void AnalyseEvent(Blob_List* blobs) { Blob* blob = blobs->FindFirst(btp::Hadron_Decay); if(blob==NULL) return; #ifdef USING__ROOT Hadron_Decay_Channel* hdc=(*blob)["hdc"]->Get<Hadron_Decay_Channel*>(); int currenthist=0; for(int i=0; i<blob->NOutP(); i++) { double costheta = blob->OutParticle(i)->Momentum().CosTheta(); ThetaHists[hdc][currenthist]->Fill(costheta); currenthist++; } currenthist=0; for(int i=0; i<blob->NOutP(); i++) { double energy = blob->OutParticle(i)->Momentum()[0]; EnergyHists[hdc][currenthist]->Fill(energy); currenthist++; } currenthist=0; for(int i=0; i<blob->NOutP(); i++) { if(blob->NOutP()<3) break; for(int j=i+1; j<blob->NOutP(); j++) { Vec4D mom1 = blob->OutParticle(i)->Momentum(); Vec4D mom2 = blob->OutParticle(j)->Momentum(); double q2 = (mom1+mom2).Abs2(); TwoInvMassHists[hdc][currenthist]->Fill(q2); currenthist++; } } currenthist=0; for(int i=0; i<blob->NOutP(); i++) { if(blob->NOutP()<4) break; for(int j=i+1; j<blob->NOutP(); j++) { for(int k=j+1; k<blob->NOutP(); k++) { Vec4D mom1 = blob->OutParticle(i)->Momentum(); Vec4D mom2 = blob->OutParticle(j)->Momentum(); Vec4D mom3 = blob->OutParticle(k)->Momentum(); double q2 = (mom1+mom2+mom3).Abs2(); ThreeInvMassHists[hdc][currenthist]->Fill(q2); currenthist++; } } } #endif }
double Mixing_Handler::DetermineMixingTime(Particle* decayer, bool checkforpartstatus) const { double time = decayer->Time(); Blob* motherblob = decayer->ProductionBlob(); if(motherblob->Type()==btp::Hadron_Mixing) { decayer = motherblob->InParticle(0); motherblob = decayer->ProductionBlob(); } Particle* sister = NULL; if(motherblob->Type()!=btp::Fragmentation || (motherblob->NInP()==2 && motherblob->NOutP()==2 && motherblob->InParticle(0)->Flav()==motherblob->OutParticle(0)->Flav() && motherblob->InParticle(1)->Flav()==motherblob->OutParticle(1)->Flav())) { // check if particle was produced coherently Particle_Vector sisters = motherblob->GetOutParticles(); for(Particle_Vector::const_iterator it=sisters.begin(); it!=sisters.end(); it++) { if((*it)!=decayer && decayer->Flav()==(*it)->Flav().Bar()) { sister = (*it); break; } } } // in coherent production, special rules apply: if(sister) { if((checkforpartstatus && sister->Status()==part_status::decayed) || (!checkforpartstatus && sister->DecayBlob())) { time = time - sister->Time(); } else time = 0.0; } return time; }
void AnalyseEvent(Blob_List* blobs) { #ifdef USING__ROOT // int outgoing = 1; // int incoming = -1; // Particle_List outparts = blobs->ExtractParticles(part_status::active, outgoing); /////////////////////////////////////////////////////////////////////////////////// // analyse primary decay blob, ignore subsequent decays // /////////////////////////////////////////////////////////////////////////////////// Blob * primarydecayblob = blobs->FindFirst(btp::Hadron_Decay); // msg_Out()<<"primary decay blob:"<<endl<<*primarydecayblob<<endl; // photon multiplicity and decay frame radiated energy (total) unsigned int photmult = 0; double photener = 0.; for (int i=0; i<primarydecayblob->NOutP(); i++) { if ((primarydecayblob->OutParticle(i)->Flav().IsPhoton() == true) && (primarydecayblob->OutParticle(i)->Info() == 'S')) { photmult++; photener = photener + primarydecayblob->OutParticle(i)->Momentum()[0]; } } photonmultiplicity->Fill(photmult); if (photener != 0.) decayframeenergy->Fill(photener); // multipole rest frame angles Vec4D multipolesum = Vec4D(0.,0.,0.,0.); Vec4D axis = Vec4D(0.,0.,0.,1.); std::list<Vec4D> multipole; std::list<Vec4D> newphot; for (int i=0; i<primarydecayblob->NOutP(); i++) { if (primarydecayblob->OutParticle(i)->Flav().Charge() != 0.) { multipolesum = multipolesum + primarydecayblob->OutParticle(i)->Momentum(); multipole.push_back(primarydecayblob->OutParticle(i)->Momentum()); } } if (primarydecayblob->InParticle(0)->Flav().Charge() != 0) { multipolesum = multipolesum + primarydecayblob->InParticle(0)->Momentum(); multipole.push_front(primarydecayblob->InParticle(0)->Momentum()); } Poincare boost(multipolesum); Poincare rotate; // charged initial state: rotate such that initial state at theta = 0 if (mother_flav.Charge() != 0.) { Vec4D inmom = *multipole.begin(); boost.Boost(inmom); rotate = Poincare(inmom,axis); } // neutral initial state: rotate such that heaviest charged final state at theta = 0 else { std::list<Vec4D>::iterator heaviest = multipole.begin(); for (std::list<Vec4D>::iterator iter=multipole.begin(); iter!=multipole.end(); iter++) { if (abs((iter->Abs2() - heaviest->Abs2())/(iter->Abs2() + heaviest->Abs2())) > 1E-6) { heaviest = iter; } } boost.Boost(*heaviest); rotate = Poincare(*heaviest,axis); } for (int i=0; i<primarydecayblob->NOutP(); i++) { if (primarydecayblob->OutParticle(i)->Flav().IsPhoton() == true) { Vec4D mom = primarydecayblob->OutParticle(i)->Momentum(); boost.Boost(mom); rotate.Rotate(mom); double theta = acos((Vec3D(mom)*Vec3D(axis))/(Vec3D(mom).Abs()*Vec3D(axis).Abs())); multipoleframeangles->Fill(theta); } } /////////////////////////////////////////////////////////////////////////////////// // inclusive analysis of whole decay chain // /////////////////////////////////////////////////////////////////////////////////// // to be done .. #endif }