예제 #1
0
TypePtr NewObjectExpression::inferTypes(AnalysisResultPtr ar, TypePtr type,
                                        bool coerce) {
  reset();
  ConstructPtr self = shared_from_this();
  if (!m_name.empty()) {
    ClassScopePtr cls = ar->resolveClass(m_name);
    if (cls) {
      m_name = cls->getName();
    }
    if (!cls || cls->isRedeclaring()) {
      if (cls) {
        m_redeclared = true;
        ar->getScope()->getVariables()->
          setAttribute(VariableTable::NeedGlobalPointer);
      }
      if (!cls && ar->isFirstPass()) {
        ar->getCodeError()->record(self, CodeError::UnknownClass, self);
      }
      if (m_params) m_params->inferAndCheck(ar, NEW_TYPE(Any), false);
      return NEW_TYPE(Object);
    }
    if (cls->isVolatile()) {
      ar->getScope()->getVariables()->
        setAttribute(VariableTable::NeedGlobalPointer);
    }
    m_dynamic = cls->derivesFromRedeclaring();
    m_validClass = true;
    FunctionScopePtr func = cls->findConstructor(ar, true);
    if (!func) {
      if (m_params) {
        if (!m_dynamic && m_params->getCount()) {
          if (ar->isFirstPass()) {
            ar->getCodeError()->record(self, CodeError::BadConstructorCall,
                                       self);
          }
          m_params->setOutputCount(0);
        }
        m_params->inferAndCheck(ar, NEW_TYPE(Any), false);
      }
    } else {
      m_extraArg = func->inferParamTypes(ar, self, m_params,
                                         m_validClass);
      m_variableArgument = func->isVariableArgument();
    }
    return Type::CreateObjectType(m_name);
  } else {
    ar->containsDynamicClass();
    if (ar->isFirstPass()) {
      ar->getCodeError()->record(self, CodeError::UseDynamicClass,
                                 self);
    }
    if (m_params) {
      m_params->markParams(false);
    }
  }

  m_nameExp->inferAndCheck(ar, Type::String, false);
  if (m_params) m_params->inferAndCheck(ar, NEW_TYPE(Any), false);
  return Type::Variant;//NEW_TYPE(Object);
}
예제 #2
0
void ClassVariable::getCtorAndInitInfo(
    ExpressionPtr exp,
    bool &needsCppCtor,
    bool &needsInit,
    SimpleVariablePtr &var,
    TypePtr &type,
    Symbol *&sym,
    ExpressionPtr &value) {

  ClassScopePtr scope = getClassScope();
  bool derivFromRedec = scope->derivesFromRedeclaring() &&
    !m_modifiers->isPrivate();
  AssignmentExpressionPtr assignment;
  bool isAssign = exp->is(Expression::KindOfAssignmentExpression);
  if (isAssign) {
    assignment = static_pointer_cast<AssignmentExpression>(exp);
    var = dynamic_pointer_cast<SimpleVariable>(assignment->getVariable());
    ASSERT(var);
    value = assignment->getValue();
    ASSERT(value);
  } else {
    var = dynamic_pointer_cast<SimpleVariable>(exp);
    ASSERT(var);
  }
  sym = scope->getVariables()->getSymbol(var->getName());
  ASSERT(sym);
  type = scope->getVariables()->getFinalType(var->getName());
  ASSERT(type);

  bool isValueNull = isAssign ? value->isLiteralNull() : false;
  bool typeIsInitable = type->is(Type::KindOfVariant) ||
                        type->getCPPInitializer();
  if (!derivFromRedec &&
      !sym->isOverride() &&
      (isAssign ?
        (isValueNull ||
         (value->is(Expression::KindOfScalarExpression) &&
          type->isPrimitive())) :
        typeIsInitable)) {
    needsCppCtor = true;
  } else if (isAssign || typeIsInitable) {
    // if we aren't an assignment and the type is not a variant
    // w/ no CPP initializer, then we currently don't bother
    // to initialize it in init().
    needsInit = true;
  }
}
예제 #3
0
void ClassStatement::outputCPPImpl(CodeGenerator &cg, AnalysisResultPtr ar) {
  ClassScopePtr classScope = m_classScope.lock();
  if (cg.getContext() == CodeGenerator::NoContext) {
    if (classScope->isRedeclaring()) {
      cg_printf("g->%s%s = ClassStaticsPtr(NEW(%s%s)());\n",
                Option::ClassStaticsObjectPrefix,
                cg.formatLabel(m_name).c_str(),
                Option::ClassStaticsPrefix, classScope->getId(cg).c_str());
      cg_printf("g->%s%s = &%s%s;\n",
                Option::ClassStaticsCallbackPrefix,
                cg.formatLabel(m_name).c_str(),
                Option::ClassWrapperFunctionPrefix,
                classScope->getId(cg).c_str());
    }
    if (classScope->isVolatile()) {
      cg_printf("g->CDEC(%s) = true;\n", m_name.c_str());
    }
    const vector<string> &bases = classScope->getBases();
    for (vector<string>::const_iterator it = bases.begin();
         it != bases.end(); ++it) {
      ClassScopePtr base = ar->findClass(*it);
      if (base && base->isVolatile()) {
        cg_printf("checkClassExists(\"%s\", g);\n",
                  base->getOriginalName().c_str());
      }
    }
    return;
  }

  if (cg.getContext() != CodeGenerator::CppForwardDeclaration) {
    printSource(cg);
  }

  ar->pushScope(classScope);
  string clsNameStr = classScope->getId(cg);
  const char *clsName = clsNameStr.c_str();
  bool redeclared = classScope->isRedeclaring();
  switch (cg.getContext()) {
  case CodeGenerator::CppForwardDeclaration:
    if (Option::GenerateCPPMacros) {
      cg_printf("FORWARD_DECLARE_CLASS(%s)\n", clsName);
      if (redeclared) {
        cg_printf("FORWARD_DECLARE_REDECLARED_CLASS(%s)\n", clsName);
      }
    }
    if (m_stmt) {
      cg.setContext(CodeGenerator::CppClassConstantsDecl);
      m_stmt->outputCPP(cg, ar);
      cg.setContext(CodeGenerator::CppForwardDeclaration);
    }
    break;
  case CodeGenerator::CppDeclaration:
    {
      bool system = cg.getOutput() == CodeGenerator::SystemCPP;
      ClassScopePtr parCls;
      if (!m_parent.empty()) {
        parCls = ar->findClass(m_parent);
        if (parCls && parCls->isRedeclaring()) parCls.reset();
      }
      cg_printf("class %s%s", Option::ClassPrefix, clsName);
      if (!m_parent.empty() && classScope->derivesDirectlyFrom(ar, m_parent)) {
        if (!parCls) {
          cg_printf(" : public DynamicObjectData");
        } else {
          cg_printf(" : public %s%s", Option::ClassPrefix,
                    parCls->getId(cg).c_str());
        }
      } else {
        if (classScope->derivesFromRedeclaring()) {
          cg_printf(" : public DynamicObjectData");
        } else if (system) {
          cg_printf(" : public ExtObjectData");
        } else {
          cg_printf(" : public ObjectData");
        }
      }
      if (m_base && Option::UseVirtualDispatch) {
        for (int i = 0; i < m_base->getCount(); i++) {
          ScalarExpressionPtr exp =
            dynamic_pointer_cast<ScalarExpression>((*m_base)[i]);
          const char *intf = exp->getString().c_str();
          ClassScopePtr intfClassScope = ar->findClass(intf);
          if (intfClassScope && !intfClassScope->isRedeclaring() &&
              classScope->derivesDirectlyFrom(ar, intf) &&
              (!parCls || !parCls->derivesFrom(ar, intf, true, false))) {
            string id = intfClassScope->getId(cg);
            cg_printf(", public %s%s", Option::ClassPrefix, id.c_str());
          }
        }
      }
      cg_indentBegin(" {\n");

      if (Option::GenerateCPPMacros) {
        // Get all of this class's ancestors
        vector<string> bases;
        getAllParents(ar, bases);
        // Eliminate duplicates
        sort(bases.begin(), bases.end());
        bases.erase(unique(bases.begin(), bases.end()), bases.end());

        cg_indentBegin("BEGIN_CLASS_MAP(%s)\n",
                       Util::toLower(classScope->getName()).c_str());
        for (unsigned int i = 0; i < bases.size(); i++) {
          cg_printf("PARENT_CLASS(%s)\n", bases[i].c_str());
        }
        if (classScope->derivesFromRedeclaring()) {
          cg_printf("CLASS_MAP_REDECLARED()\n");
        }
        cg_indentEnd("END_CLASS_MAP(%s)\n", clsName);
      }

      if (Option::GenerateCPPMacros) {
        bool dyn = (!parCls && !m_parent.empty()) ||
          classScope->derivesFromRedeclaring() ==
          ClassScope::DirectFromRedeclared;
        bool idyn = parCls && classScope->derivesFromRedeclaring() ==
          ClassScope::IndirectFromRedeclared;
        bool redec = classScope->isRedeclaring();
        if (!classScope->derivesFromRedeclaring()) {
          outputCPPClassDecl(cg, ar, clsName, m_originalName.c_str(),
                             parCls ? parCls->getId(cg).c_str() : "ObjectData");
        } else {
          cg_printf("DECLARE_DYNAMIC_CLASS(%s, %s, %s)\n", clsName,
                    m_originalName.c_str(),
                    dyn || !parCls ? "DynamicObjectData" :
                    parCls->getId(cg).c_str());
        }
        if (system || Option::EnableEval >= Option::LimitedEval) {
          cg_printf("DECLARE_INVOKES_FROM_EVAL\n");
        }
        if (dyn || idyn || redec) {
          if (redec) {
            cg_printf("DECLARE_ROOT;\n");
             if (!dyn && !idyn) {
               cg_printf("private: ObjectData* root;\n");
               cg_printf("public:\n");
               cg_printf("virtual ObjectData *getRoot() { return root; }\n");
             }
          }

          string conInit = ":";
          if (dyn) {
            conInit += "DynamicObjectData(\"" + m_parent + "\", r)";
          } else if (idyn) {
            conInit += string(Option::ClassPrefix) + parCls->getId(cg) +
              "(r?r:this)";
          } else {
            conInit += "root(r?r:this)";
          }

          cg_printf("%s%s(ObjectData* r = NULL)%s {}\n",
                    Option::ClassPrefix, clsName,
                    conInit.c_str());
        }
      }

      cg_printf("void init();\n",
                Option::ClassPrefix, clsName);

      if (classScope->needLazyStaticInitializer()) {
        cg_printf("static GlobalVariables *lazy_initializer"
                  "(GlobalVariables *g);\n");
      }

      classScope->getVariables()->outputCPPPropertyDecl(cg, ar,
          classScope->derivesFromRedeclaring());

      if (!classScope->getAttribute(ClassScope::HasConstructor)) {
        FunctionScopePtr func = classScope->findFunction(ar, "__construct",
                                                         false);
        if (func && !func->isAbstract() && !classScope->isInterface()) {
          ar->pushScope(func);
          func->outputCPPCreateDecl(cg, ar);
          ar->popScope();
        }
      }
      if (classScope->getAttribute(ClassScope::HasDestructor)) {
        cg_printf("public: virtual void destruct();\n");
      }

      // doCall
      if (classScope->getAttribute(ClassScope::HasUnknownMethodHandler)) {
        cg_printf("Variant doCall(Variant v_name, Variant v_arguments, "
                  "bool fatal);\n");
      }
      // doGet
      if (classScope->getAttribute(ClassScope::HasUnknownPropHandler)) {
        cg_printf("Variant doGet(Variant v_name, bool error);\n");
      }


      if (classScope->isRedeclaring() &&
          !classScope->derivesFromRedeclaring()) {
        cg_printf("Variant doRootCall(Variant v_name, Variant v_arguments, "
                  "bool fatal);\n");
      }

      if (m_stmt) m_stmt->outputCPP(cg, ar);
      {
        set<string> done;
        classScope->outputCPPStaticMethodWrappers(cg, ar, done, clsName);
      }

      if (cg.getOutput() == CodeGenerator::SystemCPP &&
          ar->isBaseSysRsrcClass(clsName) &&
          !classScope->hasProperty("rsrc")) {
        cg_printf("public: Variant %srsrc;\n", Option::PropertyPrefix);
      }

      cg_indentEnd("};\n");

      if (redeclared) {
        cg_indentBegin("class %s%s : public ClassStatics {\n",
                       Option::ClassStaticsPrefix, clsName);
        cg_printf("public:\n");
        cg_printf("DECLARE_OBJECT_ALLOCATION(%s%s);\n",
                  Option::ClassStaticsPrefix, clsName);
        cg_printf("%s%s() : ClassStatics(%d) {}\n",
                  Option::ClassStaticsPrefix, clsName,
                  classScope->getRedeclaringId());
        cg_indentBegin("Variant %sgetInit(const char *s, int64 hash = -1) {\n",
                       Option::ObjectStaticPrefix);
        cg_printf("return %s%s::%sgetInit(s, hash);\n", Option::ClassPrefix,
                  clsName, Option::ObjectStaticPrefix);
        cg_indentEnd("}\n");
        cg_indentBegin("Variant %sget(const char *s, int64 hash = -1) {\n",
                       Option::ObjectStaticPrefix);
        cg_printf("return %s%s::%sget(s, hash);\n", Option::ClassPrefix,
                  clsName, Option::ObjectStaticPrefix);
        cg_indentEnd("}\n");
        cg_indentBegin("Variant &%slval(const char* s, int64 hash = -1) {\n",
                  Option::ObjectStaticPrefix);
        cg_printf("return %s%s::%slval(s, hash);\n", Option::ClassPrefix,
                  clsName, Option::ObjectStaticPrefix);
        cg_indentEnd("}\n");
        cg_indentBegin("Variant %sinvoke(const char *c, const char *s, "
                       "CArrRef params, int64 hash = -1, bool fatal = true) "
                       "{\n",
                  Option::ObjectStaticPrefix);
        cg_printf("return %s%s::%sinvoke(c, s, params, hash, fatal);\n",
                  Option::ClassPrefix, clsName,
                  Option::ObjectStaticPrefix);
        cg_indentEnd("}\n");
        cg_indentBegin("Object create(CArrRef params, bool init = true, "
                       "ObjectData* root = NULL) {\n");
        cg_printf("return Object((NEW(%s%s)(root))->"
                  "dynCreate(params, init));\n",
                  Option::ClassPrefix, clsName);
        cg_indentEnd("}\n");
        cg_indentBegin("Variant %sconstant(const char* s) {\n",
                       Option::ObjectStaticPrefix);
        cg_printf("return %s%s::%sconstant(s);\n", Option::ClassPrefix,
                  clsName, Option::ObjectStaticPrefix);
        cg_indentEnd("}\n");
        cg_indentBegin("Variant %sinvoke_from_eval(const char *c, "
                       "const char *s, Eval::VariableEnvironment &env, "
                       "const Eval::FunctionCallExpression *call, "
                       "int64 hash = -1, bool fatal = true) "
                       "{\n",
                       Option::ObjectStaticPrefix);
        cg_printf("return %s%s::%sinvoke_from_eval(c, s, env, call, hash, "
                  "fatal);\n",
                  Option::ClassPrefix, clsName,
                  Option::ObjectStaticPrefix);
        cg_indentEnd("}\n");
        cg_indentEnd("};\n");
      }

      classScope->outputCPPGlobalTableWrappersDecl(cg, ar);
    }
    break;
  case CodeGenerator::CppImplementation:
    if (m_stmt) {
      cg.setContext(CodeGenerator::CppClassConstantsImpl);
      m_stmt->outputCPP(cg, ar);
      cg.setContext(CodeGenerator::CppImplementation);
    }

    classScope->outputCPPSupportMethodsImpl(cg, ar);

    if (redeclared) {
      cg_printf("IMPLEMENT_OBJECT_ALLOCATION(%s%s);\n",
                Option::ClassStaticsPrefix, clsName);
    }

    cg_indentBegin("void %s%s::init() {\n",
                   Option::ClassPrefix, clsName);
    if (!m_parent.empty()) {
      if (classScope->derivesFromRedeclaring() ==
          ClassScope::DirectFromRedeclared) {
        cg_printf("parent->init();\n");
      } else {
        cg_printf("%s%s::init();\n", Option::ClassPrefix, m_parent.c_str());
      }
    }
    if (classScope->getVariables()->
        getAttribute(VariableTable::NeedGlobalPointer)) {
      cg.printDeclareGlobals();
    }
    cg.setContext(CodeGenerator::CppConstructor);
    if (m_stmt) m_stmt->outputCPP(cg, ar);

    // This is lame. Exception base class needs to prepare stacktrace outside
    // of its PHP constructor. Every subclass of exception also needs this
    // stacktrace, so we're adding an artificial __init__ in exception.php
    // and calling it here.
    if (m_name == "exception") {
      cg_printf("{CountableHelper h(this); t___init__();}\n");
    }

    cg_indentEnd("}\n");

    if (classScope->needStaticInitializer()) {
      cg_indentBegin("void %s%s::os_static_initializer() {\n",
                     Option::ClassPrefix, clsName);
      cg.printDeclareGlobals();
      cg.setContext(CodeGenerator::CppStaticInitializer);
      if (m_stmt) m_stmt->outputCPP(cg, ar);
      cg_indentEnd("}\n");
      cg_indentBegin("void %s%s() {\n",
                     Option::ClassStaticInitializerPrefix, clsName);
      cg_printf("%s%s::os_static_initializer();\n",  Option::ClassPrefix,
                clsName);
      cg_indentEnd("}\n");
    }
    if (classScope->needLazyStaticInitializer()) {
      cg_indentBegin("GlobalVariables *%s%s::lazy_initializer("
                     "GlobalVariables *g) {\n", Option::ClassPrefix, clsName);
      cg_indentBegin("if (!g->%s%s) {\n",
                     Option::ClassStaticInitializerFlagPrefix, clsName);
      cg_printf("g->%s%s = true;\n", Option::ClassStaticInitializerFlagPrefix,
                clsName);
      cg.setContext(CodeGenerator::CppLazyStaticInitializer);
      if (m_stmt) m_stmt->outputCPP(cg, ar);
      cg_indentEnd("}\n");
      cg_printf("return g;\n");
      cg_indentEnd("}\n");
    }
    cg.setContext(CodeGenerator::CppImplementation);
    if (m_stmt) m_stmt->outputCPP(cg, ar);

    break;
  case CodeGenerator::CppFFIDecl:
  case CodeGenerator::CppFFIImpl:
    if (m_stmt) m_stmt->outputCPP(cg, ar);
    break;
  case CodeGenerator::JavaFFI:
    {
      if (classScope->isRedeclaring()) break;

      // TODO support PHP namespaces, once HPHP supports it
      string packageName = Option::JavaFFIRootPackage;
      string packageDir = packageName;
      Util::replaceAll(packageDir, ".", "/");

      string outputDir = ar->getOutputPath() + "/" + Option::FFIFilePrefix +
        packageDir + "/";
      Util::mkdir(outputDir);

      // uses a different cg to generate a separate file for each PHP class
      // also, uses the original capitalized class name
      string clsFile = outputDir + getOriginalName() + ".java";
      ofstream fcls(clsFile.c_str());
      CodeGenerator cgCls(&fcls, CodeGenerator::FileCPP);
      cgCls.setContext(CodeGenerator::JavaFFI);

      cgCls.printf("package %s;\n\n", packageName.c_str());
      cgCls.printf("import hphp.*;\n\n");

      printSource(cgCls);

      string clsModifier;
      switch (m_type) {
      case T_CLASS:
        break;
      case T_ABSTRACT:
        clsModifier = "abstract ";
        break;
      case T_FINAL:
        clsModifier = "final ";
        break;
      }
      cgCls.printf("public %sclass %s ", clsModifier.c_str(),
                   getOriginalName().c_str());

      ClassScopePtr parCls;
      if (!m_parent.empty()) parCls = ar->findClass(m_parent);
      if (!m_parent.empty() && classScope->derivesDirectlyFrom(ar, m_parent)
          && parCls && parCls->isUserClass() && !parCls->isRedeclaring()) {
        // system classes are not supported in static FFI translation
        // they shouldn't appear as superclasses as well
        cgCls.printf("extends %s", parCls->getOriginalName().c_str());
      }
      else {
        cgCls.printf("extends HphpObject");
      }
      if (m_base) {
        bool first = true;
        for (int i = 0; i < m_base->getCount(); i++) {
          ScalarExpressionPtr exp =
            dynamic_pointer_cast<ScalarExpression>((*m_base)[i]);
          const char *intf = exp->getString().c_str();
          ClassScopePtr intfClassScope = ar->findClass(intf);
          if (intfClassScope && classScope->derivesFrom(ar, intf, false, false)
           && intfClassScope->isUserClass()) {
            if (first) {
              cgCls.printf(" implements ");
              first = false;
            }
            else {
              cgCls.printf(", ");
            }
            cgCls.printf(intfClassScope->getOriginalName().c_str());
          }
        }
      }

      cgCls.indentBegin(" {\n");

      // constructor for initializing the variant pointer
      cgCls.printf("protected %s(long ptr) { super(ptr); }\n\n",
                   getOriginalName().c_str());

      FunctionScopePtr cons = classScope->findConstructor(ar, true);
      if (cons && !cons->isAbstract() || m_type != T_ABSTRACT) {
        // if not an abstract class and not having an explicit constructor,
        // adds a default constructor
        outputJavaFFIConstructor(cgCls, ar, cons);
      }

      if (m_stmt) m_stmt->outputCPP(cgCls, ar);
      cgCls.indentEnd("}\n");

      fcls.close();
    }
    break;
  case CodeGenerator::JavaFFICppDecl:
  case CodeGenerator::JavaFFICppImpl:
    {
      if (classScope->isRedeclaring()) break;

      if (m_stmt) m_stmt->outputCPP(cg, ar);
      FunctionScopePtr cons = classScope->findConstructor(ar, true);
      if (cons && !cons->isAbstract() || m_type != T_ABSTRACT) {
        outputJavaFFICPPCreator(cg, ar, cons);
      }
    }
    break;
  default:
    ASSERT(false);
    break;
  }

  ar->popScope();
}
TypePtr ObjectPropertyExpression::inferTypes(AnalysisResultPtr ar,
                                             TypePtr type, bool coerce) {
  m_valid = false;

  ConstructPtr self = shared_from_this();
  TypePtr objectType = m_object->inferAndCheck(ar, NEW_TYPE(Object), false);

  if (!m_property->is(Expression::KindOfScalarExpression)) {
    // if dynamic property or method, we have nothing to find out
    if (ar->isFirstPass()) {
      ar->getCodeError()->record(self, CodeError::UseDynamicProperty, self);
    }
    m_property->inferAndCheck(ar, Type::String, false);

    // we also lost track of which class variable an expression is about, hence
    // any type inference could be wrong. Instead, we just force variants on
    // all class variables.
    if (m_context & (LValue | RefValue)) {
      ar->forceClassVariants();
    }

    return Type::Variant; // we have to use a variant to hold dynamic value
  }

  ScalarExpressionPtr exp = dynamic_pointer_cast<ScalarExpression>(m_property);
  string name = exp->getString();
  ASSERT(!name.empty());

  m_property->inferAndCheck(ar, Type::String, false);

  ClassScopePtr cls;
  if (objectType && !objectType->getName().empty()) {
    // what object-> has told us
    cls = ar->findExactClass(objectType->getName());
  } else {
    // what ->property has told us
    cls = ar->findClass(name, AnalysisResult::PropertyName);
    if (cls) {
      objectType =
        m_object->inferAndCheck(ar, Type::CreateObjectType(cls->getName()),
                                false);
    }
    if ((m_context & LValue) &&
        objectType && !objectType->is(Type::KindOfObject) &&
                      !objectType->is(Type::KindOfVariant) &&
                      !objectType->is(Type::KindOfSome) &&
                      !objectType->is(Type::KindOfAny)) {
      m_object->inferAndCheck(ar, NEW_TYPE(Object), true);
    }
  }

  if (!cls) {
    if (m_context & (LValue | RefValue)) {
      ar->forceClassVariants(name);
    }
    return Type::Variant;
  }

  const char *accessorName = hasContext(DeepAssignmentLHS) ? "__set" :
    hasContext(ExistContext) ? "__isset" :
    hasContext(UnsetContext) ? "__unset" : "__get";
  if (!cls->implementsAccessor(ar, accessorName)) clearEffect(AccessorEffect);

  // resolved to this class
  int present = 0;
  if (m_context & RefValue) {
    type = Type::Variant;
    coerce = true;
  }

  // use $this inside a static function
  if (m_object->isThis()) {
    FunctionScopePtr func = ar->getFunctionScope();
    if (func->isStatic()) {
      if (ar->isFirstPass()) {
        ar->getCodeError()->record(self, CodeError::MissingObjectContext,
                                   self);
      }
      m_actualType = Type::Variant;
      return m_actualType;
    }
  }

  TypePtr ret;
  if (!cls->derivesFromRedeclaring()) { // Have to use dynamic.
    ret = cls->checkProperty(name, type, coerce, ar, self, present);
    // Private only valid if in the defining class
    if (present && (getOriginalScope(ar) == cls ||
                    !(present & VariableTable::VariablePrivate))) {
      m_valid = true;
      m_static = present & VariableTable::VariableStatic;
      if (m_static) {
        ar->getScope()->getVariables()->
          setAttribute(VariableTable::NeedGlobalPointer);
      }
      m_class = cls;
    }
  }

  // get() will return Variant
  if (!m_valid || !m_object->getType()->isSpecificObject()) {
    m_actualType = Type::Variant;
    return m_actualType;
  }

  clearEffect(AccessorEffect);

  if (ar->getPhase() == AnalysisResult::LastInference) {
    if (!(m_context & ObjectContext)) {
      m_object->clearContext(Expression::LValue);
    }
    setContext(Expression::NoLValueWrapper);
  }
  return ret;
}
예제 #5
0
void ClassVariable::outputCPPImpl(CodeGenerator &cg, AnalysisResultPtr ar) {

  // bail out early if possible
  switch (cg.getContext()) {
  case CodeGenerator::CppConstructor:
  case CodeGenerator::CppInitializer:
    if (m_modifiers->isStatic()) return;
    break;
  default:
    return;
  }

  ClassScopePtr scope = getClassScope();
  bool derivFromRedec = scope->derivesFromRedeclaring() &&
    !m_modifiers->isPrivate();

  for (int i = 0; i < m_declaration->getCount(); i++) {
    ExpressionPtr exp = (*m_declaration)[i];
    SimpleVariablePtr var;
    TypePtr type;
    Symbol *sym;
    ExpressionPtr value;

    bool initInCtor = false;
    bool initInInit = false;
    getCtorAndInitInfo(exp, initInCtor, initInInit, var, type, sym, value);

    bool isAssign = exp->is(Expression::KindOfAssignmentExpression);
    bool isValueNull = isAssign ? value->isLiteralNull() : false;

    switch (cg.getContext()) {
    case CodeGenerator::CppConstructor:
      if (initInCtor) {
        if (!cg.hasInitListFirstElem()) {
          cg.setInitListFirstElem();
        } else {
          cg_printf(", ");
        }
        if (isAssign) {
          if (isValueNull) {
            cg_printf("%s%s(Variant::nullInit)",
                      Option::PropertyPrefix,
                      var->getName().c_str());
          } else {
            ASSERT(value);
            ASSERT(value->is(Expression::KindOfScalarExpression));
            cg_printf("%s%s(",
                      Option::PropertyPrefix,
                      var->getName().c_str());
            value->outputCPP(cg, ar);
            cg_printf(")");
          }
        } else {
          if (type->is(Type::KindOfVariant)) {
            cg_printf("%s%s(Variant::nullInit)",
                      Option::PropertyPrefix,
                      var->getName().c_str());
          } else {
            const char *initializer = type->getCPPInitializer();
            ASSERT(initializer);
            cg_printf("%s%s(%s)",
                      Option::PropertyPrefix,
                      var->getName().c_str(),
                      initializer);
          }
        }
      }
      break;
    case CodeGenerator::CppInitializer:
      if (initInInit) {
        if (isAssign) {
          value->outputCPPBegin(cg, ar);
          if (derivFromRedec) {
            cg_printf("%sset(", Option::ObjectPrefix);
            cg_printString(var->getName(), ar, shared_from_this());
            cg_printf(", ");
            value->outputCPP(cg, ar);
            cg_printf(")");
          } else if (isValueNull) {
            cg_printf("setNull(%s%s)", Option::PropertyPrefix,
                      var->getName().c_str());
          } else {
            cg_printf("%s%s = ", Option::PropertyPrefix, var->getName().c_str());
            value->outputCPP(cg, ar);
          }
          cg_printf(";\n");
          value->outputCPPEnd(cg, ar);
        } else {
          if (derivFromRedec) {
            cg_printf("%sset(", Option::ObjectPrefix);
            cg_printString(var->getName(), ar, shared_from_this());
            cg_printf(", null_variant);\n");
          } else {
            if (type->is(Type::KindOfVariant)) {
              cg_printf("setNull(%s%s);\n", Option::PropertyPrefix,
                        var->getName().c_str());
            } else {
              const char *initializer = type->getCPPInitializer();
              ASSERT(initializer);
              cg_printf("%s%s = %s;\n", Option::PropertyPrefix,
                        var->getName().c_str(), initializer);
            }
          }
        }
      }
      break;
    default:
      break;
    }
  }
}
예제 #6
0
void ClassVariable::outputCPPImpl(CodeGenerator &cg, AnalysisResultPtr ar) {
  ClassScopePtr scope = ar->getClassScope();
  bool derivFromRedec = scope->derivesFromRedeclaring() &&
    !m_modifiers->isPrivate();
  for (int i = 0; i < m_declaration->getCount(); i++) {
    ExpressionPtr exp = (*m_declaration)[i];

    SimpleVariablePtr var;
    TypePtr type;

    switch (cg.getContext()) {
    case CodeGenerator::CppConstructor:
      if (m_modifiers->isStatic()) continue;

      if (exp->is(Expression::KindOfAssignmentExpression)) {
        AssignmentExpressionPtr assignment =
          dynamic_pointer_cast<AssignmentExpression>(exp);

        var = dynamic_pointer_cast<SimpleVariable>(assignment->getVariable());
        ExpressionPtr value = assignment->getValue();
        value->outputCPPBegin(cg, ar);
        if (derivFromRedec) {
          cg_printf("%sset(\"%s\",-1, ", Option::ObjectPrefix,
                    var->getName().c_str());
          value->outputCPP(cg, ar);
          cg_printf(")");
        } else {
          cg_printf("%s%s = ", Option::PropertyPrefix, var->getName().c_str());
          value->outputCPP(cg, ar);
        }
        cg_printf(";\n");
        value->outputCPPEnd(cg, ar);
      } else {
        var = dynamic_pointer_cast<SimpleVariable>(exp);
        if (derivFromRedec) {
          cg_printf("%sset(\"%s\",-1, null);\n", Option::ObjectPrefix,
                    var->getName().c_str());
        } else  {
          type = scope->getVariables()->getFinalType(var->getName());
          const char *initializer = type->getCPPInitializer();
          if (initializer) {
            cg_printf("%s%s = %s;\n", Option::PropertyPrefix,
                      var->getName().c_str(), initializer);
          }
        }
      }
      break;

    case CodeGenerator::CppStaticInitializer:
      {
        if (!m_modifiers->isStatic()) continue;

        VariableTablePtr variables = scope->getVariables();
        if (exp->is(Expression::KindOfAssignmentExpression)) {
          AssignmentExpressionPtr assignment =
            dynamic_pointer_cast<AssignmentExpression>(exp);

          var = dynamic_pointer_cast<SimpleVariable>
            (assignment->getVariable());
          ExpressionPtr value = assignment->getValue();
          if (value->containsDynamicConstant(ar)) continue;
          cg_printf("g->%s%s%s%s = ",
                    Option::StaticPropertyPrefix, scope->getId(cg).c_str(),
                    Option::IdPrefix.c_str(), var->getName().c_str());

          value->outputCPP(cg, ar);
        } else {
          var = dynamic_pointer_cast<SimpleVariable>(exp);
          type = scope->getVariables()->getFinalType(var->getName());
          const char *initializer = type->getCPPInitializer();
          if (initializer) {
            cg_printf("g->%s%s%s%s = %s",
                      Option::StaticPropertyPrefix, scope->getId(cg).c_str(),
                      Option::IdPrefix.c_str(), var->getName().c_str(),
                      initializer);
          }
        }
        cg_printf(";\n");
      }
      break;
    case CodeGenerator::CppLazyStaticInitializer:
      {
        if (!m_modifiers->isStatic()) continue;
        if (!exp->is(Expression::KindOfAssignmentExpression)) continue;
        VariableTablePtr variables = scope->getVariables();
        AssignmentExpressionPtr assignment =
          dynamic_pointer_cast<AssignmentExpression>(exp);
        var = dynamic_pointer_cast<SimpleVariable>(assignment->getVariable());
        ExpressionPtr value = assignment->getValue();
        if (!value->containsDynamicConstant(ar)) continue;
        value->outputCPPBegin(cg, ar);
        cg_printf("g->%s%s%s%s = ",
                  Option::StaticPropertyPrefix, scope->getId(cg).c_str(),
                  Option::IdPrefix.c_str(), var->getName().c_str());
        value->outputCPP(cg, ar);
        cg_printf(";\n");
        value->outputCPPEnd(cg, ar);
      }
      break;
    default:
      break;
    }
  }
}
TypePtr ObjectPropertyExpression::inferTypes(AnalysisResultPtr ar,
                                             TypePtr type, bool coerce) {
  m_valid = false;

  ConstructPtr self = shared_from_this();
  TypePtr objectType = m_object->inferAndCheck(ar, Type::Some, false);

  if (!m_property->is(Expression::KindOfScalarExpression)) {
    m_property->inferAndCheck(ar, Type::String, false);
    // we also lost track of which class variable an expression is about, hence
    // any type inference could be wrong. Instead, we just force variants on
    // all class variables.
    if (m_context & (LValue | RefValue)) {
      ar->forceClassVariants(getOriginalClass(), false, true);
    }
    return Type::Variant; // we have to use a variant to hold dynamic value
  }

  ScalarExpressionPtr exp = dynamic_pointer_cast<ScalarExpression>(m_property);
  const string &name = exp->getLiteralString();
  if (name.empty()) {
    m_property->inferAndCheck(ar, Type::String, false);
    if (m_context & (LValue | RefValue)) {
      ar->forceClassVariants(getOriginalClass(), false, true);
    }
    return Type::Variant; // we have to use a variant to hold dynamic value
  }

  m_property->inferAndCheck(ar, Type::String, false);

  ClassScopePtr cls;
  if (objectType && !objectType->getName().empty()) {
    // what object-> has told us
    cls = ar->findExactClass(shared_from_this(), objectType->getName());
  } else {
    if ((m_context & LValue) && objectType &&
        !objectType->is(Type::KindOfObject) &&
        !objectType->is(Type::KindOfVariant) &&
        !objectType->is(Type::KindOfSome) &&
        !objectType->is(Type::KindOfAny)) {
      m_object->inferAndCheck(ar, Type::Object, true);
    }
  }

  if (!cls) {
    if (m_context & (LValue | RefValue | DeepReference | UnsetContext)) {
      ar->forceClassVariants(name, getOriginalClass(), false, true);
    }
    return Type::Variant;
  }

  // resolved to this class
  if (m_context & RefValue) {
    type = Type::Variant;
    coerce = true;
  }

  // use $this inside a static function
  if (m_object->isThis()) {
    FunctionScopePtr func = m_object->getOriginalFunction();
    if (!func || func->isStatic()) {
      if (getScope()->isFirstPass()) {
        Compiler::Error(Compiler::MissingObjectContext, self);
      }
      m_actualType = Type::Variant;
      return m_actualType;
    }
  }

  assert(cls);
  if (!m_propSym || cls != m_objectClass.lock()) {
    m_objectClass = cls;
    ClassScopePtr parent;
    m_propSym = cls->findProperty(parent, name, ar);
    if (m_propSym) {
      if (!parent) {
        parent = cls;
      }
      m_symOwner = parent;
      always_assert(m_propSym->isPresent());
      m_propSymValid =
        (!m_propSym->isPrivate() || getOriginalClass() == parent) &&
        !m_propSym->isStatic();

      if (m_propSymValid) {
        m_symOwner->addUse(getScope(),
                           BlockScope::GetNonStaticRefUseKind(
                             m_propSym->getHash()));
      }
    }
  }

  TypePtr ret;
  if (m_propSymValid && (!cls->derivesFromRedeclaring() ||
                         m_propSym->isPrivate())) {
    always_assert(m_symOwner);
    TypePtr t(m_propSym->getType());
    if (t && t->is(Type::KindOfVariant)) {
      // only check property if we could possibly do some work
      ret = t;
    } else {
      if (coerce && type->is(Type::KindOfAutoSequence) &&
          (!t || t->is(Type::KindOfVoid) ||
           t->is(Type::KindOfSome) || t->is(Type::KindOfArray))) {
        type = Type::Array;
      }
      assert(getScope()->is(BlockScope::FunctionScope));
      GET_LOCK(m_symOwner);
      ret = m_symOwner->checkProperty(getScope(), m_propSym, type, coerce, ar);
    }
    always_assert(m_object->getActualType() &&
           m_object->getActualType()->isSpecificObject());
    m_valid = true;
    return ret;
  } else {
    m_actualType = Type::Variant;
    return m_actualType;
  }
}
예제 #8
0
TypePtr SimpleFunctionCall::inferAndCheck(AnalysisResultPtr ar, TypePtr type,
                                          bool coerce) {
  reset();

  ConstructPtr self = shared_from_this();

  // handling define("CONSTANT", ...);
  if (m_className.empty()) {
    if (m_type == DefineFunction && m_params && m_params->getCount() >= 2) {
      ScalarExpressionPtr name =
        dynamic_pointer_cast<ScalarExpression>((*m_params)[0]);
      string varName;
      if (name) {
        varName = name->getIdentifier();
        if (!varName.empty()) {
          ExpressionPtr value = (*m_params)[1];
          TypePtr varType = value->inferAndCheck(ar, NEW_TYPE(Some), false);
          ar->getDependencyGraph()->
            addParent(DependencyGraph::KindOfConstant,
                      ar->getName(), varName, self);
          ConstantTablePtr constants =
            ar->findConstantDeclarer(varName)->getConstants();
          if (constants != ar->getConstants()) {
            if (value && !value->isScalar()) {
              constants->setDynamic(ar, varName);
              varType = Type::Variant;
            }
            if (constants->isDynamic(varName)) {
              m_dynamicConstant = true;
              ar->getScope()->getVariables()->
                setAttribute(VariableTable::NeedGlobalPointer);
            } else {
              constants->setType(ar, varName, varType, true);
            }
            // in case the old 'value' has been optimized
            constants->setValue(ar, varName, value);
          }
          return checkTypesImpl(ar, type, Type::Boolean, coerce);
        }
      }
      if (varName.empty() && ar->isFirstPass()) {
        ar->getCodeError()->record(self, CodeError::BadDefine, self);
      }
    } else if (m_type == ExtractFunction) {
      ar->getScope()->getVariables()->forceVariants(ar);
    }
  }

  FunctionScopePtr func;

  // avoid raising both MissingObjectContext and UnknownFunction
  bool errorFlagged = false;

  if (m_className.empty()) {
    func = ar->findFunction(m_name);
  } else {
    ClassScopePtr cls = ar->resolveClass(m_className);
    if (cls && cls->isVolatile()) {
      ar->getScope()->getVariables()
        ->setAttribute(VariableTable::NeedGlobalPointer);
    }
    if (!cls || cls->isRedeclaring()) {
      if (cls) {
        m_redeclaredClass = true;
      }
      if (!cls && ar->isFirstPass()) {
        ar->getCodeError()->record(self, CodeError::UnknownClass, self);
      }
      if (m_params) {
        m_params->inferAndCheck(ar, NEW_TYPE(Some), false);
      }
      return checkTypesImpl(ar, type, Type::Variant, coerce);
    }
    m_derivedFromRedeclaring = cls->derivesFromRedeclaring();
    m_validClass = true;

    if (m_name == "__construct") {
      // if the class is known, php will try to identify class-name ctor
      func = cls->findConstructor(ar, true);
    }
    else {
      func = cls->findFunction(ar, m_name, true, true);
    }

    if (func && !func->isStatic()) {
      ClassScopePtr clsThis = ar->getClassScope();
      FunctionScopePtr funcThis = ar->getFunctionScope();
      if (!clsThis ||
          (clsThis->getName() != m_className &&
           !clsThis->derivesFrom(ar, m_className)) ||
          funcThis->isStatic()) {
        // set the method static to avoid "unknown method" runtime exception
        if (Option::StaticMethodAutoFix && !func->containsThis()) {
          func->setStatic();
        }
        if (ar->isFirstPass()) {
          ar->getCodeError()->record(self, CodeError::MissingObjectContext,
                                     self);
          errorFlagged = true;
        }
        func.reset();
      }
    }
  }
  if (!func || func->isRedeclaring()) {
    if (func) {
      m_redeclared = true;
      ar->getScope()->getVariables()->
        setAttribute(VariableTable::NeedGlobalPointer);
    }
    if (!func && !errorFlagged && ar->isFirstPass()) {
      ar->getCodeError()->record(self, CodeError::UnknownFunction, self);
    }
    if (m_params) {
      if (func) {
        FunctionScope::RefParamInfoPtr info =
          FunctionScope::GetRefParamInfo(m_name);
        ASSERT(info);
        for (int i = m_params->getCount(); i--; ) {
          if (info->isRefParam(i)) {
            m_params->markParam(i, canInvokeFewArgs());
          }
        }
      }
      m_params->inferAndCheck(ar, NEW_TYPE(Some), false);
    }
    return checkTypesImpl(ar, type, Type::Variant, coerce);
  }
  m_builtinFunction = !func->isUserFunction();

  if (m_redeclared) {
    if (m_params) {
      m_params->inferAndCheck(ar, NEW_TYPE(Some), false);
    }
    return checkTypesImpl(ar, type, type, coerce);
  }

  CHECK_HOOK(beforeSimpleFunctionCallCheck);

  m_valid = true;
  type = checkParamsAndReturn(ar, type, coerce, func);

  if (!m_valid && m_params) {
    m_params->markParams(false);
  }

  CHECK_HOOK(afterSimpleFunctionCallCheck);

  return type;
}
예제 #9
0
파일: class_scope.cpp 프로젝트: orok/hhvm
void ClassScope::collectMethods(AnalysisResultPtr ar,
                                StringToFunctionScopePtrMap &funcs,
                                bool collectPrivate) {
  // add all functions this class has
  for (FunctionScopePtrVec::const_iterator iter =
         m_functionsVec.begin(); iter != m_functionsVec.end(); ++iter) {
    const FunctionScopePtr &fs = *iter;
    if (!collectPrivate && fs->isPrivate()) continue;

    FunctionScopePtr &func = funcs[fs->getScopeName()];
    if (!func) {
      func = fs;
    } else {
      func->setVirtual();
      fs->setVirtual();
      fs->setHasOverride();
      if (fs->isFinal()) {
        std::string s__MockClass = "__MockClass";
        ClassScopePtr derivedClass = func->getContainingClass();
        if (derivedClass->m_userAttributes.find(s__MockClass) ==
            derivedClass->m_userAttributes.end()) {
          Compiler::Error(Compiler::InvalidOverride,
                          fs->getStmt(), func->getStmt());
        }
      }
    }
  }

  int n = m_bases.size();
  for (int i = 0; i < n; i++) {
    const string &base = m_bases[i];
    ClassScopePtr super = ar->findClass(base);
    if (super) {
      if (super->isRedeclaring()) {
        const ClassScopePtrVec &classes = ar->findRedeclaredClasses(base);
        StringToFunctionScopePtrMap pristine(funcs);

        for (auto& cls : classes) {
          StringToFunctionScopePtrMap cur(pristine);
          derivedMagicMethods(cls);
          cls->collectMethods(ar, cur, false);
          inheritedMagicMethods(cls);
          funcs.insert(cur.begin(), cur.end());
        }

        m_derivesFromRedeclaring = Derivation::Redeclaring;

        setVolatile();
      } else {
        derivedMagicMethods(super);
        super->collectMethods(ar, funcs, false);
        inheritedMagicMethods(super);
        if (super->derivesFromRedeclaring() == Derivation::Redeclaring) {
          m_derivesFromRedeclaring = Derivation::Redeclaring;
          setVolatile();
        } else if (super->isVolatile()) {
          setVolatile();
        }
      }
    } else {
      Compiler::Error(Compiler::UnknownBaseClass, m_stmt, base);
      if (base == m_parent) {
        ar->declareUnknownClass(m_parent);
        m_derivesFromRedeclaring = Derivation::Redeclaring;
        setVolatile();
      } else {
        /*
         * TODO(#3685260): this should not be removing interfaces from
         * the base list.
         */
        if (isInterface()) {
          m_derivesFromRedeclaring = Derivation::Redeclaring;
        }
        m_bases.erase(m_bases.begin() + i);
        n--;
        i--;
      }
    }
  }
}
예제 #10
0
void ClassStatement::outputCPPImpl(CodeGenerator &cg, AnalysisResultPtr ar) {
  if (cg.getContext() == CodeGenerator::NoContext) {
    InterfaceStatement::outputCPPImpl(cg, ar);
    return;
  }

  ClassScopeRawPtr classScope = getClassScope();
  if (cg.getContext() != CodeGenerator::CppForwardDeclaration) {
    printSource(cg);
  }

  string clsNameStr = classScope->getId();
  const char *clsName = clsNameStr.c_str();

  switch (cg.getContext()) {
  case CodeGenerator::CppDeclaration:
    {
      if (Option::GenerateCPPMacros) {
        classScope->outputForwardDeclaration(cg);
      }
      classScope->outputCPPGlobalTableWrappersDecl(cg, ar);

      bool system = cg.getOutput() == CodeGenerator::SystemCPP;
      ClassScopePtr parCls;
      if (!m_parent.empty()) {
        parCls = ar->findClass(m_parent);
        if (parCls && parCls->isRedeclaring()) parCls.reset();
      }
      if (Option::GenerateCppLibCode) {
        cg.printDocComment(classScope->getDocComment());
      }
      cg_printf("class %s%s", Option::ClassPrefix, clsName);
      if (!m_parent.empty() && classScope->derivesDirectlyFrom(m_parent)) {
        if (!parCls) {
          cg_printf(" : public DynamicObjectData");
        } else {
          cg_printf(" : public %s%s", Option::ClassPrefix,
                    parCls->getId().c_str());
        }
      } else {
        if (classScope->derivesFromRedeclaring()) {
          cg_printf(" : public DynamicObjectData");
        } else if (system) {
          cg_printf(" : public ExtObjectData");
        } else {
          cg_printf(" : public ObjectData");
        }
      }
      if (m_base && Option::UseVirtualDispatch) {
        for (int i = 0; i < m_base->getCount(); i++) {
          ScalarExpressionPtr exp =
            dynamic_pointer_cast<ScalarExpression>((*m_base)[i]);
          const char *intf = exp->getString().c_str();
          ClassScopePtr intfClassScope = ar->findClass(intf);
          if (intfClassScope && !intfClassScope->isRedeclaring() &&
              classScope->derivesDirectlyFrom(intf) &&
              (!parCls || !parCls->derivesFrom(ar, intf, true, false))) {
            string id = intfClassScope->getId();
            cg_printf(", public %s%s", Option::ClassPrefix, id.c_str());
          }
        }
      }
      cg_indentBegin(" {\n");
      cg_printf("public:\n");

      cg.printSection("Properties");
      if (classScope->getVariables()->outputCPPPropertyDecl(
            cg, ar, classScope->derivesFromRedeclaring())) {
        cg.printSection("Destructor");
        cg_printf("~%s%s() NEVER_INLINE {}", Option::ClassPrefix, clsName);
      }

      if (Option::GenerateCppLibCode) {
        cg.printSection("Methods");
        classScope->outputMethodWrappers(cg, ar);
        cg.printSection(">>>>>>>>>> Internal Implementation <<<<<<<<<<");
        cg_printf("// NOTE: Anything below is subject to change. "
                  "Use everything above instead.\n");
      }

      cg.printSection("Class Map");

      bool hasEmitCppCtor = false;
      bool needsCppCtor = classScope->needsCppCtor();
      bool needsInit    = classScope->needsInitMethod();

      bool disableDestructor =
        !classScope->canSkipCreateMethod(ar) ||
        (!classScope->derivesFromRedeclaring() &&
         !classScope->hasAttribute(ClassScope::HasDestructor, ar));

      if (Option::GenerateCPPMacros) {
        bool dyn = classScope->derivesFromRedeclaring() ==
          ClassScope::DirectFromRedeclared;
        bool idyn = parCls && classScope->derivesFromRedeclaring() ==
          ClassScope::IndirectFromRedeclared;
        bool redec = classScope->isRedeclaring();

        if (!parCls && !m_parent.empty()) {
          assert(dyn);
        }

        if (!classScope->derivesFromRedeclaring()) {
          outputCPPClassDecl(cg, ar, clsName, m_originalName.c_str(),
                             parCls ? parCls->getId().c_str()
                                    : "ObjectData");
        } else {
          cg_printf("DECLARE_DYNAMIC_CLASS(%s, %s, %s)\n", clsName,
                    m_originalName.c_str(),
                    dyn || !parCls ? "DynamicObjectData" :
                    parCls->getId().c_str());
        }

        if (classScope->checkHasPropTable()) {
          cg_printf("static const ClassPropTable %sprop_table;\n",
                    Option::ObjectStaticPrefix);
        }

        bool hasGet = classScope->getAttribute(
          ClassScope::HasUnknownPropGetter);
        bool hasSet = classScope->getAttribute(
          ClassScope::HasUnknownPropSetter);
        bool hasIsset = classScope->getAttribute(
          ClassScope::HasUnknownPropTester);
        bool hasUnset = classScope->getAttribute(
          ClassScope::HasPropUnsetter);
        bool hasCall = classScope->getAttribute(
          ClassScope::HasUnknownMethodHandler);
        bool hasCallStatic = classScope->getAttribute(
          ClassScope::HasUnknownStaticMethodHandler);

        bool hasRootParam =
          classScope->derivedByDynamic() && (redec || dyn || idyn);
        string lateInit = "";
        if (redec && classScope->derivedByDynamic()) {
          if (!dyn && !idyn && (!parCls || parCls->isUserClass())) {
            cg_printf("private: ObjectData* root;\n");
            cg_printf("public:\n");
            cg_printf("virtual ObjectData *getRoot() { return root; }\n");
            lateInit = "root(r ? r : this)";
          }
        }

        string callbacks = Option::ClassStaticsCallbackPrefix + clsNameStr;
        string conInit = "";
        if (dyn) {
          conInit = "DynamicObjectData(cb, \"" +
            CodeGenerator::EscapeLabel(m_parent) + "\", ";
          if (hasRootParam) {
            conInit += "r)";
          } else {
            conInit += "this)";
          }
        } else if (parCls) {
          conInit = string(Option::ClassPrefix) + parCls->getId() + "(";
          if (parCls->derivedByDynamic() &&
              (parCls->isRedeclaring() ||
               parCls->derivesFromRedeclaring() != ClassScope::FromNormal)) {
            if (hasRootParam) {
              conInit += "r ? r : ";
            }
            conInit += "this, ";
          }
          conInit += "cb)";
        } else {
          if (system) {
            conInit = "ExtObjectData(cb)";
          } else {
            if (hasRootParam) {
              conInit = "ObjectData(cb, r)";
            } else {
              conInit = "ObjectData(cb, false)";
            }
          }
        }

        cg_printf("%s%s(%sconst ObjectStaticCallbacks *cb = &%s%s) : %s",
                  Option::ClassPrefix,
                  clsName,
                  hasRootParam ? "ObjectData* r = NULL," : "",
                  callbacks.c_str(),
                  redec ? ".oscb" : "",
                  conInit.c_str());

        if (needsCppCtor) {
          cg_printf(", ");
          cg.setContext(CodeGenerator::CppConstructor);
          ASSERT(!cg.hasInitListFirstElem());
          m_stmt->outputCPP(cg, ar);
          cg.clearInitListFirstElem();
          cg.setContext(CodeGenerator::CppDeclaration);
        }
        if (!lateInit.empty()) {
          cg_printf(", %s", lateInit.c_str());
        }

        cg_indentBegin(" {%s",
                       hasGet || hasSet || hasIsset || hasUnset ||
                       hasCall || hasCallStatic || disableDestructor ||
                       hasRootParam ? "\n" : "");
        if (hasRootParam) {
          cg_printf("setId(r);\n");
        }
        if (hasGet) cg_printf("setAttribute(UseGet);\n");
        if (hasSet) cg_printf("setAttribute(UseSet);\n");
        if (hasIsset) cg_printf("setAttribute(UseIsset);\n");
        if (hasUnset) cg_printf("setAttribute(UseUnset);\n");
        if (hasCall) cg_printf("setAttribute(HasCall);\n");
        if (hasCallStatic) cg_printf("setAttribute(HasCallStatic);\n");
        if (disableDestructor) {
          cg_printf("if (!hhvm) setAttribute(NoDestructor);\n");
        }
        cg_indentEnd("}\n");
        hasEmitCppCtor = true;
      }

      if (needsCppCtor && !hasEmitCppCtor) {
        cg_printf("%s%s() : ", Option::ClassPrefix, clsName);
        cg.setContext(CodeGenerator::CppConstructor);
        ASSERT(!cg.hasInitListFirstElem());
        m_stmt->outputCPP(cg, ar);
        cg.clearInitListFirstElem();
        cg.setContext(CodeGenerator::CppDeclaration);
        cg_printf(" {%s}\n",
                  disableDestructor ?
                  " if (!hhvm) setAttribute(NoDestructor); " : "");
      }

      if (needsInit) {
        cg_printf("void init();\n");
      }

      // doCall
      if (classScope->getAttribute(ClassScope::HasUnknownMethodHandler)) {
        cg_printf("Variant doCall(Variant v_name, Variant v_arguments, "
                  "bool fatal);\n");
      }

      if (classScope->getAttribute(ClassScope::HasInvokeMethod)) {
        FunctionScopePtr func =
          classScope->findFunction(ar, "__invoke", false);
        ASSERT(func);
        if (!func->isAbstract()) {
          cg_printf("const CallInfo *"
                    "t___invokeCallInfoHelper(void *&extra);\n");
        }
      }

      if (classScope->isRedeclaring() &&
          !classScope->derivesFromRedeclaring() &&
          classScope->derivedByDynamic()) {
        cg_printf("Variant doRootCall(Variant v_name, Variant v_arguments, "
                  "bool fatal);\n");
      }

      if (m_stmt) m_stmt->outputCPP(cg, ar);
      {
        std::set<string> done;
        classScope->outputCPPStaticMethodWrappers(cg, ar, done, clsName);
      }
      if (Option::GenerateCPPMacros) {
        classScope->outputCPPJumpTableDecl(cg, ar);
      }
      cg_indentEnd("};\n");

      classScope->outputCPPDynamicClassDecl(cg);

      if (m_stmt) {
        cg.setContext(CodeGenerator::CppClassConstantsDecl);
        m_stmt->outputCPP(cg, ar);
        cg.setContext(CodeGenerator::CppDeclaration);
      }
    }
    break;
  case CodeGenerator::CppImplementation:
    {
      if (m_stmt) {
        cg.setContext(CodeGenerator::CppClassConstantsImpl);
        m_stmt->outputCPP(cg, ar);
        cg.setContext(CodeGenerator::CppImplementation);
      }

      classScope->outputCPPSupportMethodsImpl(cg, ar);

      bool needsInit = classScope->needsInitMethod();
      if (needsInit) {
        cg_indentBegin("void %s%s::init() {\n",
                       Option::ClassPrefix, clsName);
        if (!m_parent.empty()) {
          if (classScope->derivesFromRedeclaring() ==
              ClassScope::DirectFromRedeclared) {
            cg_printf("parent->init();\n");
          } else {
            ClassScopePtr parCls = ar->findClass(m_parent);
            cg_printf("%s%s::init();\n", Option::ClassPrefix,
                      parCls->getId().c_str());
          }
        }
        if (classScope->getVariables()->
            getAttribute(VariableTable::NeedGlobalPointer)) {
          cg.printDeclareGlobals();
        }
        cg.setContext(CodeGenerator::CppInitializer);
        if (m_stmt) m_stmt->outputCPP(cg, ar);

        // This is lame. Exception base class needs to prepare stacktrace
        // outside of its PHP constructor. Every subclass of exception also
        // needs this stacktrace, so we're adding an artificial __init__ in
        // exception.php and calling it here.
        if (m_name == "exception") {
          cg_printf("{CountableHelper h(this); t___init__();}\n");
        }

        cg_indentEnd("}\n");
      }

      cg.setContext(CodeGenerator::CppImplementation);
      if (m_stmt) m_stmt->outputCPP(cg, ar);
    }
    break;
  case CodeGenerator::CppFFIDecl:
  case CodeGenerator::CppFFIImpl:
    if (m_stmt) m_stmt->outputCPP(cg, ar);
    break;
  case CodeGenerator::JavaFFI:
    {
      if (classScope->isRedeclaring()) break;

      // TODO support PHP namespaces, once HPHP supports it
      string packageName = Option::JavaFFIRootPackage;
      string packageDir = packageName;
      Util::replaceAll(packageDir, ".", "/");

      string outputDir = ar->getOutputPath() + "/" + Option::FFIFilePrefix +
        packageDir + "/";
      Util::mkdir(outputDir);

      // uses a different cg to generate a separate file for each PHP class
      // also, uses the original capitalized class name
      string clsFile = outputDir + getOriginalName() + ".java";
      std::ofstream fcls(clsFile.c_str());
      CodeGenerator cgCls(&fcls, CodeGenerator::FileCPP);
      cgCls.setContext(CodeGenerator::JavaFFI);

      cgCls.printf("package %s;\n\n", packageName.c_str());
      cgCls.printf("import hphp.*;\n\n");

      printSource(cgCls);

      string clsModifier;
      switch (m_type) {
      case T_CLASS:
        break;
      case T_ABSTRACT:
        clsModifier = "abstract ";
        break;
      case T_FINAL:
        clsModifier = "final ";
        break;
      }
      cgCls.printf("public %sclass %s ", clsModifier.c_str(),
                   getOriginalName().c_str());

      ClassScopePtr parCls;
      if (!m_parent.empty()) parCls = ar->findClass(m_parent);
      if (!m_parent.empty() && classScope->derivesDirectlyFrom(m_parent)
          && parCls && parCls->isUserClass() && !parCls->isRedeclaring()) {
        // system classes are not supported in static FFI translation
        // they shouldn't appear as superclasses as well
        cgCls.printf("extends %s", parCls->getOriginalName().c_str());
      }
      else {
        cgCls.printf("extends HphpObject");
      }
      if (m_base) {
        bool first = true;
        for (int i = 0; i < m_base->getCount(); i++) {
          ScalarExpressionPtr exp =
            dynamic_pointer_cast<ScalarExpression>((*m_base)[i]);
          const char *intf = exp->getString().c_str();
          ClassScopePtr intfClassScope = ar->findClass(intf);
          if (intfClassScope && classScope->derivesFrom(ar, intf, false, false)
           && intfClassScope->isUserClass()) {
            if (first) {
              cgCls.printf(" implements ");
              first = false;
            }
            else {
              cgCls.printf(", ");
            }
            cgCls.printf(intfClassScope->getOriginalName().c_str());
          }
        }
      }

      cgCls.indentBegin(" {\n");

      // constructor for initializing the variant pointer
      cgCls.printf("protected %s(long ptr) { super(ptr); }\n\n",
                   getOriginalName().c_str());

      FunctionScopePtr cons = classScope->findConstructor(ar, true);
      if (cons && !cons->isAbstract() || m_type != T_ABSTRACT) {
        // if not an abstract class and not having an explicit constructor,
        // adds a default constructor
        outputJavaFFIConstructor(cgCls, ar, cons);
      }

      if (m_stmt) m_stmt->outputCPP(cgCls, ar);
      cgCls.indentEnd("}\n");

      fcls.close();
    }
    break;
  case CodeGenerator::JavaFFICppDecl:
  case CodeGenerator::JavaFFICppImpl:
    {
      if (classScope->isRedeclaring()) break;

      if (m_stmt) m_stmt->outputCPP(cg, ar);
      FunctionScopePtr cons = classScope->findConstructor(ar, true);
      if (cons && !cons->isAbstract() || m_type != T_ABSTRACT) {
        outputJavaFFICPPCreator(cg, ar, cons);
      }
    }
    break;
  default:
    ASSERT(false);
    break;
  }
}
예제 #11
0
TypePtr NewObjectExpression::inferTypes(AnalysisResultPtr ar, TypePtr type,
                                        bool coerce) {
  reset();
  m_classScope.reset();
  m_funcScope.reset();
  ConstructPtr self = shared_from_this();
  if (!m_name.empty()) {
    ClassScopePtr cls = resolveClass(getScope());
    m_name = m_className;

    if (!cls) {
      if (isRedeclared()) {
        getScope()->getVariables()->
          setAttribute(VariableTable::NeedGlobalPointer);
      } else if (getScope()->isFirstPass()) {
        Compiler::Error(Compiler::UnknownClass, self);
      }
      if (m_params) m_params->inferAndCheck(ar, Type::Any, false);
      return Type::Object;
    }
    if (cls->isVolatile() && !isPresent()) {
      getScope()->getVariables()->
        setAttribute(VariableTable::NeedGlobalPointer);
    }
    m_dynamic = cls->derivesFromRedeclaring();
    bool valid = true;
    FunctionScopePtr func = cls->findConstructor(ar, true);
    if (!func) {
      if (m_params) {
        if (!m_dynamic && m_params->getCount()) {
          if (getScope()->isFirstPass()) {
            Compiler::Error(Compiler::BadConstructorCall, self);
          }
          m_params->setOutputCount(0);
        }
        m_params->inferAndCheck(ar, Type::Some, false);
      }
    } else {
      m_extraArg = func->inferParamTypes(ar, self, m_params,
                                         valid);
      m_variableArgument = func->isVariableArgument();
    }
    if (valid) {
      m_classScope = cls;
      m_funcScope = func;
    }
    if (!valid || m_dynamic) {
      m_implementedType = Type::Object;
    } else {
      m_implementedType.reset();
    }
    return Type::CreateObjectType(m_name);
  } else {
    ar->containsDynamicClass();
    if (m_params) {
      m_params->markParams(false);
    }
  }

  m_implementedType.reset();
  m_nameExp->inferAndCheck(ar, Type::String, false);
  if (m_params) m_params->inferAndCheck(ar, Type::Any, false);
  return Type::Object;
}
예제 #12
0
TypePtr NewObjectExpression::inferTypes(AnalysisResultPtr ar, TypePtr type,
                                        bool coerce) {
  reset();
  m_classScope.reset();
  FunctionScopePtr prev = m_funcScope;
  m_funcScope.reset();
  ConstructPtr self = shared_from_this();
  if (!m_name.empty() && !isStatic()) {
    ClassScopePtr cls = resolveClassWithChecks();
    m_name = m_className;
    if (!cls) {
      if (m_params) m_params->inferAndCheck(ar, Type::Any, false);
      return Type::Object;
    }

    if (getScope()->isFirstPass() &&
        (cls->isTrait() ?
         !isSelf() && !isParent() :
         cls->isInterface() || cls->isAbstract())) {
      Compiler::Error(Compiler::InvalidInstantiation, self);
    }

    if (cls->isVolatile() && !isPresent()) {
      getScope()->getVariables()->
        setAttribute(VariableTable::NeedGlobalPointer);
    }
    m_dynamic = cls->derivesFromRedeclaring();
    bool valid = true;
    FunctionScopePtr func = cls->findConstructor(ar, true);
    if (!func) {
      if (m_params) {
        if (!m_dynamic && m_params->getCount()) {
          if (getScope()->isFirstPass()) {
            Compiler::Error(Compiler::BadConstructorCall, self);
          }
        }
        m_params->inferAndCheck(ar, Type::Some, false);
      }
    } else {
      if (func != prev) func->addNewObjCaller(getScope());
      m_extraArg = func->inferParamTypes(ar, self, m_params, valid);
      m_variableArgument = func->isVariableArgument();
    }
    if (valid) {
      m_classScope = cls;
      m_funcScope = func;
    }
    if (!valid || m_dynamic) {
      m_implementedType = Type::Object;
    } else {
      m_implementedType.reset();
    }
    return Type::CreateObjectType(m_name);
  } else {
    if (m_params) {
      m_params->markParams(canInvokeFewArgs());
    }
  }

  m_implementedType.reset();
  m_nameExp->inferAndCheck(ar, Type::String, false);
  if (m_params) m_params->inferAndCheck(ar, Type::Any, false);
  return Type::Object;
}
예제 #13
0
TypePtr ObjectPropertyExpression::inferTypes(AnalysisResultPtr ar,
                                             TypePtr type, bool coerce) {
  m_valid = false;

  ConstructPtr self = shared_from_this();
  TypePtr objectType = m_object->inferAndCheck(ar, Type::Some, false);

  if (!m_property->is(Expression::KindOfScalarExpression)) {
    m_property->inferAndCheck(ar, Type::String, false);

    // we also lost track of which class variable an expression is about, hence
    // any type inference could be wrong. Instead, we just force variants on
    // all class variables.
    if (m_context & (LValue | RefValue)) {
      ar->forceClassVariants(getOriginalClass(), false);
    }

    return Type::Variant; // we have to use a variant to hold dynamic value
  }

  ScalarExpressionPtr exp = dynamic_pointer_cast<ScalarExpression>(m_property);
  string name = exp->getString();
  ASSERT(!name.empty());

  m_property->inferAndCheck(ar, Type::String, false);

  ClassScopePtr cls;
  if (objectType && !objectType->getName().empty()) {
    // what object-> has told us
    cls = ar->findExactClass(shared_from_this(), objectType->getName());
  } else {
    if ((m_context & LValue) && objectType &&
        !objectType->is(Type::KindOfObject) &&
        !objectType->is(Type::KindOfVariant) &&
        !objectType->is(Type::KindOfSome) &&
        !objectType->is(Type::KindOfAny)) {
      m_object->inferAndCheck(ar, Type::Object, true);
    }
  }

  if (!cls) {
    if (m_context & (LValue | RefValue | DeepReference | UnsetContext)) {
      ar->forceClassVariants(name, getOriginalClass(), false);
    }
    return Type::Variant;
  }

  int prop = hasContext(AssignmentLHS) ? ClassScope::MayHaveUnknownPropSetter :
    hasContext(ExistContext) ? ClassScope::MayHaveUnknownPropTester :
    hasContext(UnsetContext) && hasContext(LValue) ?
    ClassScope::MayHavePropUnsetter : ClassScope::MayHaveUnknownPropGetter;
  if ((m_context & (AssignmentLHS|OprLValue)) ||
      !cls->implementsAccessor(prop)) {
    clearEffect(AccessorEffect);
  }

  // resolved to this class
  if (m_context & RefValue) {
    type = Type::Variant;
    coerce = true;
  }

  // use $this inside a static function
  if (m_object->isThis()) {
    FunctionScopePtr func = m_object->getOriginalFunction();
    if (!func || func->isStatic()) {
      if (getScope()->isFirstPass()) {
        Compiler::Error(Compiler::MissingObjectContext, self);
      }
      m_actualType = Type::Variant;
      return m_actualType;
    }
  }

  if (!m_propSym || cls != m_objectClass.lock()) {
    m_objectClass = cls;
    ClassScopePtr parent;
    m_propSym = cls->findProperty(parent, name, ar, self);
    assert(m_propSym);
    if (!parent) {
      parent = cls;
    }
    m_propSymValid = m_propSym->isPresent() &&
      (!m_propSym->isPrivate() ||
       getOriginalClass() == parent) &&
      !m_propSym->isStatic();

    if (m_propSymValid) {
      parent->addUse(getScope(), BlockScope::UseKindNonStaticRef);
    }
  }

  TypePtr ret;
  if (m_propSymValid && (!cls->derivesFromRedeclaring() ||
                         m_propSym->isPrivate())) {
    ret = cls->checkProperty(m_propSym, type, coerce, ar);
    assert(m_object->getType()->isSpecificObject());
    m_valid = true;

    clearEffect(AccessorEffect);
    clearEffect(CreateEffect);
    return ret;
  } else {
    m_actualType = Type::Variant;
    return m_actualType;
  }
}
예제 #14
0
void ClassStatement::outputCPP(CodeGenerator &cg, AnalysisResultPtr ar) {
  ClassScopePtr classScope = m_classScope.lock();
  if (cg.getContext() == CodeGenerator::NoContext) {
    if (classScope->isRedeclaring()) {
      cg.printf("g->%s%s = ClassStaticsPtr(NEW(%s%s)());\n",
                Option::ClassStaticsObjectPrefix, m_name.c_str(),
                Option::ClassStaticsPrefix, classScope->getId().c_str());
    }
    if (classScope->isVolatile()) {
      cg.printf("g->declareClass(\"%s\");\n",
                m_name.c_str());
    }
    return;
  }

  if (cg.getContext() != CodeGenerator::CppForwardDeclaration) {
    printSource(cg);
  }

  ar->pushScope(classScope);
  string clsNameStr = classScope->getId();
  const char *clsName = clsNameStr.c_str();
  bool redeclared = classScope->isRedeclaring();
  switch (cg.getContext()) {
  case CodeGenerator::CppForwardDeclaration:
    if (Option::GenerateCPPMacros) {
      cg.printf("FORWARD_DECLARE_CLASS(%s)\n", clsName);
      if (redeclared) {
        cg.printf("FORWARD_DECLARE_REDECLARED_CLASS(%s)\n", clsName);
      }
    }
    if (m_stmt) {
      cg.setContext(CodeGenerator::CppClassConstantsDecl);
      m_stmt->outputCPP(cg, ar);
      cg.setContext(CodeGenerator::CppForwardDeclaration);
    }
    break;
  case CodeGenerator::CppDeclaration:
    {
      ClassScopePtr parCls;
      if (!m_parent.empty()) parCls = ar->findClass(m_parent);
      cg.printf("class %s%s", Option::ClassPrefix, clsName);
      bool derived = false;
      if (!m_parent.empty() && classScope->derivesFrom(ar, m_parent)) {
        if (parCls->isRedeclaring()) {
          cg.printf(" : public DynamicObjectData");
        } else {
          cg.printf(" : virtual public %s%s", Option::ClassPrefix,
                    parCls->getId().c_str());
        }
        derived = true;
      }
      if (m_base) {
        for (int i = 0; i < m_base->getCount(); i++) {
          ScalarExpressionPtr exp =
            dynamic_pointer_cast<ScalarExpression>((*m_base)[i]);
          const char *intf = exp->getString().c_str();
          ClassScopePtr intfClassScope = ar->findClass(intf);
          if (intfClassScope && classScope->derivesFrom(ar, intf)) {
            // temporary fix for inheriting from a re-declaring class
            string id = intfClassScope->getId();
            if (!derived) {
              derived = true;
              cg.printf(" :");
            } else {
              cg.printf(",");
            }
            cg.printf(" virtual public %s%s", Option::ClassPrefix, id.c_str());
          }
        }
      }
      if (!derived) {
        const char *op = derived ? "," : " :";
        if (classScope->derivesFromRedeclaring()) {
          cg.printf("%s public DynamicObjectData", op);
        } else {
          cg.printf("%s virtual public ObjectData", op);
        }
      }
      cg.indentBegin(" {\n");

      if (Option::GenerateCPPMacros) {
        vector<string> bases;
        getAllParents(ar, bases);

        cg.indentBegin("BEGIN_CLASS_MAP(%s)\n", clsName);
        for (unsigned int i = 0; i < bases.size(); i++) {
          cg.printf("PARENT_CLASS(%s)\n", bases[i].c_str());
        }
        cg.indentEnd("END_CLASS_MAP(%s)\n", clsName);
      }

      if (Option::GenerateCPPMacros) {
        bool dyn = classScope->derivesFromRedeclaring() ==
          ClassScope::DirectFromRedeclared;
        bool idyn = classScope->derivesFromRedeclaring() ==
          ClassScope::IndirectFromRedeclared;
        bool redec = classScope->isRedeclaring();
        if (!classScope->derivesFromRedeclaring()) {
          cg.printf("DECLARE_CLASS(%s, %s, %s)\n", clsName,
                    m_originalName.c_str(),
                    m_parent.empty() ? "ObjectData" : m_parent.c_str());
        } else {
          cg.printf("DECLARE_DYNAMIC_CLASS(%s, %s)\n", clsName,
                    m_originalName.c_str());
        }
        if (cg.getOutput() == CodeGenerator::SystemCPP ||
            Option::EnableEval >= Option::LimitedEval) {
          cg.printf("DECLARE_INVOKES_FROM_EVAL\n");
        }
        if (dyn || idyn || redec) {
          if (redec) {

            cg.indentBegin("Variant %sroot_invoke(const char* s, CArrRef ps, "
                           "int64 h, bool f = true) {\n",
                           Option::ObjectPrefix);
            cg.printf("return root->%sinvoke(s, ps, h, f);\n",
                      Option::ObjectPrefix);
            cg.indentEnd("}\n");
            cg.indentBegin("Variant %sroot_invoke_few_args(const char* s, "
                           "int64 h, int count", Option::ObjectPrefix);
            for (int i = 0; i < Option::InvokeFewArgsCount; i++) {
              cg.printf(", CVarRef a%d = null_variant", i);
            }
            cg.printf(") {\n");
            cg.printf("return root->%sinvoke_few_args(s, h, count",
                      Option::ObjectPrefix);
            for (int i = 0; i < Option::InvokeFewArgsCount; i++) {
              cg.printf(", a%d", i);
            }
            cg.printf(");\n");
            cg.indentEnd("}\n");
            if (!dyn && !idyn) cg.printf("private: ObjectData* root;\n");
            cg.printf("public:\n");
          }

          string conInit = ":";
          if (dyn) {
            conInit += "DynamicObjectData(\"" + m_parent + "\", r)";
          } else if (idyn) {
            conInit += string(Option::ClassPrefix) + parCls->getId() +
              "(r?r:this)";
          } else {
            conInit += "root(r?r:this)";
          }

          cg.printf("%s%s(ObjectData* r = NULL)%s {}\n",
                    Option::ClassPrefix, clsName,
                    conInit.c_str());
        }
      }

      cg.printf("void init();\n",
                Option::ClassPrefix, clsName);

      if (classScope->needLazyStaticInitializer()) {
        cg.printf("static GlobalVariables *lazy_initializer"
                  "(GlobalVariables *g);\n");
      }

      if (!classScope->derivesFromRedeclaring()){
        classScope->getVariables()->outputCPPPropertyDecl(cg, ar);
      }

      if (!classScope->getAttribute(ClassScope::HasConstructor)) {
        FunctionScopePtr func = classScope->findFunction(ar, "__construct",
                                                         false);
        if (func && !func->isAbstract() && !classScope->isInterface()) {
          ar->pushScope(func);
          func->outputCPPCreateDecl(cg, ar);
          ar->popScope();
        }
      }
      if (classScope->getAttribute(ClassScope::HasDestructor)) {
        cg.printf("public: virtual void destruct();\n");
      }

      // doCall
      if (classScope->getAttribute(ClassScope::HasUnknownMethodHandler)) {
        cg.printf("Variant doCall(Variant v_name, Variant v_arguments, "
                  "bool fatal);\n");
      }

      if (m_stmt) m_stmt->outputCPP(cg, ar);
      {
        set<string> done;
        classScope->outputCPPStaticMethodWrappers(cg, ar, done, clsName);
      }

      if (cg.getOutput() == CodeGenerator::SystemCPP &&
          ar->isBaseSysRsrcClass(clsName) &&
          !classScope->hasProperty("rsrc")) {
        cg.printf("public: Variant %srsrc;\n", Option::PropertyPrefix);
      }

      cg.indentEnd("};\n");

      if (redeclared) {
        cg.indentBegin("class %s%s : public ClassStatics {\n",
                       Option::ClassStaticsPrefix, clsName);
        cg.printf("public:\n");
        cg.printf("DECLARE_OBJECT_ALLOCATION(%s%s);\n",
                  Option::ClassStaticsPrefix, clsName);
        cg.printf("%s%s() : ClassStatics(%d) {}\n",
                  Option::ClassStaticsPrefix, clsName,
                  classScope->getRedeclaringId());
        cg.indentBegin("Variant %sget(const char *s, int64 hash = -1) {\n",
                       Option::ObjectStaticPrefix);
        cg.printf("return %s%s::%sget(s, hash);\n", Option::ClassPrefix,
                  clsName, Option::ObjectStaticPrefix);
        cg.indentEnd("}\n");
        cg.indentBegin("Variant &%slval(const char* s, int64 hash = -1) {\n",
                  Option::ObjectStaticPrefix);
        cg.printf("return %s%s::%slval(s, hash);\n", Option::ClassPrefix,
                  clsName, Option::ObjectStaticPrefix);
        cg.indentEnd("}\n");
        cg.indentBegin("Variant %sinvoke(const char *c, const char *s, "
                       "CArrRef params, int64 hash = -1, bool fatal = true) "
                       "{\n",
                  Option::ObjectStaticPrefix);
        cg.printf("return %s%s::%sinvoke(c, s, params, hash, fatal);\n",
                  Option::ClassPrefix, clsName,
                  Option::ObjectStaticPrefix);
        cg.indentEnd("}\n");
        cg.indentBegin("Object create(CArrRef params, bool init = true, "
                       "ObjectData* root = NULL) {\n");
        cg.printf("return Object(%s%s(NEW(%s%s)(root))->"
                  "dynCreate(params, init));\n",
                  Option::SmartPtrPrefix, clsName,
                  Option::ClassPrefix, clsName);
        cg.indentEnd("}\n");
        cg.indentBegin("Variant %sconstant(const char* s) {\n",
                       Option::ObjectStaticPrefix);
        cg.printf("return %s%s::%sconstant(s);\n", Option::ClassPrefix, clsName,
                  Option::ObjectStaticPrefix);
        cg.indentEnd("}\n");
        cg.indentBegin("Variant %sinvoke_from_eval(const char *c, "
                       "const char *s, Eval::VariableEnvironment &env, "
                       "const Eval::FunctionCallExpression *call, "
                       "int64 hash = -1, bool fatal = true) "
                       "{\n",
                       Option::ObjectStaticPrefix);
        cg.printf("return %s%s::%sinvoke_from_eval(c, s, env, call, hash, "
                  "fatal);\n",
                  Option::ClassPrefix, clsName,
                  Option::ObjectStaticPrefix);
        cg.indentEnd("}\n");
        cg.indentEnd("};\n");
      }
    }
    break;
  case CodeGenerator::CppImplementation:
    if (m_stmt) {
      cg.setContext(CodeGenerator::CppClassConstantsImpl);
      m_stmt->outputCPP(cg, ar);
      cg.setContext(CodeGenerator::CppImplementation);
    }

    classScope->outputCPPSupportMethodsImpl(cg, ar);

    if (redeclared) {
      cg.printf("IMPLEMENT_OBJECT_ALLOCATION(%s%s);\n",
                Option::ClassStaticsPrefix, clsName);
    }

    cg.indentBegin("void %s%s::init() {\n",
                   Option::ClassPrefix, clsName);
    if (!m_parent.empty()) {
      if (classScope->derivesFromRedeclaring() ==
          ClassScope::DirectFromRedeclared) {
        cg.printf("parent->init();\n");
      } else {
        cg.printf("%s%s::init();\n", Option::ClassPrefix, m_parent.c_str());
      }
    }
    cg.setContext(CodeGenerator::CppConstructor);
    if (m_stmt) m_stmt->outputCPP(cg, ar);
    cg.indentEnd("}\n");

    if (classScope->needStaticInitializer()) {
      cg.indentBegin("void %s%s::os_static_initializer() {\n",
                     Option::ClassPrefix, clsName);
      cg.printDeclareGlobals();
      cg.setContext(CodeGenerator::CppStaticInitializer);
      if (m_stmt) m_stmt->outputCPP(cg, ar);
      cg.indentEnd("}\n");
      cg.indentBegin("void %s%s() {\n",
                     Option::ClassStaticInitializerPrefix, clsName);
      cg.printf("%s%s::os_static_initializer();\n",  Option::ClassPrefix,
                clsName);
      cg.indentEnd("}\n");
    }
    if (classScope->needLazyStaticInitializer()) {
      cg.indentBegin("GlobalVariables *%s%s::lazy_initializer("
                     "GlobalVariables *g) {\n", Option::ClassPrefix, clsName);
      cg.indentBegin("if (!g->%s%s) {\n",
                     Option::ClassStaticInitializerFlagPrefix, clsName);
      cg.printf("g->%s%s = true;\n", Option::ClassStaticInitializerFlagPrefix,
                clsName);
      cg.setContext(CodeGenerator::CppLazyStaticInitializer);
      if (m_stmt) m_stmt->outputCPP(cg, ar);
      cg.indentEnd("}\n");
      cg.printf("return g;\n");
      cg.indentEnd("}\n");
    }
    cg.setContext(CodeGenerator::CppImplementation);
    if (m_stmt) m_stmt->outputCPP(cg, ar);

    break;
  case CodeGenerator::CppFFIDecl:
  case CodeGenerator::CppFFIImpl:
    if (m_stmt) m_stmt->outputCPP(cg, ar);
    break;
  case CodeGenerator::JavaFFI:
    {
      if (classScope->isRedeclaring()) break;

      // TODO support PHP namespaces, once HPHP supports it
      string packageName = Option::JavaFFIRootPackage;
      string packageDir = packageName;
      Util::replaceAll(packageDir, ".", "/");

      string outputDir = ar->getOutputPath() + "/" + Option::FFIFilePrefix +
        packageDir + "/";
      Util::mkdir(outputDir);

      // uses a different cg to generate a separate file for each PHP class
      // also, uses the original capitalized class name
      string clsFile = outputDir + getOriginalName() + ".java";
      ofstream fcls(clsFile.c_str());
      CodeGenerator cgCls(&fcls, CodeGenerator::FileCPP);
      cgCls.setContext(CodeGenerator::JavaFFI);

      cgCls.printf("package %s;\n\n", packageName.c_str());
      cgCls.printf("import hphp.*;\n\n");

      printSource(cgCls);

      string clsModifier;
      switch (m_type) {
      case T_CLASS:
        break;
      case T_ABSTRACT:
        clsModifier = "abstract ";
        break;
      case T_FINAL:
        clsModifier = "final ";
        break;
      }
      cgCls.printf("public %sclass %s ", clsModifier.c_str(),
                   getOriginalName().c_str());

      ClassScopePtr parCls;
      if (!m_parent.empty()) parCls = ar->findClass(m_parent);
      if (!m_parent.empty() && classScope->derivesFrom(ar, m_parent)
       && parCls->isUserClass() && !parCls->isRedeclaring()) {
        // system classes are not supported in static FFI translation
        // they shouldn't appear as superclasses as well
        cgCls.printf("extends %s", parCls->getOriginalName());
      }
      else {
        cgCls.printf("extends HphpObject");
      }
      if (m_base) {
        bool first = true;
        for (int i = 0; i < m_base->getCount(); i++) {
          ScalarExpressionPtr exp =
            dynamic_pointer_cast<ScalarExpression>((*m_base)[i]);
          const char *intf = exp->getString().c_str();
          ClassScopePtr intfClassScope = ar->findClass(intf);
          if (intfClassScope && classScope->derivesFrom(ar, intf)
           && intfClassScope->isUserClass()) {
            if (first) {
              cgCls.printf(" implements ");
              first = false;
            }
            else {
              cgCls.printf(", ");
            }
            cgCls.printf(intfClassScope->getOriginalName());
          }
        }
      }

      cgCls.indentBegin(" {\n");

      // constructor for initializing the variant pointer
      cgCls.printf("protected %s(long ptr) { super(ptr); }\n\n",
                   getOriginalName().c_str());

      FunctionScopePtr cons = classScope->findConstructor(ar, true);
      if (cons && !cons->isAbstract() || m_type != T_ABSTRACT) {
        // if not an abstract class and not having an explicit constructor,
        // adds a default constructor
        outputJavaFFIConstructor(cgCls, ar, cons);
      }

      if (m_stmt) m_stmt->outputCPP(cgCls, ar);
      cgCls.indentEnd("}\n");

      fcls.close();
    }
    break;
  case CodeGenerator::JavaFFICppDecl:
  case CodeGenerator::JavaFFICppImpl:
    {
      if (classScope->isRedeclaring()) break;

      if (m_stmt) m_stmt->outputCPP(cg, ar);
      FunctionScopePtr cons = classScope->findConstructor(ar, true);
      if (cons && !cons->isAbstract() || m_type != T_ABSTRACT) {
        outputJavaFFICPPCreator(cg, ar, cons);
      }
    }
    break;
  default:
    ASSERT(false);
    break;
  }

  ar->popScope();
}