예제 #1
0
STATIC mp_obj_t mp_builtin_repr(mp_obj_t o_in) {
    vstr_t *vstr = vstr_new();
    mp_obj_print_helper((void (*)(void *env, const char *fmt, ...))vstr_printf, vstr, o_in, PRINT_REPR);
    mp_obj_t s = mp_obj_new_str((byte*)vstr->buf, vstr->len, false);
    vstr_free(vstr);
    return s;
}
예제 #2
0
mp_obj_t str_format(uint n_args, const mp_obj_t *args) {
    assert(MP_OBJ_IS_STR(args[0]));

    GET_STR_DATA_LEN(args[0], str, len);
    int arg_i = 1;
    vstr_t *vstr = vstr_new();
    for (const byte *top = str + len; str < top; str++) {
        if (*str == '{') {
            str++;
            if (str < top && *str == '{') {
                vstr_add_char(vstr, '{');
            } else {
                while (str < top && *str != '}') str++;
                if (arg_i >= n_args) {
                    nlr_jump(mp_obj_new_exception_msg(MP_QSTR_IndexError, "tuple index out of range"));
                }
                // TODO: may be PRINT_REPR depending on formatting code
                mp_obj_print_helper((void (*)(void*, const char*, ...))vstr_printf, vstr, args[arg_i], PRINT_STR);
                arg_i++;
            }
        } else {
            vstr_add_char(vstr, *str);
        }
    }

    mp_obj_t s = mp_obj_new_str((byte*)vstr->buf, vstr->len, false);
    vstr_free(vstr);
    return s;
}
예제 #3
0
STATIC mp_obj_t stringio_close(mp_obj_t self_in) {
    mp_obj_stringio_t *self = MP_OBJ_TO_PTR(self_in);
#if MICROPY_CPYTHON_COMPAT
    vstr_free(self->vstr);
    self->vstr = NULL;
#else
    vstr_clear(self->vstr);
    self->vstr->alloc = 0;
    self->vstr->len = 0;
    self->pos = 0;
#endif
    return mp_const_none;
}
예제 #4
0
STATIC mp_obj_t stream_readall(mp_obj_t self_in) {
    struct _mp_obj_base_t *o = (struct _mp_obj_base_t *)self_in;
    if (o->type->stream_p == NULL || o->type->stream_p->read == NULL) {
        // CPython: io.UnsupportedOperation, OSError subclass
        nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, "Operation not supported"));
    }

    int total_size = 0;
    vstr_t *vstr = vstr_new_size(DEFAULT_BUFFER_SIZE);
    char *buf = vstr_str(vstr);
    char *p = buf;
    int error;
    int current_read = DEFAULT_BUFFER_SIZE;
    while (true) {
        mp_int_t out_sz = o->type->stream_p->read(self_in, p, current_read, &error);
        if (out_sz == -1) {
            if (is_nonblocking_error(error)) {
                // With non-blocking streams, we read as much as we can.
                // If we read nothing, return None, just like read().
                // Otherwise, return data read so far.
                if (total_size == 0) {
                    return mp_const_none;
                }
                break;
            }
            nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_OSError, "[Errno %d]", error));
        }
        if (out_sz == 0) {
            break;
        }
        total_size += out_sz;
        if (out_sz < current_read) {
            current_read -= out_sz;
            p += out_sz;
        } else {
            current_read = DEFAULT_BUFFER_SIZE;
            p = vstr_extend(vstr, current_read);
            if (p == NULL) {
                // TODO
                nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_OSError/*&mp_type_RuntimeError*/, "Out of memory"));
            }
        }
    }

    mp_obj_t s = mp_obj_new_str_of_type(STREAM_CONTENT_TYPE(o->type->stream_p), (byte*)vstr->buf, total_size);
    vstr_free(vstr);
    return s;
}
예제 #5
0
// Unbuffered, inefficient implementation of readline() for raw I/O files.
STATIC mp_obj_t stream_unbuffered_readline(uint n_args, const mp_obj_t *args) {
    struct _mp_obj_base_t *o = (struct _mp_obj_base_t *)args[0];
    if (o->type->stream_p == NULL || o->type->stream_p->read == NULL) {
        // CPython: io.UnsupportedOperation, OSError subclass
        nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, "Operation not supported"));
    }

    mp_int_t max_size = -1;
    if (n_args > 1) {
        max_size = MP_OBJ_SMALL_INT_VALUE(args[1]);
    }

    vstr_t *vstr;
    if (max_size != -1) {
        vstr = vstr_new_size(max_size);
    } else {
        vstr = vstr_new();
    }

    int error;
    while (max_size == -1 || max_size-- != 0) {
        char *p = vstr_add_len(vstr, 1);
        if (p == NULL) {
            nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_MemoryError, "out of memory"));
        }

        mp_int_t out_sz = o->type->stream_p->read(o, p, 1, &error);
        if (out_sz == -1) {
            nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_OSError, "[Errno %d]", error));
        }
        if (out_sz == 0) {
            // Back out previously added byte
            // TODO: This is a bit hacky, does it supported by vstr API contract?
            // Consider, what's better - read a char and get OutOfMemory (so read
            // char is lost), or allocate first as we do.
            vstr_add_len(vstr, -1);
            break;
        }
        if (*p == '\n') {
            break;
        }
    }
    // TODO need a string creation API that doesn't copy the given data
    mp_obj_t ret = mp_obj_new_str_of_type(STREAM_CONTENT_TYPE(o->type->stream_p), (byte*)vstr->buf, vstr->len);
    vstr_free(vstr);
    return ret;
}
예제 #6
0
STATIC mp_obj_t str_make_new(mp_obj_t type_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) {
#if MICROPY_CPYTHON_COMPAT
    if (n_kw != 0) {
        mp_arg_error_unimpl_kw();
    }
#endif

    switch (n_args) {
        case 0:
            return MP_OBJ_NEW_QSTR(MP_QSTR_);

        case 1:
        {
            vstr_t *vstr = vstr_new();
            mp_obj_print_helper((void (*)(void*, const char*, ...))vstr_printf, vstr, args[0], PRINT_STR);
            mp_obj_t s = mp_obj_new_str(vstr->buf, vstr->len, false);
            vstr_free(vstr);
            return s;
        }

        case 2:
        case 3:
        {
            // TODO: validate 2nd/3rd args
            if (MP_OBJ_IS_TYPE(args[0], &mp_type_bytes)) {
                GET_STR_DATA_LEN(args[0], str_data, str_len);
                GET_STR_HASH(args[0], str_hash);
                mp_obj_str_t *o = mp_obj_new_str_of_type(&mp_type_str, NULL, str_len);
                o->data = str_data;
                o->hash = str_hash;
                return o;
            } else {
                mp_buffer_info_t bufinfo;
                mp_get_buffer_raise(args[0], &bufinfo, MP_BUFFER_READ);
                return mp_obj_new_str(bufinfo.buf, bufinfo.len, false);
            }
        }

        default:
            nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "str takes at most 3 arguments"));
    }
}
예제 #7
0
mp_obj_t mp_obj_new_exception_msg_varg(const mp_obj_type_t *exc_type, const char *fmt, ...) {
    // check that the given type is an exception type
    assert(exc_type->make_new == mp_obj_exception_make_new);

    // make exception object
    mp_obj_exception_t *o = m_new_obj_var_maybe(mp_obj_exception_t, mp_obj_t, 0);
    if (o == NULL) {
        // Couldn't allocate heap memory; use local data instead.
        // Unfortunately, we won't be able to format the string...
        o = &mp_emergency_exception_obj;
        o->base.type = exc_type;
        o->traceback = MP_OBJ_NULL;
        o->args = mp_const_empty_tuple;
    } else {
        o->base.type = exc_type;
        o->traceback = MP_OBJ_NULL;
        o->args = mp_obj_new_tuple(1, NULL);

        if (fmt == NULL) {
            // no message
            assert(0);
        } else {
            // render exception message and store as .args[0]
            // TODO: optimize bufferbloat
            vstr_t *vstr = vstr_new();
            va_list ap;
            va_start(ap, fmt);
            vstr_vprintf(vstr, fmt, ap);
            va_end(ap);
            o->args->items[0] = mp_obj_new_str((byte*)vstr->buf, vstr->len, false);
            vstr_free(vstr);
        }
    }

    return o;
}
예제 #8
0
mp_obj_t mp_obj_new_exception_msg_varg(const mp_obj_type_t *exc_type, const char *fmt, ...) {
    // check that the given type is an exception type
    assert(exc_type->make_new == mp_obj_exception_make_new);

    // make exception object
    mp_obj_exception_t *o = m_new_obj_var_maybe(mp_obj_exception_t, mp_obj_t, 0);
    if (o == NULL) {
        // Couldn't allocate heap memory; use local data instead.
        // Unfortunately, we won't be able to format the string...
        o = &mp_emergency_exception_obj;
        o->base.type = exc_type;
        o->traceback = MP_OBJ_NULL;
        o->args = mp_const_empty_tuple;

#if MICROPY_ENABLE_EMERGENCY_EXCEPTION_BUF
        // If the user has provided a buffer, then we try to create a tuple
        // of length 1, which has a string object and the string data.

        if (mp_emergency_exception_buf_size > (sizeof(mp_obj_tuple_t) + sizeof(mp_obj_str_t) + sizeof(mp_obj_t))) {
            mp_obj_tuple_t *tuple = (mp_obj_tuple_t *)mp_emergency_exception_buf;
            mp_obj_str_t *str = (mp_obj_str_t *)&tuple->items[1];

            tuple->base.type = &mp_type_tuple;
            tuple->len = 1;
            tuple->items[0] = str;

            byte *str_data = (byte *)&str[1];
            uint max_len = mp_emergency_exception_buf + mp_emergency_exception_buf_size
                         - str_data;

            va_list ap;
            va_start(ap, fmt);
            str->len = vsnprintf((char *)str_data, max_len, fmt, ap);
            va_end(ap);

            str->base.type = &mp_type_str;
            str->hash = qstr_compute_hash(str_data, str->len);
            str->data = str_data;

            o->args = tuple;

            uint offset = &str_data[str->len] - mp_emergency_exception_buf;
            offset += sizeof(void *) - 1;
            offset &= ~(sizeof(void *) - 1);

            if ((mp_emergency_exception_buf_size - offset) > (sizeof(mp_obj_list_t) + sizeof(mp_obj_t) * 3)) {
                // We have room to store some traceback.
                mp_obj_list_t *list = (mp_obj_list_t *)((byte *)mp_emergency_exception_buf + offset);
                list->base.type = &mp_type_list;
                list->items = (mp_obj_t)&list[1];
                list->alloc = (mp_emergency_exception_buf + mp_emergency_exception_buf_size - (byte *)list->items) / sizeof(list->items[0]);
                list->len = 0;

                o->traceback = list;
            }
        }
#endif // MICROPY_ENABLE_EMERGENCY_EXCEPTION_BUF
    } else {
        o->base.type = exc_type;
        o->traceback = MP_OBJ_NULL;
        o->args = mp_obj_new_tuple(1, NULL);

        if (fmt == NULL) {
            // no message
            assert(0);
        } else {
            // render exception message and store as .args[0]
            // TODO: optimize bufferbloat
            vstr_t *vstr = vstr_new();
            va_list ap;
            va_start(ap, fmt);
            vstr_vprintf(vstr, fmt, ap);
            va_end(ap);
            o->args->items[0] = mp_obj_new_str(vstr->buf, vstr->len, false);
            vstr_free(vstr);
        }
    }

    return o;
}
예제 #9
0
파일: stream.c 프로젝트: LGTMCU/f32c
// Unbuffered, inefficient implementation of readline() for raw I/O files.
STATIC mp_obj_t stream_unbuffered_readline(uint n_args, const mp_obj_t *args) {
    struct _mp_obj_base_t *o = (struct _mp_obj_base_t *)args[0];
    if (o->type->stream_p == NULL || o->type->stream_p->read == NULL) {
        // CPython: io.UnsupportedOperation, OSError subclass
        nlr_raise(mp_obj_new_exception_msg(&mp_type_OSError, "Operation not supported"));
    }

    mp_int_t max_size = -1;
    if (n_args > 1) {
        max_size = MP_OBJ_SMALL_INT_VALUE(args[1]);
    }

    vstr_t *vstr;
    if (max_size != -1) {
        vstr = vstr_new_size(max_size);
    } else {
        vstr = vstr_new();
    }

    int error;
    while (max_size == -1 || max_size-- != 0) {
        char *p = vstr_add_len(vstr, 1);
        if (p == NULL) {
            nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_MemoryError, "out of memory"));
        }

        mp_uint_t out_sz = o->type->stream_p->read(o, p, 1, &error);
        if (out_sz == MP_STREAM_ERROR) {
            if (is_nonblocking_error(error)) {
                if (vstr->len == 1) {
                    // We just incremented it, but otherwise we read nothing
                    // and immediately got EAGAIN. This is case is not well
                    // specified in
                    // https://docs.python.org/3/library/io.html#io.IOBase.readline
                    // unlike similar case for read(). But we follow the latter's
                    // behavior - return None.
                    vstr_free(vstr);
                    return mp_const_none;
                } else {
                    goto done;
                }
            }
            nlr_raise(mp_obj_new_exception_arg1(&mp_type_OSError, MP_OBJ_NEW_SMALL_INT(error)));
        }
        if (out_sz == 0) {
done:
            // Back out previously added byte
            // Consider, what's better - read a char and get OutOfMemory (so read
            // char is lost), or allocate first as we do.
            vstr_cut_tail_bytes(vstr, 1);
            break;
        }
        if (*p == '\n') {
            break;
        }
    }
    // TODO need a string creation API that doesn't copy the given data
    mp_obj_t ret = mp_obj_new_str_of_type(STREAM_CONTENT_TYPE(o->type->stream_p), (byte*)vstr->buf, vstr->len);
    vstr_free(vstr);
    return ret;
}
예제 #10
0
STATIC mp_obj_t stringio_close(mp_obj_t self_in) {
    mp_obj_stringio_t *self = self_in;
    vstr_free(self->vstr);
    self->vstr = NULL;
    return mp_const_none;
}
예제 #11
0
int main(void) {
    // TODO disable JTAG

    // update the SystemCoreClock variable
    SystemCoreClockUpdate();

    // set interrupt priority config to use all 4 bits for pre-empting
    NVIC_PriorityGroupConfig(NVIC_PriorityGroup_4);

    // enable the CCM RAM and the GPIO's
    RCC->AHB1ENR |= RCC_AHB1ENR_CCMDATARAMEN | RCC_AHB1ENR_GPIOAEN | RCC_AHB1ENR_GPIOBEN | RCC_AHB1ENR_GPIOCEN | RCC_AHB1ENR_GPIODEN;

#if MICROPY_HW_HAS_SDCARD
    {
        // configure SDIO pins to be high to start with (apparently makes it more robust)
        // FIXME this is not making them high, it just makes them outputs...
        GPIO_InitTypeDef GPIO_InitStructure;
        GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10 | GPIO_Pin_11 | GPIO_Pin_12;
        GPIO_InitStructure.GPIO_Speed = GPIO_Speed_25MHz;
        GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;
        GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
        GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
        GPIO_Init(GPIOC, &GPIO_InitStructure);

        // Configure PD.02 CMD line
        GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2;
        GPIO_Init(GPIOD, &GPIO_InitStructure);
    }
#endif
#if defined(NETDUINO_PLUS_2)
    {
        GPIO_InitTypeDef GPIO_InitStructure;
        GPIO_InitStructure.GPIO_Speed = GPIO_Speed_25MHz;
        GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;
        GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
        GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;

#if MICROPY_HW_HAS_SDCARD
        // Turn on the power enable for the sdcard (PB1)
        GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1;
        GPIO_Init(GPIOB, &GPIO_InitStructure);
        GPIO_WriteBit(GPIOB, GPIO_Pin_1, Bit_SET);
#endif

        // Turn on the power for the 5V on the expansion header (PB2)
        GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2;
        GPIO_Init(GPIOB, &GPIO_InitStructure);
        GPIO_WriteBit(GPIOB, GPIO_Pin_2, Bit_SET);
    }
#endif

    // basic sub-system init
    sys_tick_init();
    pendsv_init();
    led_init();

#if MICROPY_HW_ENABLE_RTC
    rtc_init();
#endif

    // turn on LED to indicate bootup
    led_state(PYB_LED_G1, 1);

    // more sub-system init
#if MICROPY_HW_HAS_SDCARD
    sdcard_init();
#endif
    storage_init();

    // uncomment these 2 lines if you want REPL on USART_6 (or another usart) as well as on USB VCP
    //pyb_usart_global_debug = PYB_USART_YA;
    //usart_init(pyb_usart_global_debug, 115200);

    int first_soft_reset = true;

soft_reset:

    // GC init
    gc_init(&_heap_start, &_heap_end);

    // Micro Python init
    qstr_init();
    mp_init();
    mp_obj_list_init(mp_sys_path, 0);
    mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR_0_colon__slash_));
    mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR_0_colon__slash_lib));
    mp_obj_list_init(mp_sys_argv, 0);

    exti_init();

#if MICROPY_HW_HAS_SWITCH
    switch_init();
#endif

#if MICROPY_HW_HAS_LCD
    // LCD init (just creates class, init hardware by calling LCD())
    lcd_init();
#endif

#if MICROPY_HW_ENABLE_SERVO
    // servo
    servo_init();
#endif

#if MICROPY_HW_ENABLE_TIMER
    // timer
    timer_init();
#endif

#if MICROPY_HW_ENABLE_RNG
    // RNG
    RCC_AHB2PeriphClockCmd(RCC_AHB2Periph_RNG, ENABLE);
    RNG_Cmd(ENABLE);
#endif

    pin_map_init();

    // add some functions to the builtin Python namespace
    mp_store_name(MP_QSTR_help, mp_make_function_n(0, pyb_help));
    mp_store_name(MP_QSTR_open, mp_make_function_n(2, pyb_io_open));

    // load the pyb module
    mp_module_register(MP_QSTR_pyb, (mp_obj_t)&pyb_module);

    // check if user switch held (initiates reset of filesystem)
    bool reset_filesystem = false;
#if MICROPY_HW_HAS_SWITCH
    if (switch_get()) {
        reset_filesystem = true;
        for (int i = 0; i < 50; i++) {
            if (!switch_get()) {
                reset_filesystem = false;
                break;
            }
            sys_tick_delay_ms(10);
        }
    }
#endif
    // local filesystem init
    {
        // try to mount the flash
        FRESULT res = f_mount(&fatfs0, "0:", 1);
        if (!reset_filesystem && res == FR_OK) {
            // mount sucessful
        } else if (reset_filesystem || res == FR_NO_FILESYSTEM) {
            // no filesystem, so create a fresh one
            // TODO doesn't seem to work correctly when reset_filesystem is true...

            // LED on to indicate creation of LFS
            led_state(PYB_LED_R2, 1);
            uint32_t stc = sys_tick_counter;

            res = f_mkfs("0:", 0, 0);
            if (res == FR_OK) {
                // success creating fresh LFS
            } else {
                __fatal_error("could not create LFS");
            }

            // create src directory
            res = f_mkdir("0:/src");
            // ignore result from mkdir

            // create empty main.py
            FIL fp;
            f_open(&fp, "0:/src/main.py", FA_WRITE | FA_CREATE_ALWAYS);
            UINT n;
            f_write(&fp, fresh_main_py, sizeof(fresh_main_py) - 1 /* don't count null terminator */, &n);
            // TODO check we could write n bytes
            f_close(&fp);

            // keep LED on for at least 200ms
            sys_tick_wait_at_least(stc, 200);
            led_state(PYB_LED_R2, 0);
        } else {
            __fatal_error("could not access LFS");
        }
    }

    // make sure we have a /boot.py
    {
        FILINFO fno;
        FRESULT res = f_stat("0:/boot.py", &fno);
        if (res == FR_OK) {
            if (fno.fattrib & AM_DIR) {
                // exists as a directory
                // TODO handle this case
                // see http://elm-chan.org/fsw/ff/img/app2.c for a "rm -rf" implementation
            } else {
                // exists as a file, good!
            }
        } else {
            // doesn't exist, create fresh file

            // LED on to indicate creation of boot.py
            led_state(PYB_LED_R2, 1);
            uint32_t stc = sys_tick_counter;

            FIL fp;
            f_open(&fp, "0:/boot.py", FA_WRITE | FA_CREATE_ALWAYS);
            UINT n;
            f_write(&fp, fresh_boot_py, sizeof(fresh_boot_py) - 1 /* don't count null terminator */, &n);
            // TODO check we could write n bytes
            f_close(&fp);

            // keep LED on for at least 200ms
            sys_tick_wait_at_least(stc, 200);
            led_state(PYB_LED_R2, 0);
        }
    }

    // run /boot.py
    if (!pyexec_file("0:/boot.py")) {
        flash_error(4);
    }

    if (first_soft_reset) {
#if MICROPY_HW_HAS_MMA7660
        // MMA accel: init and reset address to zero
        accel_init();
#endif
    }

    // turn boot-up LED off
    led_state(PYB_LED_G1, 0);

#if MICROPY_HW_HAS_SDCARD
    // if an SD card is present then mount it on 1:/
    if (sdcard_is_present()) {
        FRESULT res = f_mount(&fatfs1, "1:", 1);
        if (res != FR_OK) {
            printf("[SD] could not mount SD card\n");
        } else {
            if (first_soft_reset) {
                // use SD card as medium for the USB MSD
                usbd_storage_select_medium(USBD_STORAGE_MEDIUM_SDCARD);
            }
        }
    }
#endif

#ifdef USE_HOST_MODE
    // USB host
    pyb_usb_host_init();
#elif defined(USE_DEVICE_MODE)
    // USB device
    pyb_usb_dev_init(PYB_USB_DEV_VCP_MSC);
#endif

    // run main script
    {
        vstr_t *vstr = vstr_new();
        vstr_add_str(vstr, "0:/");
        if (pyb_config_source_dir == MP_OBJ_NULL) {
            vstr_add_str(vstr, "src");
        } else {
            vstr_add_str(vstr, mp_obj_str_get_str(pyb_config_source_dir));
        }
        vstr_add_char(vstr, '/');
        if (pyb_config_main == MP_OBJ_NULL) {
            vstr_add_str(vstr, "main.py");
        } else {
            vstr_add_str(vstr, mp_obj_str_get_str(pyb_config_main));
        }
        if (!pyexec_file(vstr_str(vstr))) {
            flash_error(3);
        }
        vstr_free(vstr);
    }


#if MICROPY_HW_HAS_MMA7660
    // HID example
    if (0) {
        uint8_t data[4];
        data[0] = 0;
        data[1] = 1;
        data[2] = -2;
        data[3] = 0;
        for (;;) {
        #if MICROPY_HW_HAS_SWITCH
            if (switch_get()) {
                data[0] = 0x01; // 0x04 is middle, 0x02 is right
            } else {
                data[0] = 0x00;
            }
        #else
            data[0] = 0x00;
        #endif
            accel_start(0x4c /* ACCEL_ADDR */, 1);
            accel_send_byte(0);
            accel_restart(0x4c /* ACCEL_ADDR */, 0);
            for (int i = 0; i <= 1; i++) {
                int v = accel_read_ack() & 0x3f;
                if (v & 0x20) {
                    v |= ~0x1f;
                }
                data[1 + i] = v;
            }
            accel_read_nack();
            usb_hid_send_report(data);
            sys_tick_delay_ms(15);
        }
    }
#endif

#if MICROPY_HW_HAS_WLAN
    // wifi
    pyb_wlan_init();
    pyb_wlan_start();
#endif

    pyexec_repl();

    printf("PYB: sync filesystems\n");
    storage_flush();

    printf("PYB: soft reboot\n");

    first_soft_reset = false;
    goto soft_reset;
}
예제 #12
0
파일: main.c 프로젝트: aitjcize/micropython
int main(void) {
    // TODO disable JTAG

    /* STM32F4xx HAL library initialization:
         - Configure the Flash prefetch, instruction and Data caches
         - Configure the Systick to generate an interrupt each 1 msec
         - Set NVIC Group Priority to 4
         - Global MSP (MCU Support Package) initialization
       */
    HAL_Init();

    // set the system clock to be HSE
    SystemClock_Config();

    // enable GPIO clocks
    __GPIOA_CLK_ENABLE();
    __GPIOB_CLK_ENABLE();
    __GPIOC_CLK_ENABLE();
    __GPIOD_CLK_ENABLE();

    // enable the CCM RAM
    __CCMDATARAMEN_CLK_ENABLE();

#if 0
#if defined(NETDUINO_PLUS_2)
    {
        GPIO_InitTypeDef GPIO_InitStructure;
        GPIO_InitStructure.GPIO_Speed = GPIO_Speed_25MHz;
        GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;
        GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
        GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;

#if MICROPY_HW_HAS_SDCARD
        // Turn on the power enable for the sdcard (PB1)
        GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1;
        GPIO_Init(GPIOB, &GPIO_InitStructure);
        GPIO_WriteBit(GPIOB, GPIO_Pin_1, Bit_SET);
#endif

        // Turn on the power for the 5V on the expansion header (PB2)
        GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2;
        GPIO_Init(GPIOB, &GPIO_InitStructure);
        GPIO_WriteBit(GPIOB, GPIO_Pin_2, Bit_SET);
    }
#endif
#endif

    // basic sub-system init
    pendsv_init();
    timer_tim3_init();
    led_init();
    switch_init0();

    int first_soft_reset = true;

soft_reset:

    // check if user switch held to select the reset mode
    led_state(1, 0);
    led_state(2, 1);
    led_state(3, 0);
    led_state(4, 0);
    uint reset_mode = 1;

#if MICROPY_HW_HAS_SWITCH
    if (switch_get()) {
        for (uint i = 0; i < 3000; i++) {
            if (!switch_get()) {
                break;
            }
            HAL_Delay(20);
            if (i % 30 == 29) {
                if (++reset_mode > 3) {
                    reset_mode = 1;
                }
                led_state(2, reset_mode & 1);
                led_state(3, reset_mode & 2);
                led_state(4, reset_mode & 4);
            }
        }
        // flash the selected reset mode
        for (uint i = 0; i < 6; i++) {
            led_state(2, 0);
            led_state(3, 0);
            led_state(4, 0);
            HAL_Delay(50);
            led_state(2, reset_mode & 1);
            led_state(3, reset_mode & 2);
            led_state(4, reset_mode & 4);
            HAL_Delay(50);
        }
        HAL_Delay(400);
    }
#endif

#if MICROPY_HW_ENABLE_RTC
    if (first_soft_reset) {
        rtc_init();
    }
#endif

    // more sub-system init
#if MICROPY_HW_HAS_SDCARD
    if (first_soft_reset) {
        sdcard_init();
    }
#endif
    if (first_soft_reset) {
        storage_init();
    }

    // GC init
    gc_init(&_heap_start, &_heap_end);

    // Change #if 0 to #if 1 if you want REPL on USART_6 (or another usart)
    // as well as on USB VCP
#if 0
    pyb_usart_global_debug = pyb_Usart(MP_OBJ_NEW_SMALL_INT(PYB_USART_YA),
                                       MP_OBJ_NEW_SMALL_INT(115200));
#else
    pyb_usart_global_debug = NULL;
#endif

    // Micro Python init
    qstr_init();
    mp_init();
    mp_obj_list_init(mp_sys_path, 0);
    mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR_0_colon__slash_));
    mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR_0_colon__slash_lib));
    mp_obj_list_init(mp_sys_argv, 0);

    readline_init();

    exti_init();

#if MICROPY_HW_HAS_SWITCH
    // must come after exti_init
    switch_init();
#endif

#if MICROPY_HW_HAS_LCD
    // LCD init (just creates class, init hardware by calling LCD())
    lcd_init();
#endif

    pin_map_init();

    // local filesystem init
    {
        // try to mount the flash
        FRESULT res = f_mount(&fatfs0, "0:", 1);
        if (reset_mode == 3 || res == FR_NO_FILESYSTEM) {
            // no filesystem, or asked to reset it, so create a fresh one

            // LED on to indicate creation of LFS
            led_state(PYB_LED_R2, 1);
            uint32_t start_tick = HAL_GetTick();

            res = f_mkfs("0:", 0, 0);
            if (res == FR_OK) {
                // success creating fresh LFS
            } else {
                __fatal_error("could not create LFS");
            }

            // create empty main.py
            FIL fp;
            f_open(&fp, "0:/main.py", FA_WRITE | FA_CREATE_ALWAYS);
            UINT n;
            f_write(&fp, fresh_main_py, sizeof(fresh_main_py) - 1 /* don't count null terminator */, &n);
            // TODO check we could write n bytes
            f_close(&fp);

            // create .inf driver file
            f_open(&fp, "0:/pybcdc.inf", FA_WRITE | FA_CREATE_ALWAYS);
            f_write(&fp, fresh_pybcdc_inf, sizeof(fresh_pybcdc_inf) - 1 /* don't count null terminator */, &n);
            f_close(&fp);

            // keep LED on for at least 200ms
            sys_tick_wait_at_least(start_tick, 200);
            led_state(PYB_LED_R2, 0);
        } else if (res == FR_OK) {
            // mount sucessful
        } else {
            __fatal_error("could not access LFS");
        }
    }

    // make sure we have a 0:/boot.py
    {
        FILINFO fno;
#if _USE_LFN
        fno.lfname = NULL;
        fno.lfsize = 0;
#endif
        FRESULT res = f_stat("0:/boot.py", &fno);
        if (res == FR_OK) {
            if (fno.fattrib & AM_DIR) {
                // exists as a directory
                // TODO handle this case
                // see http://elm-chan.org/fsw/ff/img/app2.c for a "rm -rf" implementation
            } else {
                // exists as a file, good!
            }
        } else {
            // doesn't exist, create fresh file

            // LED on to indicate creation of boot.py
            led_state(PYB_LED_R2, 1);
            uint32_t start_tick = HAL_GetTick();

            FIL fp;
            f_open(&fp, "0:/boot.py", FA_WRITE | FA_CREATE_ALWAYS);
            UINT n;
            f_write(&fp, fresh_boot_py, sizeof(fresh_boot_py) - 1 /* don't count null terminator */, &n);
            // TODO check we could write n bytes
            f_close(&fp);

            // keep LED on for at least 200ms
            sys_tick_wait_at_least(start_tick, 200);
            led_state(PYB_LED_R2, 0);
        }
    }

    // root device defaults to internal flash filesystem
    uint root_device = 0;

#if defined(USE_DEVICE_MODE)
    usb_storage_medium_t usb_medium = USB_STORAGE_MEDIUM_FLASH;
#endif

#if MICROPY_HW_HAS_SDCARD
    // if an SD card is present then mount it on 1:/
    if (reset_mode == 1 && sdcard_is_present()) {
        FRESULT res = f_mount(&fatfs1, "1:", 1);
        if (res != FR_OK) {
            printf("[SD] could not mount SD card\n");
        } else {
            // use SD card as root device
            root_device = 1;

            if (first_soft_reset) {
                // use SD card as medium for the USB MSD
#if defined(USE_DEVICE_MODE)
                usb_medium = USB_STORAGE_MEDIUM_SDCARD;
#endif
            }
        }
    }
#else
    // Get rid of compiler warning if no SDCARD is configured.
    (void)first_soft_reset;
#endif

    // run <root>:/boot.py, if it exists
    if (reset_mode == 1) {
        const char *boot_file;
        if (root_device == 0) {
            boot_file = "0:/boot.py";
        } else {
            boot_file = "1:/boot.py";
        }
        FRESULT res = f_stat(boot_file, NULL);
        if (res == FR_OK) {
            if (!pyexec_file(boot_file)) {
                flash_error(4);
            }
        }
    }

    // turn boot-up LEDs off
    led_state(2, 0);
    led_state(3, 0);
    led_state(4, 0);

#if defined(USE_HOST_MODE)
    // USB host
    pyb_usb_host_init();
#elif defined(USE_DEVICE_MODE)
    // USB device
    if (reset_mode == 1) {
        usb_device_mode_t usb_mode = USB_DEVICE_MODE_CDC_MSC;
        if (pyb_config_usb_mode != MP_OBJ_NULL) {
            if (strcmp(mp_obj_str_get_str(pyb_config_usb_mode), "CDC+HID") == 0) {
                usb_mode = USB_DEVICE_MODE_CDC_HID;
            }
        }
        pyb_usb_dev_init(usb_mode, usb_medium);
    } else {
        pyb_usb_dev_init(USB_DEVICE_MODE_CDC_MSC, usb_medium);
    }
#endif

#if MICROPY_HW_ENABLE_RNG
    // RNG
    rng_init();
#endif

#if MICROPY_HW_ENABLE_TIMER
    // timer
    //timer_init();
#endif

    // I2C
    i2c_init();

#if MICROPY_HW_HAS_MMA7660
    // MMA accel: init and reset
    accel_init();
#endif

#if MICROPY_HW_ENABLE_SERVO
    // servo
    servo_init();
#endif

#if MICROPY_HW_ENABLE_DAC
    // DAC
    dac_init();
#endif

    // now that everything is initialised, run main script
    if (reset_mode == 1 && pyexec_mode_kind == PYEXEC_MODE_FRIENDLY_REPL) {
        vstr_t *vstr = vstr_new();
        vstr_printf(vstr, "%d:/", root_device);
        if (pyb_config_main == MP_OBJ_NULL) {
            vstr_add_str(vstr, "main.py");
        } else {
            vstr_add_str(vstr, mp_obj_str_get_str(pyb_config_main));
        }
        FRESULT res = f_stat(vstr_str(vstr), NULL);
        if (res == FR_OK) {
            if (!pyexec_file(vstr_str(vstr))) {
                flash_error(3);
            }
        }
        vstr_free(vstr);
    }

#if 0
#if MICROPY_HW_HAS_WLAN
    // wifi
    pyb_wlan_init();
    pyb_wlan_start();
#endif
#endif

    // enter REPL
    // REPL mode can change, or it can request a soft reset
    for (;;) {
        if (pyexec_mode_kind == PYEXEC_MODE_RAW_REPL) {
            if (pyexec_raw_repl() != 0) {
                break;
            }
        } else {
            if (pyexec_friendly_repl() != 0) {
                break;
            }
        }
    }

    printf("PYB: sync filesystems\n");
    storage_flush();

    printf("PYB: soft reboot\n");

    first_soft_reset = false;
    goto soft_reset;
}