예제 #1
0
/*-----------------------------------------------------------------------
 * Send a reset sequence consisting of 9 clocks with the data signal high
 * to clock any confused device back into an idle state.  Also send a
 * <stop> at the end of the sequence for belts & suspenders.
 */
static void send_reset(void)
{
#ifdef	CONFIG_MPC8260
	volatile ioport_t *iop = ioport_addr((immap_t *)CFG_IMMR, I2C_PORT);
#endif
#ifdef	CONFIG_8xx
	volatile immap_t *immr = (immap_t *)CFG_IMMR;
#endif
	int j;

	I2C_SCL(1);
	I2C_SDA(1);
#ifdef	I2C_INIT
	I2C_INIT;
#endif
	I2C_TRISTATE;
	for(j = 0; j < 9; j++) {
		I2C_SCL(0);
		I2C_DELAY;
		I2C_DELAY;
		I2C_SCL(1);
		I2C_DELAY;
		I2C_DELAY;
	}
	send_stop();
	I2C_TRISTATE;
}
예제 #2
0
void reset_phy (void)
{
	volatile ioport_t *iop;
#if defined(CONFIG_CMD_NET)
	int i;
	unsigned short val;
#endif

	iop = ioport_addr((immap_t *)CONFIG_SYS_IMMR, 0);

	/* Reset the PHY */
	iop->pdat &= 0xfff7ffff;	/* PA12 = |SWITCH_RESET */
#if defined(CONFIG_CMD_NET)
	udelay(20000);
	iop->pdat |= 0x00080000;
	for (i=0; i<100; i++) {
		udelay(20000);
		if (bb_miiphy_read("FCC1", CONFIG_SYS_PHY_ADDR,2,&val ) == 0) {
			break;
		}
	}
	/* initialize switch */
	m88e6060_initialize( CONFIG_SYS_PHY_ADDR );
#endif
}
예제 #3
0
파일: km82xx.c 프로젝트: eballetbo/u-boot
static int get_pin(unsigned long mask, int port)
{
	ioport_t *iop = ioport_addr((immap_t *)CONFIG_SYS_IMMR, port);

	clrbits_be32(&iop->pdir, mask);
	return 0 != (in_be32(&iop->pdat) & mask);
}
예제 #4
0
/*-----------------------------------------------------------------------
 * if ack == I2C_ACK, ACK the byte so can continue reading, else
 * send I2C_NOACK to end the read.
 */
static uchar read_byte(int ack)
{
#ifdef	CONFIG_MPC8260
	volatile ioport_t *iop = ioport_addr((immap_t *)CFG_IMMR, I2C_PORT);
#endif
#ifdef	CONFIG_8xx
	volatile immap_t *immr = (immap_t *)CFG_IMMR;
#endif
	int  data;
	int  j;

	/*
	 * Read 8 bits, MSB first.
	 */
	I2C_TRISTATE;
	data = 0;
	for(j = 0; j < 8; j++) {
		I2C_SCL(0);
		I2C_DELAY;
		I2C_SCL(1);
		I2C_DELAY;
		data <<= 1;
		data |= I2C_READ;
		I2C_DELAY;
	}
	send_ack(ack);

	return(data);
}
예제 #5
0
int
do_reset(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
	volatile ioport_t *iop;

	iop = ioport_addr((immap_t *)CONFIG_SYS_IMMR, 2);
	iop->pdat |= 0x00002000;	/* PC18 = HW_RESET */
	return 1;
}
예제 #6
0
int
do_reset (void *cmdtp, int flag, int argc, char *argv[])
{
	volatile ioport_t *iop;

	iop = ioport_addr((immap_t *)CFG_IMMR, 2);
	iop->pdat |= 0x00002000;	/* PC18 = HW_RESET */
	return 1;
}
예제 #7
0
파일: km82xx.c 프로젝트: eballetbo/u-boot
static void set_pin(int state, unsigned long mask, int port)
{
	ioport_t *iop = ioport_addr((immap_t *)CONFIG_SYS_IMMR, port);

	if (state)
		setbits_be32(&iop->pdat, mask);
	else
		clrbits_be32(&iop->pdat, mask);

	setbits_be32(&iop->pdir, mask);
}
예제 #8
0
static void setports(int gpio)
{
	ioport_t *iop = ioport_addr((immap_t *)CONFIG_SYS_IMMR, 3);

	if (gpio) {
		clrbits_be32(&iop->ppar, (SDA_MASK | SCL_MASK));
		clrbits_be32(&iop->podr, (SDA_MASK | SCL_MASK));
	} else {
		setbits_be32(&iop->ppar, (SDA_MASK | SCL_MASK));
		clrbits_be32(&iop->pdir, (SDA_MASK | SCL_MASK));
		setbits_be32(&iop->podr, (SDA_MASK | SCL_MASK));
	}
}
예제 #9
0
/*-----------------------------------------------------------------------
 * START: High -> Low on SDA while SCL is High
 */
static void send_start(void)
{
#ifdef	CONFIG_MPC8260
	volatile ioport_t *iop = ioport_addr((immap_t *)CFG_IMMR, I2C_PORT);
#endif
#ifdef	CONFIG_8xx
	volatile immap_t *immr = (immap_t *)CFG_IMMR;
#endif

	I2C_DELAY;
	I2C_SDA(1);
	I2C_ACTIVE;
	I2C_DELAY;
	I2C_SCL(1);
	I2C_DELAY;
	I2C_SDA(0);
	I2C_DELAY;
}
예제 #10
0
int misc_init_r (void)
{
	volatile ioport_t *iop;
	unsigned char temp;
#if 0
	/* DUMP UPMA RAM */
	volatile immap_t *immap;
	volatile memctl8260_t *memctl;
	volatile unsigned char *dummy;
	unsigned char c;
	int i;

	immap = (immap_t *) CONFIG_SYS_IMMR;
	memctl = &immap->im_memctl;


	dummy = (volatile unsigned char *) (memctl->memc_br7 & BRx_BA_MSK);
	memctl->memc_mar = 0;
	memctl->memc_mamr = MxMR_OP_RARR;
	for (i = 0; i < 64; i++) {
		c = *dummy;
		printf( "UPMA[%02d]: 0x%08lx,0x%08lx: 0x%08lx\n",i,
		        memctl->memc_mamr,
		        memctl->memc_mar,
		        memctl->memc_mdr );
	}
	memctl->memc_mamr = 0x00044440;
#endif
	/* enable buffers (DSP, DPRAM) */
	iop = ioport_addr((immap_t *)CONFIG_SYS_IMMR, 0);
	iop->pdat &= 0xfffbffff;	/* PA13 = |EN_M_BCTL1 */

	/* destroy DPRAM magic */
	*(volatile unsigned char *)0xf0500000 = 0x00;

	/* clear any pending DPRAM irq */
	temp = *(volatile unsigned char *)0xf05003ff;

	/* write module-id into DPRAM */
	*(volatile unsigned char *)0xf0500201 = 0x50;

	return 0;
}
예제 #11
0
/*-----------------------------------------------------------------------
 * Send 8 bits and look for an acknowledgement.
 */
static int write_byte(uchar data)
{
#ifdef	CONFIG_MPC8260
	volatile ioport_t *iop = ioport_addr((immap_t *)CFG_IMMR, I2C_PORT);
#endif
#ifdef	CONFIG_8xx
	volatile immap_t *immr = (immap_t *)CFG_IMMR;
#endif
	int j;
	int nack;

	I2C_ACTIVE;
	for(j = 0; j < 8; j++) {
		I2C_SCL(0);
		I2C_DELAY;
		I2C_SDA(data & 0x80);
		I2C_DELAY;
		I2C_SCL(1);
		I2C_DELAY;
		I2C_DELAY;

		data <<= 1;
	}

	/*
	 * Look for an <ACK>(negative logic) and return it.
	 */
	I2C_SCL(0);
	I2C_DELAY;
	I2C_SDA(1);
	I2C_TRISTATE;
	I2C_DELAY;
	I2C_SCL(1);
	I2C_DELAY;
	I2C_DELAY;
	nack = I2C_READ;
	I2C_SCL(0);
	I2C_DELAY;
	I2C_ACTIVE;

	return(nack);	/* not a nack is an ack */
}
예제 #12
0
void spi_cs_deactivate(struct spi_slave *slave)
{
    volatile ioport_t *iopd = ioport_addr((immap_t *)CONFIG_SYS_IMMR, 3 /* port D */);

    iopd->pdat |= cs_mask[slave->cs];
}
예제 #13
0
/* ------------------------------------------------------------------------- */
int misc_init_r(void)
{
    /*
     * Note: iop is used by the I2C macros, and iopa by the ADC/DAC initialization.
     */
    volatile ioport_t *iopa = ioport_addr((immap_t *)CONFIG_SYS_IMMR, 0 /* port A */);
    volatile ioport_t *iop  = ioport_addr((immap_t *)CONFIG_SYS_IMMR, I2C_PORT);

    int  reg;          /* I2C register value */
    char *ep;          /* Environment pointer */
    char str_buf[12] ; /* sprintf output buffer */
    int  sample_rate;  /* ADC/DAC sample rate */
    int  sample_64x;   /* Use  64/4 clocking for the ADC/DAC */
    int  sample_128x;  /* Use 128/4 clocking for the ADC/DAC */
    int  right_just;   /* Is the data to the DAC right justified? */
    int  mclk_divide;  /* MCLK Divide */
    int  quiet;        /* Quiet or minimal output mode */

    quiet = 0;
    if ((ep = getenv("quiet")) != NULL) {
	quiet = simple_strtol(ep, NULL, 10);
    }
    else {
	setenv("quiet", "0");
    }

    /*
     * SACSng custom initialization:
     *    Start the ADC and DAC clocks, since the Crystal parts do not
     *    work on the I2C bus until the clocks are running.
     */

    sample_rate = INITIAL_SAMPLE_RATE;
    if ((ep = getenv("DaqSampleRate")) != NULL) {
	sample_rate = simple_strtol(ep, NULL, 10);
    }

    sample_64x  = INITIAL_SAMPLE_64X;
    sample_128x = INITIAL_SAMPLE_128X;
    if ((ep = getenv("Daq64xSampling")) != NULL) {
	sample_64x = simple_strtol(ep, NULL, 10);
	if (sample_64x) {
	    sample_128x = 0;
	}
	else {
	    sample_128x = 1;
	}
    }
    else {
	if ((ep = getenv("Daq128xSampling")) != NULL) {
	    sample_128x = simple_strtol(ep, NULL, 10);
	    if (sample_128x) {
		sample_64x = 0;
	    }
	    else {
		sample_64x = 1;
	    }
	}
    }

    /*
     * Stop the clocks and wait for at least 1 LRCLK period
     * to make sure the clocking has really stopped.
     */
    Daq_Stop_Clocks();
    udelay((1000000 / sample_rate) * NUM_LRCLKS_TO_STABILIZE);

    /*
     * Initialize the clocks with the new rates
     */
    Daq_Init_Clocks(sample_rate, sample_64x);
    sample_rate = Daq_Get_SampleRate();

    /*
     * Start the clocks and wait for at least 1 LRCLK period
     * to make sure the clocking has become stable.
     */
    Daq_Start_Clocks(sample_rate);
    udelay((1000000 / sample_rate) * NUM_LRCLKS_TO_STABILIZE);

    sprintf(str_buf, "%d", sample_rate);
    setenv("DaqSampleRate", str_buf);

    if (sample_64x) {
	setenv("Daq64xSampling",  "1");
	setenv("Daq128xSampling", NULL);
    }
    else {
	setenv("Daq64xSampling",  NULL);
	setenv("Daq128xSampling", "1");
    }

    /*
     * Display the ADC/DAC clocking information
     */
    if (!quiet) {
	Daq_Display_Clocks();
    }

    /*
     * Determine the DAC data justification
     */

    right_just = INITIAL_RIGHT_JUST;
    if ((ep = getenv("DaqDACRightJustified")) != NULL) {
	right_just = simple_strtol(ep, NULL, 10);
    }

    sprintf(str_buf, "%d", right_just);
    setenv("DaqDACRightJustified", str_buf);

    /*
     * Determine the DAC MCLK Divide
     */

    mclk_divide = INITIAL_MCLK_DIVIDE;
    if ((ep = getenv("DaqDACMClockDivide")) != NULL) {
	mclk_divide = simple_strtol(ep, NULL, 10);
    }

    sprintf(str_buf, "%d", mclk_divide);
    setenv("DaqDACMClockDivide", str_buf);

    /*
     * Initializing the I2C address in the Crystal A/Ds:
     *
     * 1) Wait for VREF cap to settle (10uSec per uF)
     * 2) Release pullup on SDATA
     * 3) Write the I2C address to register 6
     * 4) Enable address matching by setting the MSB in register 7
     */

    if (!quiet) {
	printf("Initializing the ADC...\n");
    }
    udelay(ADC_INITIAL_DELAY);		/* 10uSec per uF of VREF cap */

    iopa->pdat &= ~ADC_SDATA1_MASK;     /* release SDATA1 */
    udelay(ADC_SDATA_DELAY);		/* arbitrary settling time */

    i2c_reg_write(0x00, 0x06, I2C_ADC_1_ADDR);	/* set address */
    i2c_reg_write(I2C_ADC_1_ADDR, 0x07,         /* turn on ADDREN */
		  ADC_REG7_ADDR_ENABLE);

    i2c_reg_write(I2C_ADC_1_ADDR, 0x02, /* 128x, slave mode, !HPEN */
		  (sample_64x ? 0 : ADC_REG2_128x) |
		  ADC_REG2_HIGH_PASS_DIS |
		  ADC_REG2_SLAVE_MODE);

    reg = i2c_reg_read(I2C_ADC_1_ADDR, 0x06) & 0x7F;
    if(reg != I2C_ADC_1_ADDR)
	printf("Init of ADC U10 failed: address is 0x%02X should be 0x%02X\n",
	       reg, I2C_ADC_1_ADDR);

    iopa->pdat &= ~ADC_SDATA2_MASK;	/* release SDATA2 */
    udelay(ADC_SDATA_DELAY);		/* arbitrary settling time */

    i2c_reg_write(0x00, 0x06, I2C_ADC_2_ADDR);	/* set address (do not set ADDREN yet) */

    i2c_reg_write(I2C_ADC_2_ADDR, 0x02, /* 64x, slave mode, !HPEN */
		  (sample_64x ? 0 : ADC_REG2_128x) |
		  ADC_REG2_HIGH_PASS_DIS |
		  ADC_REG2_SLAVE_MODE);

    reg = i2c_reg_read(I2C_ADC_2_ADDR, 0x06) & 0x7F;
    if(reg != I2C_ADC_2_ADDR)
	printf("Init of ADC U15 failed: address is 0x%02X should be 0x%02X\n",
	       reg, I2C_ADC_2_ADDR);

    i2c_reg_write(I2C_ADC_1_ADDR, 0x01, /* set FSTART and GNDCAL */
		  ADC_REG1_FRAME_START |
		  ADC_REG1_GROUND_CAL);

    i2c_reg_write(I2C_ADC_1_ADDR, 0x02, /* Start calibration */
		  (sample_64x ? 0 : ADC_REG2_128x) |
		  ADC_REG2_CAL |
		  ADC_REG2_HIGH_PASS_DIS |
		  ADC_REG2_SLAVE_MODE);

    udelay(ADC_CAL_DELAY);		/* a minimum of 4100 LRCLKs */
    i2c_reg_write(I2C_ADC_1_ADDR, 0x01, 0x00);	/* remove GNDCAL */

    /*
     * Now that we have synchronized the ADC's, enable address
     * selection on the second ADC as well as the first.
     */
    i2c_reg_write(I2C_ADC_2_ADDR, 0x07, ADC_REG7_ADDR_ENABLE);

    /*
     * Initialize the Crystal DAC
     *
     * Two of the config lines are used for I2C so we have to set them
     * to the proper initialization state without inadvertantly
     * sending an I2C "start" sequence.  When we bring the I2C back to
     * the normal state, we send an I2C "stop" sequence.
     */
    if (!quiet) {
	printf("Initializing the DAC...\n");
    }

    /*
     * Bring the I2C clock and data lines low for initialization
     */
    I2C_SCL(0);
    I2C_DELAY;
    I2C_SDA(0);
    I2C_ACTIVE;
    I2C_DELAY;

    /* Reset the DAC */
    iopa->pdat &= ~DAC_RST_MASK;
    udelay(DAC_RESET_DELAY);

    /* Release the DAC reset */
    iopa->pdat |=  DAC_RST_MASK;
    udelay(DAC_INITIAL_DELAY);

    /*
     * Cause the DAC to:
     *     Enable control port (I2C mode)
     *     Going into power down
     */
    i2c_reg_write(I2C_DAC_ADDR, 0x05,
		  DAC_REG5_I2C_MODE |
		  DAC_REG5_POWER_DOWN);

    /*
     * Cause the DAC to:
     *     Enable control port (I2C mode)
     *     Going into power down
     *         . MCLK divide by 1
     *         . MCLK divide by 2
     */
    i2c_reg_write(I2C_DAC_ADDR, 0x05,
		  DAC_REG5_I2C_MODE |
		  DAC_REG5_POWER_DOWN |
		  (mclk_divide ? DAC_REG5_MCLK_DIV : 0));

    /*
     * Cause the DAC to:
     *     Auto-mute disabled
     *         . Format 0, left  justified 24 bits
     *         . Format 3, right justified 24 bits
     *     No de-emphasis
     *         . Single speed mode
     *         . Double speed mode
     */
    i2c_reg_write(I2C_DAC_ADDR, 0x01,
		  (right_just ? DAC_REG1_RIGHT_JUST_24BIT :
				DAC_REG1_LEFT_JUST_24_BIT) |
		  DAC_REG1_DEM_NO |
		  (sample_rate >= 50000 ? DAC_REG1_DOUBLE : DAC_REG1_SINGLE));

    sprintf(str_buf, "%d",
	    sample_rate >= 50000 ? DAC_REG1_DOUBLE : DAC_REG1_SINGLE);
    setenv("DaqDACFunctionalMode", str_buf);

    /*
     * Cause the DAC to:
     *     Enable control port (I2C mode)
     *     Remove power down
     *         . MCLK divide by 1
     *         . MCLK divide by 2
     */
    i2c_reg_write(I2C_DAC_ADDR, 0x05,
		  DAC_REG5_I2C_MODE |
		  (mclk_divide ? DAC_REG5_MCLK_DIV : 0));

    /*
     * Create a I2C stop condition:
     *     low->high on data while clock is high.
     */
    I2C_SCL(1);
    I2C_DELAY;
    I2C_SDA(1);
    I2C_DELAY;
    I2C_TRISTATE;

    if (!quiet) {
	printf("\n");
    }

#ifdef CONFIG_ETHER_LOOPBACK_TEST
    /*
     * Run the Ethernet loopback test
     */
    eth_loopback_test ();
#endif /* CONFIG_ETHER_LOOPBACK_TEST */

#ifdef CONFIG_SHOW_BOOT_PROGRESS
    /*
     * Turn off the RED fail LED now that we are up and running.
     */
    status_led_set(STATUS_LED_RED, STATUS_LED_OFF);
#endif

    return 0;
}
예제 #14
0
static void config_8260_ioports (volatile immap_t * immr)
{
	int portnum;

	for (portnum = 0; portnum < 4; portnum++) {
		uint pmsk = 0,
		     ppar = 0,
		     psor = 0,
		     pdir = 0,
		     podr = 0,
		     pdat = 0;
		iop_conf_t *iopc = (iop_conf_t *) & iop_conf_tab[portnum][0];
		iop_conf_t *eiopc = iopc + 32;
		uint msk = 1;

		/*
		 * NOTE:
		 * index 0 refers to pin 31,
		 * index 31 refers to pin 0
		 */
		while (iopc < eiopc) {
			if (iopc->conf) {
				pmsk |= msk;
				if (iopc->ppar)
					ppar |= msk;
				if (iopc->psor)
					psor |= msk;
				if (iopc->pdir)
					pdir |= msk;
				if (iopc->podr)
					podr |= msk;
				if (iopc->pdat)
					pdat |= msk;
			}

			msk <<= 1;
			iopc++;
		}

		if (pmsk != 0) {
			volatile ioport_t *iop = ioport_addr (immr, portnum);
			uint tpmsk = ~pmsk;

			/*
			 * the (somewhat confused) paragraph at the
			 * bottom of page 35-5 warns that there might
			 * be "unknown behaviour" when programming
			 * PSORx and PDIRx, if PPARx = 1, so I
			 * decided this meant I had to disable the
			 * dedicated function first, and enable it
			 * last.
			 */
			iop->ppar &= tpmsk;
			iop->psor = (iop->psor & tpmsk) | psor;
			iop->podr = (iop->podr & tpmsk) | podr;
			iop->pdat = (iop->pdat & tpmsk) | pdat;
			iop->pdir = (iop->pdir & tpmsk) | pdir;
			iop->ppar |= ppar;
		}
	}
}
예제 #15
0
void spi_cs_activate(struct spi_slave *slave)
{
    volatile ioport_t *iopd = ioport_addr((immap_t *)CFG_IMMR, 3 /* port D */);

    iopd->pdat &= ~cs_mask[slave->cs];
}