예제 #1
0
kern_return_t
processor_control(
	processor_t		processor,
	processor_info_t	info,
	mach_msg_type_number_t	count)
{
	if (processor == PROCESSOR_NULL)
		return(KERN_INVALID_ARGUMENT);

	return(cpu_control(processor->cpu_id, info, count));
}
예제 #2
0
/*
 * arm32_vector_init:
 *
 *	Initialize the vector page, and select whether or not to
 *	relocate the vectors.
 *
 *	NOTE: We expect the vector page to be mapped at its expected
 *	destination.
 */
void
arm32_vector_init(vaddr_t va, int which)
{
	extern unsigned int page0[], page0_data[];
	unsigned int *vectors = (unsigned int *) va;
	unsigned int *vectors_data = vectors + (page0_data - page0);
	int vec;

	/*
	 * Loop through the vectors we're taking over, and copy the
	 * vector's insn and data word.
	 */
	for (vec = 0; vec < ARM_NVEC; vec++) {
		if ((which & (1 << vec)) == 0) {
			/* Don't want to take over this vector. */
			continue;
		}
		vectors[vec] = page0[vec];
		vectors_data[vec] = page0_data[vec];
	}

	/* Now sync the vectors. */
	cpu_icache_sync_range(va, (ARM_NVEC * 2) * sizeof(u_int));

	vector_page = va;

	if (va == ARM_VECTORS_HIGH) {
		/*
		 * Assume the MD caller knows what it's doing here, and
		 * really does want the vector page relocated.
		 *
		 * Note: This has to be done here (and not just in
		 * cpu_setup()) because the vector page needs to be
		 * accessible *before* cpu_startup() is called.
		 * Think ddb(9) ...
		 *
		 * NOTE: If the CPU control register is not readable,
		 * this will totally fail!  We'll just assume that
		 * any system that has high vector support has a
		 * readable CPU control register, for now.  If we
		 * ever encounter one that does not, we'll have to
		 * rethink this.
		 */
		cpu_control(CPU_CONTROL_VECRELOC, CPU_CONTROL_VECRELOC);
	}
}
예제 #3
0
void *
initarm(struct arm_boot_params *abp)
{
	struct pv_addr	kernel_l1pt;
	int loop;
	u_int l1pagetable;
	vm_offset_t freemempos;
	vm_offset_t afterkern;
	vm_offset_t lastaddr;

	int i;
	uint32_t memsize;

	boothowto = 0;  /* Likely not needed */
	lastaddr = parse_boot_param(abp);
	i = 0;
	set_cpufuncs();
	cpufuncs.cf_sleep = s3c24x0_sleep;

	pcpu0_init();

	/* Do basic tuning, hz etc */
	init_param1();

#define KERNEL_TEXT_BASE (KERNBASE)
	freemempos = (lastaddr + PAGE_MASK) & ~PAGE_MASK;
	/* Define a macro to simplify memory allocation */
#define valloc_pages(var, np)			\
	alloc_pages((var).pv_va, (np));		\
	(var).pv_pa = (var).pv_va + (KERNPHYSADDR - KERNVIRTADDR);

#define alloc_pages(var, np)			\
	(var) = freemempos;			\
	freemempos += (np * PAGE_SIZE);		\
	memset((char *)(var), 0, ((np) * PAGE_SIZE));

	while (((freemempos - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) != 0)
		freemempos += PAGE_SIZE;
	valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
		if (!(loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) {
			valloc_pages(kernel_pt_table[loop],
			    L2_TABLE_SIZE / PAGE_SIZE);
		} else {
			kernel_pt_table[loop].pv_va = freemempos -
			    (loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL)) *
			    L2_TABLE_SIZE_REAL;
			kernel_pt_table[loop].pv_pa =
			    kernel_pt_table[loop].pv_va - KERNVIRTADDR +
			    KERNPHYSADDR;
		}
	}
	/*
	 * Allocate a page for the system page mapped to V0x00000000
	 * This page will just contain the system vectors and can be
	 * shared by all processes.
	 */
	valloc_pages(systempage, 1);

	/* Allocate stacks for all modes */
	valloc_pages(irqstack, IRQ_STACK_SIZE);
	valloc_pages(abtstack, ABT_STACK_SIZE);
	valloc_pages(undstack, UND_STACK_SIZE);
	valloc_pages(kernelstack, KSTACK_PAGES);
	valloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE);
	/*
	 * Now we start construction of the L1 page table
	 * We start by mapping the L2 page tables into the L1.
	 * This means that we can replace L1 mappings later on if necessary
	 */
	l1pagetable = kernel_l1pt.pv_va;

	/* Map the L2 pages tables in the L1 page table */
	pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH,
	    &kernel_pt_table[KERNEL_PT_SYS]);
	for (i = 0; i < KERNEL_PT_KERN_NUM; i++)
		pmap_link_l2pt(l1pagetable, KERNBASE + i * L1_S_SIZE,
		    &kernel_pt_table[KERNEL_PT_KERN + i]);
	pmap_map_chunk(l1pagetable, KERNBASE, PHYSADDR,
	   (((uint32_t)(lastaddr) - KERNBASE) + PAGE_SIZE) & ~(PAGE_SIZE - 1),
	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	afterkern = round_page((lastaddr + L1_S_SIZE) & ~(L1_S_SIZE
	    - 1));
	for (i = 0; i < KERNEL_PT_AFKERNEL_NUM; i++) {
		pmap_link_l2pt(l1pagetable, afterkern + i * L1_S_SIZE,
		    &kernel_pt_table[KERNEL_PT_AFKERNEL + i]);
	}

	/* Map the vector page. */
	pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	/* Map the stack pages */
	pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
	    IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
	    ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
	    UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
	pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
	    KSTACK_PAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);

	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
	    L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
	pmap_map_chunk(l1pagetable, msgbufpv.pv_va, msgbufpv.pv_pa,
	    msgbufsize, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);


	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
		pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
		    kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
	}

	arm_devmap_bootstrap(l1pagetable, s3c24x0_devmap);

	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
	setttb(kernel_l1pt.pv_pa);
	cpu_tlb_flushID();
	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));

	/*
	 * Pages were allocated during the secondary bootstrap for the
	 * stacks for different CPU modes.
	 * We must now set the r13 registers in the different CPU modes to
	 * point to these stacks.
	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
	 * of the stack memory.
	 */

	cpu_control(CPU_CONTROL_MMU_ENABLE, CPU_CONTROL_MMU_ENABLE);
	set_stackptrs(0);

	/*
	 * We must now clean the cache again....
	 * Cleaning may be done by reading new data to displace any
	 * dirty data in the cache. This will have happened in setttb()
	 * but since we are boot strapping the addresses used for the read
	 * may have just been remapped and thus the cache could be out
	 * of sync. A re-clean after the switch will cure this.
	 * After booting there are no gross reloations of the kernel thus
	 * this problem will not occur after initarm().
	 */
	cpu_idcache_wbinv_all();

	/* Disable all peripheral interrupts */
	ioreg_write32(S3C24X0_INTCTL_BASE + INTCTL_INTMSK, ~0);
	memsize = board_init();
	/* Find pclk for uart */
	switch(ioreg_read32(S3C24X0_GPIO_BASE + GPIO_GSTATUS1) >> 16) {
	case 0x3241:
		s3c2410_clock_freq2(S3C24X0_CLKMAN_BASE, NULL, NULL,
		    &s3c2410_pclk);
		break;
	case 0x3244:
		s3c2440_clock_freq2(S3C24X0_CLKMAN_BASE, NULL, NULL,
		    &s3c2410_pclk);
		break;
	}
	cninit();

	/* Set stack for exception handlers */
	data_abort_handler_address = (u_int)data_abort_handler;
	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
	undefined_handler_address = (u_int)undefinedinstruction_bounce;
	undefined_init();
	
	init_proc0(kernelstack.pv_va);			
	
	arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);

	pmap_curmaxkvaddr = afterkern + 0x100000 * (KERNEL_PT_KERN_NUM - 1);
	arm_dump_avail_init(memsize, sizeof(dump_avail) / sizeof(dump_avail[0]));
	vm_max_kernel_address = KERNVIRTADDR + 3 * memsize;
	pmap_bootstrap(freemempos, &kernel_l1pt);
	msgbufp = (void*)msgbufpv.pv_va;
	msgbufinit(msgbufp, msgbufsize);
	mutex_init();

	physmem = memsize / PAGE_SIZE;

	phys_avail[0] = virtual_avail - KERNVIRTADDR + KERNPHYSADDR;
	phys_avail[1] = PHYSADDR + memsize;
	phys_avail[2] = 0;
	phys_avail[3] = 0;

	init_param2(physmem);
	kdb_init();

	return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP -
	    sizeof(struct pcb)));
}
예제 #4
0
/*
 * arm32_vector_init:
 *
 *	Initialize the vector page, and select whether or not to
 *	relocate the vectors.
 *
 *	NOTE: We expect the vector page to be mapped at its expected
 *	destination.
 */
void
arm32_vector_init(vaddr_t va, int which)
{
#if defined(CPU_ARMV7) || defined(CPU_ARM11) || defined(ARM_HAS_VBAR)
	/*
	 * If this processor has the security extension, don't bother
	 * to move/map the vector page.  Simply point VBAR to the copy
	 * that exists in the .text segment.
	 */
#ifndef ARM_HAS_VBAR
	if (va == ARM_VECTORS_LOW
	    && (armreg_pfr1_read() & ARM_PFR1_SEC_MASK) != 0) {
#endif
		extern const uint32_t page0rel[];
		vector_page = (vaddr_t)page0rel;
		KASSERT((vector_page & 0x1f) == 0);
		armreg_vbar_write(vector_page);
#ifdef VERBOSE_INIT_ARM
		printf(" vbar=%p", page0rel);
#endif
		cpu_control(CPU_CONTROL_VECRELOC, 0);
		return;
#ifndef ARM_HAS_VBAR
	}
#endif
#endif
#ifndef ARM_HAS_VBAR
	if (CPU_IS_PRIMARY(curcpu())) {
		extern unsigned int page0[], page0_data[];
		unsigned int *vectors = (int *) va;
		unsigned int *vectors_data = vectors + (page0_data - page0);
		int vec;

		/*
		 * Loop through the vectors we're taking over, and copy the
		 * vector's insn and data word.
		 */
		for (vec = 0; vec < ARM_NVEC; vec++) {
			if ((which & (1 << vec)) == 0) {
				/* Don't want to take over this vector. */
				continue;
			}
			vectors[vec] = page0[vec];
			vectors_data[vec] = page0_data[vec];
		}

		/* Now sync the vectors. */
		cpu_icache_sync_range(va, (ARM_NVEC * 2) * sizeof(u_int));

		vector_page = va;
	}

	if (va == ARM_VECTORS_HIGH) {
		/*
		 * Assume the MD caller knows what it's doing here, and
		 * really does want the vector page relocated.
		 *
		 * Note: This has to be done here (and not just in
		 * cpu_setup()) because the vector page needs to be
		 * accessible *before* cpu_startup() is called.
		 * Think ddb(9) ...
		 *
		 * NOTE: If the CPU control register is not readable,
		 * this will totally fail!  We'll just assume that
		 * any system that has high vector support has a
		 * readable CPU control register, for now.  If we
		 * ever encounter one that does not, we'll have to
		 * rethink this.
		 */
		cpu_control(CPU_CONTROL_VECRELOC, CPU_CONTROL_VECRELOC);
	}
#endif
}