//TODO: Currently this function ONLY supports threading. Setting it to anything other than the defaults will crash the program. void GHavok::SetupHavokEngine(bool bUseThreading, int nThreads) { if(_bCreated) { WriteToLog("WARNING: SetupHavokEngine called more than once.\n"); return; } WriteToLog("SetupHavokEngine()\n"); WriteToLog(" - Use Threading? %d\n",bUseThreading); WriteToLog(" - N. Threads: %d\n",nThreads); _nThreads = nThreads; _bThreaded = bUseThreading; WriteToLog(" - Allocating memory manager and thread memory...."); // Initialize the base system including our memory system _memoryManager = new hkPoolMemory(); _threadMemory = new hkThreadMemory(_memoryManager, 16); hkBaseSystem::init( _memoryManager, _threadMemory, errorReport ); _memoryManager->removeReference(); WriteToLog("Complete.\n"); WriteToLog(" - Initializing stack..."); // We now initialize the stack area to 100k (fast temporary memory to be used by the engine). { int stackSize = 0x100000; _stackBuffer = hkAllocate<char>( stackSize, HK_MEMORY_CLASS_BASE); hkThreadMemory::getInstance().setStackArea( _stackBuffer, stackSize); } WriteToLog("Complete\n"); { WriteToLog(" - Creating physics world..."); // Create the physics world { // The world cinfo contains global simulation parameters, including gravity, solver settings etc. hkpWorldCinfo worldInfo; // Set the simulation type of the world to multi-threaded. worldInfo.m_simulationType = hkpWorldCinfo::SIMULATION_TYPE_MULTITHREADED; worldInfo.m_collisionTolerance = 0.03f; //TODO: Make this a class variable _physicsWorld = new hkpWorld(worldInfo); } WriteToLog("Complete\n"); WriteToLog(" - Preallocating havok memory blocks..."); // // Pre-allocate some larger memory blocks. These are used by the physics system when in multithreaded mode // The amount and size of these depends on your physics usage. Larger simulation islands will use larger memory blocks. // { hkMemory::getInstance().preAllocateRuntimeBlock(512000, HK_MEMORY_CLASS_BASE); hkMemory::getInstance().preAllocateRuntimeBlock(256000, HK_MEMORY_CLASS_BASE); hkMemory::getInstance().preAllocateRuntimeBlock(128000, HK_MEMORY_CLASS_BASE); hkMemory::getInstance().preAllocateRuntimeBlock(64000, HK_MEMORY_CLASS_BASE); hkMemory::getInstance().preAllocateRuntimeBlock(32000, HK_MEMORY_CLASS_BASE); hkMemory::getInstance().preAllocateRuntimeBlock(16000, HK_MEMORY_CLASS_BASE); hkMemory::getInstance().preAllocateRuntimeBlock(16000, HK_MEMORY_CLASS_BASE); } WriteToLog("Complete.\n"); // // When the simulation type is SIMULATION_TYPE_MULTITHREADED, in the debug build, the sdk performs checks // to make sure only one thread is modifying the world at once to prevent multithreaded bugs. Each thread // must call markForRead / markForWrite before it modifies the world to enable these checks. // _physicsWorld->markForWrite(); // // Register all collision agents, even though only box - box will be used in this particular example. // It's important to register collision agents before adding any entities to the world. // WriteToLog(" - Registering agents..."); { hkpAgentRegisterUtil::registerAllAgents( _physicsWorld->getCollisionDispatcher() ); } WriteToLog("Complete.\n"); // // Create a multi-threading utility. This utility will create a number of threads that will run the // physics step in parallel. The main thread calls functions in the utility which signal these threads // to start a new step, or wait for step completion. // WriteToLog(" - Creating multi-threaded environment..."); hkpMultithreadingUtilCinfo info; info.m_world = _physicsWorld; info.m_numThreads = _nThreads; // In this example we enable timers. The multi-threading util will allocate a buffer per thread for capturing timer data. // If you leave this flag to false, no timers will be enabled. info.m_enableTimers = true; _multithreadingUtil = new hkpMultithreadingUtil(info); WriteToLog("Complete.\n"); // Create all the physics rigid bodies //SetupPhysicsWorld( physicsWorld ); // // Initialize the visual debugger so we can connect remotely to the simulation // The context must exist beyond the use of the VDB instance, and you can make // whatever contexts you like for your own viewer types. // WriteToLog(" - Initializing visual debugger..."); _context = new hkpPhysicsContext(); hkpPhysicsContext::registerAllPhysicsProcesses(); // all the physics viewers _context->addWorld(_physicsWorld); // add the physics world so the viewers can see it _hkVis = SetupVisualDebugger(); _context->m_monitorStreamBegins.setSize(_nThreads); _context->m_monitorStreamEnds.setSize(_nThreads); WriteToLog("Complete\n"); // Now we have finished modifying the world, release our write marker. _physicsWorld->unmarkForWrite(); } _bCreated = true; WriteToLog("\nSetupHavokEngine() succeeded.\n"); }
void CurrentApp::LoadContent() { // setup gpass framebuffer m_gPassTarget = new RenderTarget(); m_gPassTarget->SetSize(1280, 720); m_gPassTarget->Initialise(); m_gPassTarget->AttachColourBuffer(0, GL_RGB8); //albedo m_gPassTarget->AttachColourBuffer(1, GL_RGB32F); //position m_gPassTarget->AttachColourBuffer(2, GL_RGB32F); //normal m_gPassTarget->AttachDepthBuffer(); m_gPassTarget->SetDrawBuffers(); // setup light framebuffer m_lightPassTarget = new RenderTarget(); m_lightPassTarget->SetSize(1280, 720); m_lightPassTarget->Initialise(); m_lightPassTarget->AttachColourBuffer(0, GL_RGB8); m_lightPassTarget->AttachDepthBuffer(); m_lightPassTarget->SetDrawBuffers(); CreateFullscreenQuad(); //Setting up Physx m_gravity = -9.8f; SetupPhysx(); SetupVisualDebugger(); //Set up a Player g_ControllerManager = PxCreateControllerManager(*g_PhysicsScene); PxCapsuleControllerDesc desc; desc.contactOffset = 0.05f; desc.height = 3.0f; desc.material = g_PhysicsMaterial; desc.nonWalkableMode = PxControllerNonWalkableMode::ePREVENT_CLIMBING_AND_FORCE_SLIDING; desc.climbingMode = PxCapsuleClimbingMode::eCONSTRAINED; desc.position = PxExtendedVec3(100, 200, 150); desc.radius = 2.0f; desc.stepOffset = 0.1f; g_PlayerCollisions = new PlayerCollisions(); desc.reportCallback = g_PlayerCollisions; g_PlayerController = g_ControllerManager->createController(desc); //Create a New Camera m_camera = new FlyCamera(); m_camera->SetupProjection(glm::pi<float>() * 0.25f, 16 / 9.f, 0.1f, 10000.f); m_camera->LookAt(vec3(100, 10, 10), vec3(0), vec3(0, 1, 0)); m_assetManager = new AssetManager(); m_renderer = new Renderer(m_assetManager); //Terrain Shit here m_terrain = m_renderer->CreateTerrain(); m_terrain->SetSize(30, 30); m_terrain->GenerateFromPerlin(); m_nodeMap = new NodeMap(); m_nodeMap->GenerateFromTerrain(m_terrain); ////Snow Particle m_snowEmitter = m_renderer->CreateParticle(); m_snowEmitter->ReadFile("./Content/Particles/Rain"); //m_snowEmitter->UseTexture("./Content/Particles/ROBOTUNICORN.png"); m_snowEmitter->SetPosition(glm::vec3(150, 400, 150)); m_snowEmitter->initalise(""); m_fairyEmitter = m_renderer->CreateParticle(); m_fairyEmitter->ReadFile("./Content/Particles/fairy"); m_fairyEmitter->SetPosition(glm::vec3(100, 130, 100)); m_fairyEmitter->initalise(""); //Load Renderables int cubeModel = m_assetManager->LoadModel("./Content/Renderables/cube.fbx"); int sphereModel = m_assetManager->LoadModel("./Content/Renderables/cube.fbx"); int bunnyModel = m_assetManager->LoadModel("./Content/Renderables/bunny.fbx"); int treeModel = m_assetManager->LoadModel("./Content/Renderables/Tree/AlanTree.fbx"); //m_assetManager->RecalculateNormals(treeModel); //LoadSkybox m_skybox = new Skybox(); std::vector<std::string> faces; faces.push_back("./Content/Textures/skyRight.png"); faces.push_back("./Content/Textures/skyLeft.png"); faces.push_back("./Content/Textures/skyTop.png"); faces.push_back("./Content/Textures/skyBottom.png"); faces.push_back("./Content/Textures/skyFront.png"); faces.push_back("./Content/Textures/skyBack.png"); m_skybox->Initialize(faces); //Load AI m_world = new World(m_nodeMap); //Load Lights m_light = m_renderer->CreateLight(); m_light->SetColour(glm::vec4(200, 255, 255, 1)); m_light->SetFallOff(200000); m_light->SetPosition(glm::vec3(150, 30, 150)); m_sunLight = m_renderer->CreateLight(); m_sunLight->SetColour(glm::vec4(50, 50, 80, 1)); m_sunLight->SetFallOff(1000000); m_sunLight->SetPosition(glm::vec3(0, 200, 0)); //create our particle system PxParticleFluid* pf; // create particle system in PhysX SDK // set immutable properties. PxU32 maxParticles = 200; bool perParticleRestOffset = false; pf = g_Physics->createParticleFluid(maxParticles, perParticleRestOffset); pf->setRestParticleDistance(3.0f); pf->setDynamicFriction(0); pf->setStaticFriction(0); pf->setDamping(0); pf->setParticleMass(30); pf->setRestitution(0); //pf->setParticleReadDataFlag(PxParticleReadDataFlag::eDENSITY_BUFFER, // true); pf->setParticleBaseFlag(PxParticleBaseFlag::eCOLLISION_TWOWAY, true); pf->setStiffness(300); if (pf) { float multiplier = 10.0f; g_PhysicsScene->addActor(*pf); m_particleEmitter = new ParticleFluidEmitter(maxParticles, PxVec3(150, 120, 150), pf, .05f); m_particleEmitter->setStartVelocityRange(-0.001f, -6000.0f * multiplier, -0.001f, 0.001f, -6000.0f * multiplier, 0.001f); } for (int i = 0; i < 5; ++i) { m_AI[i] = new UtilityAI(m_assetManager, m_world, m_nodeMap); Renderable* renderBox = m_renderer->CreateRenderable(); renderBox->SetModel(bunnyModel); renderBox->SetScale(glm::vec3(0.01f, 0.01f, 0.01f)); renderBox->SetTexture(LoadTexture("./Content/Renderables/white.png")); m_AI[i]->SetRenderable(renderBox); } for (int i = 0; i < 50; ++i) { m_trees[i] = m_renderer->CreateRenderable(); m_trees[i]->SetModel(treeModel); glm::vec3 position = m_nodeMap->GetClosestNode(glm::vec3(40 + rand() % 220, 40 + rand() % 220, 40 + rand() % 220))->GetPos(); position.y -= 1; m_trees[i]->SetPosition(position); m_trees[i]->Rotate(glm::vec3(1, 0, 0), -(3.14159265f / 2.0f)); m_trees[i]->Rotate(glm::vec3(0, 0, 1), rand() % 200 / 100.0f); float randVal = rand() % 120 / 120.f; m_trees[i]->SetScale(glm::vec3(0.2f + randVal, 0.2f + randVal, 0.2f + randVal)); } //Define a Plane PxTransform pose = PxTransform(PxVec3(0.0f, 5, 0.0f), PxQuat(PxHalfPi*1.0f, PxVec3(0.0f, 0.0f, 1.0f))); PxRigidStatic* plane = PxCreateStatic(*g_Physics, pose, PxPlaneGeometry(), *g_PhysicsMaterial); //Add the plane to the Physx Scene g_PhysicsScene->addActor(*plane); m_terrain->AddPhysicsShape(g_PhysicsScene, g_Physics); //Disable the mouse SetCursorPos(0, 0); glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED); }