill > -1) {
    ilukGraph = Teuchos::rcp(new Ifpack_IlukGraph(A->Graph(), Lfill, Overlap));
    int info = ilukGraph->ConstructFilledGraph();
    assert( info == 0 );
    ilukFactors = Teuchos::rcp(new Ifpack_CrsRiluk(*ilukGraph));
    int initerr = ilukFactors->InitValues(*A);
    if (initerr != 0) std::cout << "InitValues error = " << initerr;
    info = ilukFactors->Factor();
    assert( info == 0 );
  }
  //
  bool transA = false;
  double Cond_Est;
  ilukFactors->Condest(transA, Cond_Est);
  if (proc_verbose) {
    std::cout << "Condition number estimate for this preconditoner = " << Cond_Est << std::endl;
    std::cout << std::endl;
  }

  //
  // Create the Belos preconditioned operator from the Ifpack preconditioner.
  // NOTE:  This is necessary because Belos expects an operator to apply the
  //        preconditioner with Apply() NOT ApplyInverse().
  RCP<Belos::EpetraPrecOp> Prec = rcp( new Belos::EpetraPrecOp( ilukFactors ) );

  //
  // ********Other information used by block solver***********
  // *****************(can be user specified)******************
  //
  const int NumGlobalElements = Map.NumGlobalElements();
  if (maxiters == -1)
    maxiters = NumGlobalElements/blocksize - 1; // maximum number of iterations to run
  //
  bool adaptiveBlockSize = true;
  if (numrhs < blocksize)
    adaptiveBlockSize = false;
  ParameterList belosList;
  belosList.set( "Num Blocks", length );                     // Maximum number of blocks in Krylov factorization
  belosList.set( "Block Size", blocksize );                  // Blocksize to be used by iterative solver
  belosList.set( "Adaptive Block Size", adaptiveBlockSize ); // Adapt blocksize to numrhs
  belosList.set( "Maximum Iterations", maxiters );           // Maximum number of iterations allowed
  belosList.set( "Maximum Restarts", maxrestarts );          // Maximum number of restarts allowed
  belosList.set( "Convergence Tolerance", tol );             // Relative convergence tolerance requested
  if (verbose) {
    belosList.set( "Verbosity", Belos::Errors + Belos::Warnings + 
		   Belos::TimingDetails + Belos::StatusTestDetails );
    if (frequency > 0)
      belosList.set( "Output Frequency", frequency );
  }
  else
    belosList.set( "Verbosity", Belos::Errors + Belos::Warnings );
  //
  // *****Construct solution std::vector and random right-hand-sides *****
  //
  RCP<Epetra_MultiVector> X = rcp( new Epetra_MultiVector(Map, numrhs) );
  X->PutScalar( 0.0 );
  RCP<Epetra_MultiVector> B = rcp( new Epetra_MultiVector(Map, numrhs) );
  B->Random();
  Belos::LinearProblem<double,MV,OP> problem( A, X, B );
  if (leftprec)
    problem.setLeftPrec( Prec );
  else
    problem.setRightPrec( Prec );
  
  bool set = problem.setProblem();
  if (set == false) {
    if (proc_verbose)
      std::cout << std::endl << "ERROR:  Belos::LinearProblem failed to set up correctly!" << std::endl;
    return -1;
  }
  //
  // *******************************************************************
  // *************Start the block Gmres iteration*************************
  // *******************************************************************
  //
  Teuchos::RCP< Belos::SolverManager<double,MV,OP> > solver;
  if (pseudo)
    solver = Teuchos::rcp( new Belos::PseudoBlockGmresSolMgr<double,MV,OP>( rcp(&problem,false), rcp(&belosList,false) ) );
  else
    solver = Teuchos::rcp( new Belos::BlockGmresSolMgr<double,MV,OP>( rcp(&problem,false), rcp(&belosList,false) ) );
  //
  // **********Print out information about problem*******************
  //
  if (proc_verbose) {
    std::cout << std::endl << std::endl;
    std::cout << "Dimension of matrix: " << NumGlobalElements << std::endl;
    std::cout << "Number of right-hand sides: " << numrhs << std::endl;
    std::cout << "Block size used by solver: " << blocksize << std::endl;
    std::cout << "Number of restarts allowed: " << maxrestarts << std::endl;
    std::cout << "Length of block Arnoldi factorization: " << length*blocksize << " ( "<< length << " blocks ) " <<std::endl;
    std::cout << "Max number of Gmres iterations: " << maxiters << std::endl; 
    std::cout << "Relative residual tolerance: " << tol << std::endl;
    std::cout << std::endl;
  }
  //
  // Perform solve
  //
  Belos::ReturnType ret = solver->solve();
  
  //
  // Compute actual residuals.
  //
  bool badRes = false;
  std::vector<double> actual_resids( numrhs );
  std::vector<double> rhs_norm( numrhs );
  Epetra_MultiVector R(Map, numrhs);
  OPT::Apply( *A, *X, R );
  MVT::MvAddMv( -1.0, R, 1.0, *B, R ); 
  MVT::MvNorm( R, actual_resids );
  MVT::MvNorm( *B, rhs_norm );
  if (proc_verbose) {
    std::cout<< "---------- Actual Residuals (normalized) ----------"<<std::endl<<std::endl;
    for ( int i=0; i<numrhs; i++) {
      double actRes = actual_resids[i]/rhs_norm[i];
      std::cout<<"Problem "<<i<<" : \t"<< actRes <<std::endl;
      if (actRes > tol ) badRes = true;
    }
  }

  if (ret!=Belos::Converged || badRes==true) {
    if (proc_verbose)
      std::cout << "End Result: TEST FAILED" << std::endl;	
    return -1;
  }
  //
  // Default return value
  //
  if (proc_verbose)
    std::cout << "End Result: TEST PASSED" << std::endl;
  return 0;
  //
} // end test_bl_pgmres_hb.cpp
コード例 #4
0
int main(int argc, char *argv[]) {
  //
  Teuchos::GlobalMPISession session(&argc, &argv, NULL);
  //
  typedef double                            ST;
  typedef Teuchos::ScalarTraits<ST>        SCT;
  typedef SCT::magnitudeType                MT;
  typedef Epetra_MultiVector                MV;
  typedef Epetra_Operator                   OP;
  typedef Belos::MultiVecTraits<ST,MV>     MVT;
  typedef Belos::OperatorTraits<ST,MV,OP>  OPT;

  using Teuchos::ParameterList;
  using Teuchos::RCP;
  using Teuchos::rcp;

  bool verbose = false;
  bool success = false;
  try {
    bool proc_verbose = false;
    bool leftprec = true;  // use left preconditioning to solve these linear systems
    int frequency = -1;    // how often residuals are printed by solver
    int init_numrhs = 5;   // how many right-hand sides get solved first
    int aug_numrhs = 10;   // how many right-hand sides are augmented to the first group
    int maxrestarts = 15;  // number of restarts allowed
    int length = 50;
    int init_blocksize = 5;// blocksize used for the initial pseudo-block GMRES solve
    int aug_blocksize = 3; // blocksize used for the augmented pseudo-block GMRES solve
    int maxiters = -1;     // maximum iterations allowed
    std::string filename("orsirr1.hb");
    MT tol = 1.0e-5;       // relative residual tolerance
    MT aug_tol = 1.0e-5;   // relative residual tolerance for augmented system

    Teuchos::CommandLineProcessor cmdp(false,true);
    cmdp.setOption("verbose","quiet",&verbose,"Print messages and results.");
    cmdp.setOption("frequency",&frequency,"Solvers frequency for printing residuals (#iters).");
    cmdp.setOption("left-prec","right-prec",&leftprec,"Left preconditioning or right.");
    cmdp.setOption("filename",&filename,"Filename for Harwell-Boeing test matrix.");
    cmdp.setOption("tol",&tol,"Relative residual tolerance used by GMRES solver.");
    cmdp.setOption("aug-tol",&aug_tol,"Relative residual tolerance used by GMRES solver for augmented systems.");
    cmdp.setOption("init-num-rhs",&init_numrhs,"Number of right-hand sides to be initially solved for.");
    cmdp.setOption("aug-num-rhs",&aug_numrhs,"Number of right-hand sides augmenting the initial solve.");
    cmdp.setOption("max-restarts",&maxrestarts,"Maximum number of restarts allowed for GMRES solver.");
    cmdp.setOption("block-size",&init_blocksize,"Block size used by GMRES for the initial solve.");
    cmdp.setOption("aug-block-size",&aug_blocksize,"Block size used by GMRES for the augmented solve.");
    cmdp.setOption("max-iters",&maxiters,"Maximum number of iterations per linear system (-1 = adapted to problem/block size).");
    cmdp.setOption("subspace-size",&length,"Dimension of Krylov subspace used by GMRES.");
    if (cmdp.parse(argc,argv) != Teuchos::CommandLineProcessor::PARSE_SUCCESSFUL) {
      return -1;
    }
    if (!verbose)
      frequency = -1;  // reset frequency if test is not verbose
    //
    // Get the problem
    //
    int MyPID;
    RCP<Epetra_CrsMatrix> A;
    int return_val =Belos::createEpetraProblem(filename,NULL,&A,NULL,NULL,&MyPID);
    const Epetra_Map &Map = A->RowMap();
    if(return_val != 0) return return_val;
    proc_verbose = verbose && (MyPID==0); /* Only print on zero processor */
    //
    // *****Construct the Preconditioner*****
    //
    if (proc_verbose) std::cout << std::endl << std::endl;
    if (proc_verbose) std::cout << "Constructing ILU preconditioner" << std::endl;
    int Lfill = 2;
    // if (argc > 2) Lfill = atoi(argv[2]);
    if (proc_verbose) std::cout << "Using Lfill = " << Lfill << std::endl;
    int Overlap = 2;
    // if (argc > 3) Overlap = atoi(argv[3]);
    if (proc_verbose) std::cout << "Using Level Overlap = " << Overlap << std::endl;
    double Athresh = 0.0;
    // if (argc > 4) Athresh = atof(argv[4]);
    if (proc_verbose) std::cout << "Using Absolute Threshold Value of " << Athresh << std::endl;
    double Rthresh = 1.0;
    // if (argc >5) Rthresh = atof(argv[5]);
    if (proc_verbose) std::cout << "Using Relative Threshold Value of " << Rthresh << std::endl;
    //
    Teuchos::RCP<Ifpack_IlukGraph> ilukGraph;
    Teuchos::RCP<Ifpack_CrsRiluk> ilukFactors;
    //
    if (Lfill > -1) {
      ilukGraph = Teuchos::rcp(new Ifpack_IlukGraph(A->Graph(), Lfill, Overlap));
      int info = ilukGraph->ConstructFilledGraph();
      assert( info == 0 );
      ilukFactors = Teuchos::rcp(new Ifpack_CrsRiluk(*ilukGraph));
      int initerr = ilukFactors->InitValues(*A);
      if (initerr != 0) std::cout << "InitValues error = " << initerr;
      info = ilukFactors->Factor();
      assert( info == 0 );
    }
    //
    bool transA = false;
    double Cond_Est;
    ilukFactors->Condest(transA, Cond_Est);
    if (proc_verbose) {
      std::cout << "Condition number estimate for this preconditoner = " << Cond_Est << std::endl;
      std::cout << std::endl;
    }

    //
    // Create the Belos preconditioned operator from the Ifpack preconditioner.
    // NOTE:  This is necessary because Belos expects an operator to apply the
    //        preconditioner with Apply() NOT ApplyInverse().
    RCP<Belos::EpetraPrecOp> Prec = rcp( new Belos::EpetraPrecOp( ilukFactors ) );

    //
    // ********Other information used by block solver***********
    // *****************(can be user specified)******************
    //
    const int NumGlobalElements = Map.NumGlobalElements();
    if (maxiters == -1)
      maxiters = NumGlobalElements - 1; // maximum number of iterations to run
    //
    ParameterList belosList;
    belosList.set( "Num Blocks", length );                 // Maximum number of blocks in Krylov factorization
    belosList.set( "Block Size", init_blocksize );         // Blocksize to be used by iterative solver
    belosList.set( "Maximum Iterations", maxiters );       // Maximum number of iterations allowed
    belosList.set( "Maximum Restarts", maxrestarts );      // Maximum number of restarts allowed
    belosList.set( "Convergence Tolerance", tol );         // Relative convergence tolerance requested
    belosList.set( "Deflation Quorum", 1 );                // Number of converged linear systems before deflation
    belosList.set( "Timer Label", "Belos Init" );          // Label used by timers in this solver
    if (verbose) {
      belosList.set( "Verbosity", Belos::Errors + Belos::Warnings +
          Belos::TimingDetails + Belos::StatusTestDetails );
      if (frequency > 0)
        belosList.set( "Output Frequency", frequency );
    }
    else
      belosList.set( "Verbosity", Belos::Errors + Belos::Warnings );
    //
    // *****Construct solution std::vector and random right-hand-sides *****
    //
    RCP<Epetra_MultiVector> initX = rcp( new Epetra_MultiVector(Map, init_numrhs) );
    RCP<Epetra_MultiVector> initB = rcp( new Epetra_MultiVector(Map, init_numrhs) );
    initX->Random();
    OPT::Apply( *A, *initX, *initB );
    initX->PutScalar( 0.0 );
    Belos::LinearProblem<double,MV,OP> initProblem( A, initX, initB );
    if (leftprec)
      initProblem.setLeftPrec( Prec );
    else
      initProblem.setRightPrec( Prec );
    initProblem.setLabel( "Belos Init" );

    bool set = initProblem.setProblem();
    if (set == false) {
      if (proc_verbose)
        std::cout << std::endl << "ERROR:  Initial Belos::LinearProblem failed to set up correctly!" << std::endl;
      return -1;
    }
    //
    // *******************************************************************
    // *********************Perform initial solve*************************
    // *******************************************************************
    //
    Teuchos::RCP< Belos::SolverManager<double,MV,OP> > initSolver
      = Teuchos::rcp( new Belos::PseudoBlockGmresSolMgr<double,MV,OP>( rcp(&initProblem,false), rcp(&belosList,false) ) );
    //
    // Perform solve
    //
    Belos::ReturnType ret = initSolver->solve();

    //
    // Compute actual residuals.
    //
    bool badRes = false;
    std::vector<double> actual_resids( init_numrhs );
    std::vector<double> rhs_norm( init_numrhs );
    Epetra_MultiVector initR( Map, init_numrhs );
    OPT::Apply( *A, *initX, initR );
    MVT::MvAddMv( -1.0, initR, 1.0, *initB, initR );
    MVT::MvNorm( initR, actual_resids );
    MVT::MvNorm( *initB, rhs_norm );
    if (proc_verbose) {
      std::cout<< "---------- Actual Residuals (normalized) ----------"<<std::endl<<std::endl;
      for (int i=0; i<init_numrhs; i++) {
        double actRes = actual_resids[i]/rhs_norm[i];
        std::cout<<"Problem "<<i<<" : \t"<< actRes <<std::endl;
        if (actRes > tol) badRes = true;
      }
    }

    if (ret != Belos::Converged || badRes==true) {
      if (proc_verbose)
        std::cout << std::endl << "ERROR:  Initial solve did not converge to solution!" << std::endl;
      return -1;
    }

    //
    // ***************Construct augmented linear system****************
    //
    RCP<Epetra_MultiVector> augX = rcp( new Epetra_MultiVector(Map, init_numrhs+aug_numrhs) );
    RCP<Epetra_MultiVector> augB = rcp( new Epetra_MultiVector(Map, init_numrhs+aug_numrhs) );
    if (aug_numrhs) {
      augX->Random();
      OPT::Apply( *A, *augX, *augB );
      augX->PutScalar( 0.0 );
    }

    // Copy previous linear system into
    RCP<Epetra_MultiVector> tmpX = rcp( new Epetra_MultiVector( View, *augX, 0, init_numrhs ) );
    RCP<Epetra_MultiVector> tmpB = rcp( new Epetra_MultiVector( View, *augB, 0, init_numrhs ) );
    tmpX->Scale( 1.0, *initX );
    tmpB->Scale( 1.0, *initB );

    Belos::LinearProblem<double,MV,OP> augProblem( A, augX, augB );
    if (leftprec)
      augProblem.setLeftPrec( Prec );
    else
      augProblem.setRightPrec( Prec );
    augProblem.setLabel( "Belos Aug" );

    set = augProblem.setProblem();
    if (set == false) {
      if (proc_verbose)
        std::cout << std::endl << "ERROR:  Augmented Belos::LinearProblem failed to set up correctly!" << std::endl;
      return -1;
    }
    //
    // *******************************************************************
    // *******************Perform augmented solve*************************
    // *******************************************************************
    //
    belosList.set( "Block Size", aug_blocksize );                // Blocksize to be used by iterative solver
    belosList.set( "Convergence Tolerance", aug_tol );           // Relative convergence tolerance requested
    belosList.set( "Deflation Quorum", 1 );                      // Number of converged linear systems before deflation
    belosList.set( "Timer Label", "Belos Aug" );                 // Label used by timers in this solver
    belosList.set( "Implicit Residual Scaling", "Norm of RHS" ); // Implicit residual scaling for convergence
    belosList.set( "Explicit Residual Scaling", "Norm of RHS" ); // Explicit residual scaling for convergence
    Teuchos::RCP< Belos::SolverManager<double,MV,OP> > augSolver
      = Teuchos::rcp( new Belos::PseudoBlockGmresSolMgr<double,MV,OP>( rcp(&augProblem,false), rcp(&belosList,false) ) );
    //
    // Perform solve
    //
    ret = augSolver->solve();

    if (ret != Belos::Converged) {
      if (proc_verbose)
        std::cout << std::endl << "ERROR: Augmented solver did not converge to solution!" << std::endl;
      return -1;
    }
    //
    // **********Print out information about problem*******************
    //
    if (proc_verbose) {
      std::cout << std::endl << std::endl;
      std::cout << "Dimension of matrix: " << NumGlobalElements << std::endl;
      std::cout << "Number of initial right-hand sides: " << init_numrhs << std::endl;
      std::cout << "Number of augmented right-hand sides: " << aug_numrhs << std::endl;
      std::cout << "Number of restarts allowed: " << maxrestarts << std::endl;
      std::cout << "Length of block Arnoldi factorization: " << length <<std::endl;
      std::cout << "Max number of Gmres iterations: " << maxiters << std::endl;
      std::cout << "Relative residual tolerance: " << tol << std::endl;
      if (aug_tol != tol)
        std::cout << "Relative residual tolerance for augmented systems: " << aug_tol << std::endl;
      std::cout << std::endl;
    }
    //
    // Compute actual residuals.
    //
    badRes = false;
    int total_numrhs = init_numrhs + aug_numrhs;
    actual_resids.resize( total_numrhs );
    rhs_norm.resize( total_numrhs );
    Epetra_MultiVector augR( Map, total_numrhs );
    OPT::Apply( *A, *augX, augR );
    MVT::MvAddMv( -1.0, augR, 1.0, *augB, augR );
    MVT::MvNorm( augR, actual_resids );
    MVT::MvNorm( *augB, rhs_norm );
    if (proc_verbose) {
      std::cout<< "---------- Actual Residuals (normalized) ----------"<<std::endl<<std::endl;
      for ( int i=0; i<total_numrhs; i++) {
        double actRes = actual_resids[i]/rhs_norm[i];
        std::cout<<"Problem "<<i<<" : \t"<< actRes <<std::endl;
        if (actRes > tol ) badRes = true;
      }
    }

    success = ret==Belos::Converged && !badRes;

    if (success) {
      if (proc_verbose)
        std::cout << "End Result: TEST PASSED" << std::endl;
    } else {
      if (proc_verbose)
        std::cout << "End Result: TEST FAILED" << std::endl;
    }
  }
  TEUCHOS_STANDARD_CATCH_STATEMENTS(verbose,std::cerr,success);

  return success ? EXIT_SUCCESS : EXIT_FAILURE;
} // end test_pseudo_gmres_hb.cpp