// ------------------------------------------------------------------------------------------------ void TempMesh::FixupFaceOrientation() { const IfcVector3 vavg = Center(); // create a list of start indices for all faces to allow random access to faces std::vector<size_t> faceStartIndices(vertcnt.size()); for( size_t i = 0, a = 0; a < vertcnt.size(); i += vertcnt[a], ++a ) faceStartIndices[a] = i; // list all faces on a vertex std::map<IfcVector3, std::vector<size_t>, CompareVector> facesByVertex; for( size_t a = 0; a < vertcnt.size(); ++a ) { for( size_t b = 0; b < vertcnt[a]; ++b ) facesByVertex[verts[faceStartIndices[a] + b]].push_back(a); } // determine neighbourhood for all polys std::vector<size_t> neighbour(verts.size(), SIZE_MAX); std::vector<size_t> tempIntersect(10); for( size_t a = 0; a < vertcnt.size(); ++a ) { for( size_t b = 0; b < vertcnt[a]; ++b ) { size_t ib = faceStartIndices[a] + b, nib = faceStartIndices[a] + (b + 1) % vertcnt[a]; const std::vector<size_t>& facesOnB = facesByVertex[verts[ib]]; const std::vector<size_t>& facesOnNB = facesByVertex[verts[nib]]; // there should be exactly one or two faces which appear in both lists. Our face and the other side std::vector<size_t>::iterator sectstart = tempIntersect.begin(); std::vector<size_t>::iterator sectend = std::set_intersection( facesOnB.begin(), facesOnB.end(), facesOnNB.begin(), facesOnNB.end(), sectstart); if( std::distance(sectstart, sectend) != 2 ) continue; if( *sectstart == a ) ++sectstart; neighbour[ib] = *sectstart; } } // now we're getting started. We take the face which is the farthest away from the center. This face is most probably // facing outwards. So we reverse this face to point outwards in relation to the center. Then we adapt neighbouring // faces to have the same winding until all faces have been tested. std::vector<bool> faceDone(vertcnt.size(), false); while( std::count(faceDone.begin(), faceDone.end(), false) != 0 ) { // find the farthest of the remaining faces size_t farthestIndex = SIZE_MAX; IfcFloat farthestDistance = -1.0; for( size_t a = 0; a < vertcnt.size(); ++a ) { if( faceDone[a] ) continue; IfcVector3 faceCenter = std::accumulate(verts.begin() + faceStartIndices[a], verts.begin() + faceStartIndices[a] + vertcnt[a], IfcVector3(0.0)) / IfcFloat(vertcnt[a]); IfcFloat dst = (faceCenter - vavg).SquareLength(); if( dst > farthestDistance ) { farthestDistance = dst; farthestIndex = a; } } // calculate its normal and reverse the poly if its facing towards the mesh center IfcVector3 farthestNormal = ComputePolygonNormal(verts.data() + faceStartIndices[farthestIndex], vertcnt[farthestIndex]); IfcVector3 farthestCenter = std::accumulate(verts.begin() + faceStartIndices[farthestIndex], verts.begin() + faceStartIndices[farthestIndex] + vertcnt[farthestIndex], IfcVector3(0.0)) / IfcFloat(vertcnt[farthestIndex]); // We accapt a bit of negative orientation without reversing. In case of doubt, prefer the orientation given in // the file. if( (farthestNormal * (farthestCenter - vavg).Normalize()) < -0.4 ) { size_t fsi = faceStartIndices[farthestIndex], fvc = vertcnt[farthestIndex]; std::reverse(verts.begin() + fsi, verts.begin() + fsi + fvc); std::reverse(neighbour.begin() + fsi, neighbour.begin() + fsi + fvc); // because of the neighbour index belonging to the edge starting with the point at the same index, we need to // cycle the neighbours through to match the edges again. // Before: points A - B - C - D with edge neighbour p - q - r - s // After: points D - C - B - A, reversed neighbours are s - r - q - p, but the should be // r q p s for( size_t a = 0; a < fvc - 1; ++a ) std::swap(neighbour[fsi + a], neighbour[fsi + a + 1]); } faceDone[farthestIndex] = true; std::vector<size_t> todo; todo.push_back(farthestIndex); // go over its neighbour faces recursively and adapt their winding order to match the farthest face while( !todo.empty() ) { size_t tdf = todo.back(); size_t vsi = faceStartIndices[tdf], vc = vertcnt[tdf]; todo.pop_back(); // check its neighbours for( size_t a = 0; a < vc; ++a ) { // ignore neighbours if we already checked them size_t nbi = neighbour[vsi + a]; if( nbi == SIZE_MAX || faceDone[nbi] ) continue; const IfcVector3& vp = verts[vsi + a]; size_t nbvsi = faceStartIndices[nbi], nbvc = vertcnt[nbi]; std::vector<IfcVector3>::iterator it = std::find_if(verts.begin() + nbvsi, verts.begin() + nbvsi + nbvc, FindVector(vp)); ai_assert(it != verts.begin() + nbvsi + nbvc); size_t nb_vidx = std::distance(verts.begin() + nbvsi, it); // two faces winded in the same direction should have a crossed edge, where one face has p0->p1 and the other // has p1'->p0'. If the next point on the neighbouring face is also the next on the current face, we need // to reverse the neighbour nb_vidx = (nb_vidx + 1) % nbvc; size_t oursideidx = (a + 1) % vc; if( FuzzyVectorCompare(1e-6)(verts[vsi + oursideidx], verts[nbvsi + nb_vidx]) ) { std::reverse(verts.begin() + nbvsi, verts.begin() + nbvsi + nbvc); std::reverse(neighbour.begin() + nbvsi, neighbour.begin() + nbvsi + nbvc); for( size_t a = 0; a < nbvc - 1; ++a ) std::swap(neighbour[nbvsi + a], neighbour[nbvsi + a + 1]); } // either way we're done with the neighbour. Mark it as done and continue checking from there recursively faceDone[nbi] = true; todo.push_back(nbi); } } // no more faces reachable from this part of the surface, start over with a disjunct part and its farthest face } }
void FaceSinkGraph::sinkSwitches(FaceArray< List<adjEntry> > &faceSwitches) { OGDF_ASSERT(m_pE->externalFace() != nullptr); List<adjEntry> dummyList; faceSwitches.init(*m_pE, dummyList); NodeArray<bool> visited(m_pE->getGraph(), false); List<face> toDo; FaceArray<bool> faceDone(*m_pE, false); #if 0 m_pE->getGraph().writeGML("c:/temp/debug.gml"); #endif //compute sink-switches for the ext. face for(adjEntry adj : m_pE->externalFace()->entries) { node u = adj->theNode(); if (u->outdeg() == 0 && !visited[u]) faceSwitches[m_pE->externalFace()].pushBack(adj); if (u->indeg() > 1 && !visited[u]) { List<edge> outEdges; u->outEdges(outEdges); if (outEdges.empty()) { for(adjEntry run : u->adjEntries) { if (m_pE->rightFace(run) != m_pE->externalFace()) toDo.pushBack(m_pE->rightFace(run)); } } else { edge e = outEdges.front(); adjEntry run = e->adjSource(); run = run->cyclicSucc(); while (run->theEdge() != e) { adjEntry next = run->cyclicSucc(); if (next->theEdge()->target() == u && run->theEdge()->target() == u) toDo.pushBack(m_pE->rightFace(run)); run = run->cyclicSucc(); } } } visited[u] = true; } faceDone[m_pE->externalFace()] = true; while (!toDo.empty()) { face f = toDo.popFrontRet(); if (faceDone[f]) continue; for(adjEntry adj : f->entries) { node u = adj->theNode(); if (visited[u] && adj->theEdge()->target() == adj->faceCyclePred()->theEdge()->target() && m_pE->rightFace(adj) != m_pE->leftFace(adj)) faceSwitches[f].pushFront(adj); // the top sink switch of f else { if (u->outdeg() == 0) faceSwitches[f].pushBack(adj); // the non top sink switch of f } if (u->indeg() > 1) { List<edge> outEdges; u->outEdges(outEdges); if (outEdges.empty()) { for(adjEntry run : u->adjEntries) { if (m_pE->rightFace(run) != f) toDo.pushBack(m_pE->rightFace(run)); } } else { edge e = outEdges.front(); adjEntry run = e->adjSource(); run = run->cyclicSucc(); while (run->theEdge() != e) { adjEntry next = run->cyclicSucc(); if (next->theEdge()->target() == u && run->theEdge()->target() == u) toDo.pushBack(m_pE->rightFace(run)); run = run->cyclicSucc(); } } } visited[u] = true; } faceDone[f] = true; OGDF_ASSERT(!faceSwitches[f].empty()); } #if 0 std::cout << std::endl; std::cout << "switche (FaceSinkGraph::sinkSwitches) : " << std::endl; for(face f : m_pE->faces) { std::cout << "face : " << f->index() << std::endl; const List<adjEntry> &adjList = faceSwitches[f]; for(adjEntry adj : adjList) { std::cout << adj->theNode() << "; "; } std::cout << std::endl; } #endif }