RegisterContextCorePOSIX_powerpc::RegisterContextCorePOSIX_powerpc(Thread &thread, RegisterInfoInterface *register_info, const DataExtractor &gpregset, const DataExtractor &fpregset) : RegisterContextPOSIX_powerpc(thread, 0, register_info) { m_gpr_buffer.reset(new DataBufferHeap(gpregset.GetDataStart(), gpregset.GetByteSize())); m_gpr.SetData(m_gpr_buffer); m_gpr.SetByteOrder(gpregset.GetByteOrder()); m_fpr_buffer.reset(new DataBufferHeap(fpregset.GetDataStart(), fpregset.GetByteSize())); m_fpr.SetData(m_fpr_buffer); m_fpr.SetByteOrder(fpregset.GetByteOrder()); }
bool Value::GetData (DataExtractor &data) { switch (m_value_type) { default: break; case eValueTypeScalar: if (m_value.GetData (data)) return true; break; case eValueTypeLoadAddress: case eValueTypeFileAddress: case eValueTypeHostAddress: if (m_data_buffer.GetByteSize()) { data.SetData(m_data_buffer.GetBytes(), m_data_buffer.GetByteSize(), data.GetByteOrder()); return true; } break; } return false; }
Error ELFLinuxPrStatus::Parse(DataExtractor &data, ArchSpec &arch) { Error error; ByteOrder byteorder = data.GetByteOrder(); if (GetSize(arch) > data.GetByteSize()) { error.SetErrorStringWithFormat("NT_PRSTATUS size should be %lu, but the remaining bytes are: %lu", GetSize(arch), data.GetByteSize()); return error; } switch(arch.GetCore()) { case ArchSpec::eCore_s390x_generic: case ArchSpec::eCore_x86_64_x86_64: data.ExtractBytes(0, sizeof(ELFLinuxPrStatus), byteorder, this); break; case ArchSpec::eCore_x86_32_i386: case ArchSpec::eCore_x86_32_i486: { // Parsing from a 32 bit ELF core file, and populating/reusing the structure // properly, because the struct is for the 64 bit version offset_t offset = 0; si_signo = data.GetU32(&offset); si_code = data.GetU32(&offset); si_errno = data.GetU32(&offset); pr_cursig = data.GetU16(&offset); offset += 2; // pad pr_sigpend = data.GetU32(&offset); pr_sighold = data.GetU32(&offset); pr_pid = data.GetU32(&offset); pr_ppid = data.GetU32(&offset); pr_pgrp = data.GetU32(&offset); pr_sid = data.GetU32(&offset); pr_utime.tv_sec = data.GetU32(&offset); pr_utime.tv_usec = data.GetU32(&offset); pr_stime.tv_sec = data.GetU32(&offset); pr_stime.tv_usec = data.GetU32(&offset); pr_cutime.tv_sec = data.GetU32(&offset); pr_cutime.tv_usec = data.GetU32(&offset); pr_cstime.tv_sec = data.GetU32(&offset); pr_cstime.tv_usec = data.GetU32(&offset); break; } default: error.SetErrorStringWithFormat("ELFLinuxPrStatus::%s Unknown architecture", __FUNCTION__); break; } return error; }
RegisterContextCorePOSIX_mips64::RegisterContextCorePOSIX_mips64(Thread &thread, RegisterInfoInterface *register_info, const DataExtractor &gpregset, const DataExtractor &fpregset, const DataExtractor &capregset) : RegisterContextPOSIX_mips64(thread, 0, register_info) { m_gpr_buffer.reset(new DataBufferHeap(gpregset.GetDataStart(), gpregset.GetByteSize())); m_gpr.SetData(m_gpr_buffer); m_gpr.SetByteOrder(gpregset.GetByteOrder()); m_cr_buffer.reset(new DataBufferHeap(capregset.GetDataStart(), capregset.GetByteSize())); m_cr.SetData(m_cr_buffer); m_cr.SetByteOrder(capregset.GetByteOrder()); m_in_bd = lldb_private::eLazyBoolCalculate; }
RegisterContextCorePOSIX_arm64::RegisterContextCorePOSIX_arm64( Thread &thread, RegisterInfoInterface *register_info, const DataExtractor &gpregset, llvm::ArrayRef<CoreNote> notes) : RegisterContextPOSIX_arm64(thread, 0, register_info) { m_gpr_buffer.reset( new DataBufferHeap(gpregset.GetDataStart(), gpregset.GetByteSize())); m_gpr.SetData(m_gpr_buffer); m_gpr.SetByteOrder(gpregset.GetByteOrder()); }
Error ELFLinuxPrPsInfo::Parse(DataExtractor &data, ArchSpec &arch) { Error error; ByteOrder byteorder = data.GetByteOrder(); if (GetSize(arch) > data.GetByteSize()) { error.SetErrorStringWithFormat("NT_PRPSINFO size should be %lu, but the remaining bytes are: %lu", GetSize(arch), data.GetByteSize()); return error; } switch(arch.GetCore()) { case ArchSpec::eCore_s390x_generic: case ArchSpec::eCore_x86_64_x86_64: data.ExtractBytes(0, sizeof(ELFLinuxPrPsInfo), byteorder, this); break; case ArchSpec::eCore_x86_32_i386: case ArchSpec::eCore_x86_32_i486: { // Parsing from a 32 bit ELF core file, and populating/reusing the structure // properly, because the struct is for the 64 bit version size_t size = 0; offset_t offset = 0; pr_state = data.GetU8(&offset); pr_sname = data.GetU8(&offset); pr_zomb = data.GetU8(&offset); pr_nice = data.GetU8(&offset); pr_flag = data.GetU32(&offset); pr_uid = data.GetU16(&offset); pr_gid = data.GetU16(&offset); pr_pid = data.GetU32(&offset); pr_ppid = data.GetU32(&offset); pr_pgrp = data.GetU32(&offset); pr_sid = data.GetU32(&offset); size = 16; data.ExtractBytes(offset, size, byteorder, pr_fname); offset += size; size = 80; data.ExtractBytes(offset, size, byteorder, pr_psargs); offset += size; break; } default: error.SetErrorStringWithFormat("ELFLinuxPrPsInfo::%s Unknown architecture", __FUNCTION__); break; } return error; }
bool ELFLinuxPrPsInfo::Parse(DataExtractor &data, ArchSpec &arch) { ByteOrder byteorder = data.GetByteOrder(); size_t len; switch(arch.GetCore()) { case ArchSpec::eCore_x86_64_x86_64: len = data.ExtractBytes(0, ELFLINUXPRPSINFO64_SIZE, byteorder, this); return len == ELFLINUXPRPSINFO64_SIZE; default: return false; } }
static bool GetAPInt(const DataExtractor &data, lldb::offset_t *offset_ptr, lldb::offset_t byte_size, llvm::APInt &result) { llvm::SmallVector<uint64_t, 2> uint64_array; lldb::offset_t bytes_left = byte_size; uint64_t u64; const lldb::ByteOrder byte_order = data.GetByteOrder(); if (byte_order == lldb::eByteOrderLittle) { while (bytes_left > 0) { if (bytes_left >= 8) { u64 = data.GetU64(offset_ptr); bytes_left -= 8; } else { u64 = data.GetMaxU64(offset_ptr, (uint32_t)bytes_left); bytes_left = 0; } uint64_array.push_back(u64); } result = llvm::APInt(byte_size * 8, llvm::ArrayRef<uint64_t>(uint64_array)); return true; } else if (byte_order == lldb::eByteOrderBig) { lldb::offset_t be_offset = *offset_ptr + byte_size; lldb::offset_t temp_offset; while (bytes_left > 0) { if (bytes_left >= 8) { be_offset -= 8; temp_offset = be_offset; u64 = data.GetU64(&temp_offset); bytes_left -= 8; } else { be_offset -= bytes_left; temp_offset = be_offset; u64 = data.GetMaxU64(&temp_offset, (uint32_t)bytes_left); bytes_left = 0; } uint64_array.push_back(u64); } *offset_ptr += byte_size; result = llvm::APInt(byte_size * 8, llvm::ArrayRef<uint64_t>(uint64_array)); return true; } return false; }
virtual void CalculateMnemonicOperandsAndComment (const lldb_private::ExecutionContext *exe_ctx) { DataExtractor data; const AddressClass address_class = GetAddressClass (); if (m_opcode.GetData(data)) { char out_string[512]; DisassemblerLLVMC &llvm_disasm = GetDisassemblerLLVMC(); DisassemblerLLVMC::LLVMCDisassembler *mc_disasm_ptr; if (address_class == eAddressClassCodeAlternateISA) mc_disasm_ptr = llvm_disasm.m_alternate_disasm_ap.get(); else mc_disasm_ptr = llvm_disasm.m_disasm_ap.get(); lldb::addr_t pc = m_address.GetFileAddress(); m_using_file_addr = true; const bool data_from_file = GetDisassemblerLLVMC().m_data_from_file; bool use_hex_immediates = true; Disassembler::HexImmediateStyle hex_style = Disassembler::eHexStyleC; if (exe_ctx) { Target *target = exe_ctx->GetTargetPtr(); if (target) { use_hex_immediates = target->GetUseHexImmediates(); hex_style = target->GetHexImmediateStyle(); if (!data_from_file) { const lldb::addr_t load_addr = m_address.GetLoadAddress(target); if (load_addr != LLDB_INVALID_ADDRESS) { pc = load_addr; m_using_file_addr = false; } } } } llvm_disasm.Lock(this, exe_ctx); const uint8_t *opcode_data = data.GetDataStart(); const size_t opcode_data_len = data.GetByteSize(); llvm::MCInst inst; size_t inst_size = mc_disasm_ptr->GetMCInst (opcode_data, opcode_data_len, pc, inst); if (inst_size > 0) { mc_disasm_ptr->SetStyle(use_hex_immediates, hex_style); mc_disasm_ptr->PrintMCInst(inst, out_string, sizeof(out_string)); } llvm_disasm.Unlock(); if (inst_size == 0) { m_comment.assign ("unknown opcode"); inst_size = m_opcode.GetByteSize(); StreamString mnemonic_strm; lldb::offset_t offset = 0; lldb::ByteOrder byte_order = data.GetByteOrder(); switch (inst_size) { case 1: { const uint8_t uval8 = data.GetU8 (&offset); m_opcode.SetOpcode8 (uval8, byte_order); m_opcode_name.assign (".byte"); mnemonic_strm.Printf("0x%2.2x", uval8); } break; case 2: { const uint16_t uval16 = data.GetU16(&offset); m_opcode.SetOpcode16(uval16, byte_order); m_opcode_name.assign (".short"); mnemonic_strm.Printf("0x%4.4x", uval16); } break; case 4: { const uint32_t uval32 = data.GetU32(&offset); m_opcode.SetOpcode32(uval32, byte_order); m_opcode_name.assign (".long"); mnemonic_strm.Printf("0x%8.8x", uval32); } break; case 8: { const uint64_t uval64 = data.GetU64(&offset); m_opcode.SetOpcode64(uval64, byte_order); m_opcode_name.assign (".quad"); mnemonic_strm.Printf("0x%16.16" PRIx64, uval64); } break; default: if (inst_size == 0) return; else { const uint8_t *bytes = data.PeekData(offset, inst_size); if (bytes == NULL) return; m_opcode_name.assign (".byte"); m_opcode.SetOpcodeBytes(bytes, inst_size); mnemonic_strm.Printf("0x%2.2x", bytes[0]); for (uint32_t i=1; i<inst_size; ++i) mnemonic_strm.Printf(" 0x%2.2x", bytes[i]); } break; } m_mnemonics.swap(mnemonic_strm.GetString()); return; } else { if (m_does_branch == eLazyBoolCalculate) { const bool can_branch = mc_disasm_ptr->CanBranch(inst); if (can_branch) m_does_branch = eLazyBoolYes; else m_does_branch = eLazyBoolNo; } } static RegularExpression s_regex("[ \t]*([^ ^\t]+)[ \t]*([^ ^\t].*)?", REG_EXTENDED); RegularExpression::Match matches(3); if (s_regex.Execute(out_string, &matches)) { matches.GetMatchAtIndex(out_string, 1, m_opcode_name); matches.GetMatchAtIndex(out_string, 2, m_mnemonics); } } }
Status ABISysV_ppc64::SetReturnValueObject(lldb::StackFrameSP &frame_sp, lldb::ValueObjectSP &new_value_sp) { Status error; if (!new_value_sp) { error.SetErrorString("Empty value object for return value."); return error; } CompilerType compiler_type = new_value_sp->GetCompilerType(); if (!compiler_type) { error.SetErrorString("Null clang type for return value."); return error; } Thread *thread = frame_sp->GetThread().get(); bool is_signed; uint32_t count; bool is_complex; RegisterContext *reg_ctx = thread->GetRegisterContext().get(); bool set_it_simple = false; if (compiler_type.IsIntegerOrEnumerationType(is_signed) || compiler_type.IsPointerType()) { const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName("r3", 0); DataExtractor data; Status data_error; size_t num_bytes = new_value_sp->GetData(data, data_error); if (data_error.Fail()) { error.SetErrorStringWithFormat( "Couldn't convert return value to raw data: %s", data_error.AsCString()); return error; } lldb::offset_t offset = 0; if (num_bytes <= 8) { uint64_t raw_value = data.GetMaxU64(&offset, num_bytes); if (reg_ctx->WriteRegisterFromUnsigned(reg_info, raw_value)) set_it_simple = true; } else { error.SetErrorString("We don't support returning longer than 64 bit " "integer values at present."); } } else if (compiler_type.IsFloatingPointType(count, is_complex)) { if (is_complex) error.SetErrorString( "We don't support returning complex values at present"); else { size_t bit_width = compiler_type.GetBitSize(frame_sp.get()); if (bit_width <= 64) { DataExtractor data; Status data_error; size_t num_bytes = new_value_sp->GetData(data, data_error); if (data_error.Fail()) { error.SetErrorStringWithFormat( "Couldn't convert return value to raw data: %s", data_error.AsCString()); return error; } unsigned char buffer[16]; ByteOrder byte_order = data.GetByteOrder(); data.CopyByteOrderedData(0, num_bytes, buffer, 16, byte_order); set_it_simple = true; } else { // FIXME - don't know how to do 80 bit long doubles yet. error.SetErrorString( "We don't support returning float values > 64 bits at present"); } } } if (!set_it_simple) { // Okay we've got a structure or something that doesn't fit in a simple // register. // We should figure out where it really goes, but we don't support this yet. error.SetErrorString("We only support setting simple integer and float " "return types at present."); } return error; }
Error RegisterValue::SetValueFromData (const RegisterInfo *reg_info, DataExtractor &src, lldb::offset_t src_offset, bool partial_data_ok) { Error error; if (src.GetByteSize() == 0) { error.SetErrorString ("empty data."); return error; } if (reg_info->byte_size == 0) { error.SetErrorString ("invalid register info."); return error; } uint32_t src_len = src.GetByteSize() - src_offset; if (!partial_data_ok && (src_len < reg_info->byte_size)) { error.SetErrorString ("not enough data."); return error; } // Cap the data length if there is more than enough bytes for this register // value if (src_len > reg_info->byte_size) src_len = reg_info->byte_size; // Zero out the value in case we get partial data... memset (m_data.buffer.bytes, 0, sizeof (m_data.buffer.bytes)); switch (SetType (reg_info)) { case eTypeInvalid: error.SetErrorString(""); break; case eTypeUInt8: SetUInt8 (src.GetMaxU32 (&src_offset, src_len)); break; case eTypeUInt16: SetUInt16 (src.GetMaxU32 (&src_offset, src_len)); break; case eTypeUInt32: SetUInt32 (src.GetMaxU32 (&src_offset, src_len)); break; case eTypeUInt64: SetUInt64 (src.GetMaxU64 (&src_offset, src_len)); break; #if defined (ENABLE_128_BIT_SUPPORT) case eTypeUInt128: { __uint128_t data1 = src.GetU64 (&src_offset); __uint128_t data2 = src.GetU64 (&src_offset); if (src.GetByteSize() == eByteOrderBig) SetUInt128 (data1 << 64 + data2); else SetUInt128 (data2 << 64 + data1); } break; #endif case eTypeFloat: SetFloat (src.GetFloat (&src_offset)); break; case eTypeDouble: SetDouble(src.GetDouble (&src_offset)); break; case eTypeLongDouble: SetFloat (src.GetLongDouble (&src_offset)); break; case eTypeBytes: { m_data.buffer.length = reg_info->byte_size; m_data.buffer.byte_order = src.GetByteOrder(); assert (m_data.buffer.length <= kMaxRegisterByteSize); if (m_data.buffer.length > kMaxRegisterByteSize) m_data.buffer.length = kMaxRegisterByteSize; if (src.CopyByteOrderedData (src_offset, // offset within "src" to start extracting data src_len, // src length m_data.buffer.bytes, // dst buffer m_data.buffer.length, // dst length m_data.buffer.byte_order) == 0)// dst byte order { error.SetErrorString ("data copy failed data."); return error; } } } return error; }
lldb::offset_t lldb_private::DumpDataExtractor( const DataExtractor &DE, Stream *s, offset_t start_offset, lldb::Format item_format, size_t item_byte_size, size_t item_count, size_t num_per_line, uint64_t base_addr, uint32_t item_bit_size, // If zero, this is not a bitfield value, if // non-zero, the value is a bitfield uint32_t item_bit_offset, // If "item_bit_size" is non-zero, this is the // shift amount to apply to a bitfield ExecutionContextScope *exe_scope) { if (s == nullptr) return start_offset; if (item_format == eFormatPointer) { if (item_byte_size != 4 && item_byte_size != 8) item_byte_size = s->GetAddressByteSize(); } offset_t offset = start_offset; if (item_format == eFormatInstruction) { TargetSP target_sp; if (exe_scope) target_sp = exe_scope->CalculateTarget(); if (target_sp) { DisassemblerSP disassembler_sp(Disassembler::FindPlugin( target_sp->GetArchitecture(), target_sp->GetDisassemblyFlavor(), nullptr)); if (disassembler_sp) { lldb::addr_t addr = base_addr + start_offset; lldb_private::Address so_addr; bool data_from_file = true; if (target_sp->GetSectionLoadList().ResolveLoadAddress(addr, so_addr)) { data_from_file = false; } else { if (target_sp->GetSectionLoadList().IsEmpty() || !target_sp->GetImages().ResolveFileAddress(addr, so_addr)) so_addr.SetRawAddress(addr); } size_t bytes_consumed = disassembler_sp->DecodeInstructions( so_addr, DE, start_offset, item_count, false, data_from_file); if (bytes_consumed) { offset += bytes_consumed; const bool show_address = base_addr != LLDB_INVALID_ADDRESS; const bool show_bytes = true; ExecutionContext exe_ctx; exe_scope->CalculateExecutionContext(exe_ctx); disassembler_sp->GetInstructionList().Dump(s, show_address, show_bytes, &exe_ctx); } } } else s->Printf("invalid target"); return offset; } if ((item_format == eFormatOSType || item_format == eFormatAddressInfo) && item_byte_size > 8) item_format = eFormatHex; lldb::offset_t line_start_offset = start_offset; for (uint32_t count = 0; DE.ValidOffset(offset) && count < item_count; ++count) { if ((count % num_per_line) == 0) { if (count > 0) { if (item_format == eFormatBytesWithASCII && offset > line_start_offset) { s->Printf("%*s", static_cast<int>( (num_per_line - (offset - line_start_offset)) * 3 + 2), ""); DumpDataExtractor(DE, s, line_start_offset, eFormatCharPrintable, 1, offset - line_start_offset, SIZE_MAX, LLDB_INVALID_ADDRESS, 0, 0); } s->EOL(); } if (base_addr != LLDB_INVALID_ADDRESS) s->Printf("0x%8.8" PRIx64 ": ", (uint64_t)(base_addr + (offset - start_offset) / DE.getTargetByteSize())); line_start_offset = offset; } else if (item_format != eFormatChar && item_format != eFormatCharPrintable && item_format != eFormatCharArray && count > 0) { s->PutChar(' '); } switch (item_format) { case eFormatBoolean: if (item_byte_size <= 8) s->Printf("%s", DE.GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset) ? "true" : "false"); else { s->Printf("error: unsupported byte size (%" PRIu64 ") for boolean format", (uint64_t)item_byte_size); return offset; } break; case eFormatBinary: if (item_byte_size <= 8) { uint64_t uval64 = DE.GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset); // Avoid std::bitset<64>::to_string() since it is missing in // earlier C++ libraries std::string binary_value(64, '0'); std::bitset<64> bits(uval64); for (uint32_t i = 0; i < 64; ++i) if (bits[i]) binary_value[64 - 1 - i] = '1'; if (item_bit_size > 0) s->Printf("0b%s", binary_value.c_str() + 64 - item_bit_size); else if (item_byte_size > 0 && item_byte_size <= 8) s->Printf("0b%s", binary_value.c_str() + 64 - item_byte_size * 8); } else { const bool is_signed = false; const unsigned radix = 2; offset = DumpAPInt(s, DE, offset, item_byte_size, is_signed, radix); } break; case eFormatBytes: case eFormatBytesWithASCII: for (uint32_t i = 0; i < item_byte_size; ++i) { s->Printf("%2.2x", DE.GetU8(&offset)); } // Put an extra space between the groups of bytes if more than one // is being dumped in a group (item_byte_size is more than 1). if (item_byte_size > 1) s->PutChar(' '); break; case eFormatChar: case eFormatCharPrintable: case eFormatCharArray: { // If we are only printing one character surround it with single // quotes if (item_count == 1 && item_format == eFormatChar) s->PutChar('\''); const uint64_t ch = DE.GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset); if (isprint(ch)) s->Printf("%c", (char)ch); else if (item_format != eFormatCharPrintable) { switch (ch) { case '\033': s->Printf("\\e"); break; case '\a': s->Printf("\\a"); break; case '\b': s->Printf("\\b"); break; case '\f': s->Printf("\\f"); break; case '\n': s->Printf("\\n"); break; case '\r': s->Printf("\\r"); break; case '\t': s->Printf("\\t"); break; case '\v': s->Printf("\\v"); break; case '\0': s->Printf("\\0"); break; default: if (item_byte_size == 1) s->Printf("\\x%2.2x", (uint8_t)ch); else s->Printf("%" PRIu64, ch); break; } } else { s->PutChar(NON_PRINTABLE_CHAR); } // If we are only printing one character surround it with single quotes if (item_count == 1 && item_format == eFormatChar) s->PutChar('\''); } break; case eFormatEnum: // Print enum value as a signed integer when we don't get // the enum type case eFormatDecimal: if (item_byte_size <= 8) s->Printf("%" PRId64, DE.GetMaxS64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset)); else { const bool is_signed = true; const unsigned radix = 10; offset = DumpAPInt(s, DE, offset, item_byte_size, is_signed, radix); } break; case eFormatUnsigned: if (item_byte_size <= 8) s->Printf("%" PRIu64, DE.GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset)); else { const bool is_signed = false; const unsigned radix = 10; offset = DumpAPInt(s, DE, offset, item_byte_size, is_signed, radix); } break; case eFormatOctal: if (item_byte_size <= 8) s->Printf("0%" PRIo64, DE.GetMaxS64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset)); else { const bool is_signed = false; const unsigned radix = 8; offset = DumpAPInt(s, DE, offset, item_byte_size, is_signed, radix); } break; case eFormatOSType: { uint64_t uval64 = DE.GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset); s->PutChar('\''); for (uint32_t i = 0; i < item_byte_size; ++i) { uint8_t ch = (uint8_t)(uval64 >> ((item_byte_size - i - 1) * 8)); if (isprint(ch)) s->Printf("%c", ch); else { switch (ch) { case '\033': s->Printf("\\e"); break; case '\a': s->Printf("\\a"); break; case '\b': s->Printf("\\b"); break; case '\f': s->Printf("\\f"); break; case '\n': s->Printf("\\n"); break; case '\r': s->Printf("\\r"); break; case '\t': s->Printf("\\t"); break; case '\v': s->Printf("\\v"); break; case '\0': s->Printf("\\0"); break; default: s->Printf("\\x%2.2x", ch); break; } } } s->PutChar('\''); } break; case eFormatCString: { const char *cstr = DE.GetCStr(&offset); if (!cstr) { s->Printf("NULL"); offset = LLDB_INVALID_OFFSET; } else { s->PutChar('\"'); while (const char c = *cstr) { if (isprint(c)) { s->PutChar(c); } else { switch (c) { case '\033': s->Printf("\\e"); break; case '\a': s->Printf("\\a"); break; case '\b': s->Printf("\\b"); break; case '\f': s->Printf("\\f"); break; case '\n': s->Printf("\\n"); break; case '\r': s->Printf("\\r"); break; case '\t': s->Printf("\\t"); break; case '\v': s->Printf("\\v"); break; default: s->Printf("\\x%2.2x", c); break; } } ++cstr; } s->PutChar('\"'); } } break; case eFormatPointer: s->Address(DE.GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset), sizeof(addr_t)); break; case eFormatComplexInteger: { size_t complex_int_byte_size = item_byte_size / 2; if (complex_int_byte_size > 0 && complex_int_byte_size <= 8) { s->Printf("%" PRIu64, DE.GetMaxU64Bitfield(&offset, complex_int_byte_size, 0, 0)); s->Printf(" + %" PRIu64 "i", DE.GetMaxU64Bitfield(&offset, complex_int_byte_size, 0, 0)); } else { s->Printf("error: unsupported byte size (%" PRIu64 ") for complex integer format", (uint64_t)item_byte_size); return offset; } } break; case eFormatComplex: if (sizeof(float) * 2 == item_byte_size) { float f32_1 = DE.GetFloat(&offset); float f32_2 = DE.GetFloat(&offset); s->Printf("%g + %gi", f32_1, f32_2); break; } else if (sizeof(double) * 2 == item_byte_size) { double d64_1 = DE.GetDouble(&offset); double d64_2 = DE.GetDouble(&offset); s->Printf("%lg + %lgi", d64_1, d64_2); break; } else if (sizeof(long double) * 2 == item_byte_size) { long double ld64_1 = DE.GetLongDouble(&offset); long double ld64_2 = DE.GetLongDouble(&offset); s->Printf("%Lg + %Lgi", ld64_1, ld64_2); break; } else { s->Printf("error: unsupported byte size (%" PRIu64 ") for complex float format", (uint64_t)item_byte_size); return offset; } break; default: case eFormatDefault: case eFormatHex: case eFormatHexUppercase: { bool wantsuppercase = (item_format == eFormatHexUppercase); switch (item_byte_size) { case 1: case 2: case 4: case 8: s->Printf(wantsuppercase ? "0x%*.*" PRIX64 : "0x%*.*" PRIx64, (int)(2 * item_byte_size), (int)(2 * item_byte_size), DE.GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset)); break; default: { assert(item_bit_size == 0 && item_bit_offset == 0); const uint8_t *bytes = (const uint8_t *)DE.GetData(&offset, item_byte_size); if (bytes) { s->PutCString("0x"); uint32_t idx; if (DE.GetByteOrder() == eByteOrderBig) { for (idx = 0; idx < item_byte_size; ++idx) s->Printf(wantsuppercase ? "%2.2X" : "%2.2x", bytes[idx]); } else { for (idx = 0; idx < item_byte_size; ++idx) s->Printf(wantsuppercase ? "%2.2X" : "%2.2x", bytes[item_byte_size - 1 - idx]); } } } break; } } break; case eFormatFloat: { TargetSP target_sp; bool used_apfloat = false; if (exe_scope) target_sp = exe_scope->CalculateTarget(); if (target_sp) { ClangASTContext *clang_ast = target_sp->GetScratchClangASTContext(); if (clang_ast) { clang::ASTContext *ast = clang_ast->getASTContext(); if (ast) { llvm::SmallVector<char, 256> sv; // Show full precision when printing float values const unsigned format_precision = 0; const unsigned format_max_padding = 100; size_t item_bit_size = item_byte_size * 8; if (item_bit_size == ast->getTypeSize(ast->FloatTy)) { llvm::APInt apint(item_bit_size, DE.GetMaxU64(&offset, item_byte_size)); llvm::APFloat apfloat(ast->getFloatTypeSemantics(ast->FloatTy), apint); apfloat.toString(sv, format_precision, format_max_padding); } else if (item_bit_size == ast->getTypeSize(ast->DoubleTy)) { llvm::APInt apint; if (GetAPInt(DE, &offset, item_byte_size, apint)) { llvm::APFloat apfloat(ast->getFloatTypeSemantics(ast->DoubleTy), apint); apfloat.toString(sv, format_precision, format_max_padding); } } else if (item_bit_size == ast->getTypeSize(ast->LongDoubleTy)) { const auto &semantics = ast->getFloatTypeSemantics(ast->LongDoubleTy); const auto byte_size = (llvm::APFloat::getSizeInBits(semantics) + 7) / 8; llvm::APInt apint; if (GetAPInt(DE, &offset, byte_size, apint)) { llvm::APFloat apfloat(semantics, apint); apfloat.toString(sv, format_precision, format_max_padding); } } else if (item_bit_size == ast->getTypeSize(ast->HalfTy)) { llvm::APInt apint(item_bit_size, DE.GetU16(&offset)); llvm::APFloat apfloat(ast->getFloatTypeSemantics(ast->HalfTy), apint); apfloat.toString(sv, format_precision, format_max_padding); } if (!sv.empty()) { s->Printf("%*.*s", (int)sv.size(), (int)sv.size(), sv.data()); used_apfloat = true; } } } } if (!used_apfloat) { std::ostringstream ss; if (item_byte_size == sizeof(float) || item_byte_size == 2) { float f; if (item_byte_size == 2) { uint16_t half = DE.GetU16(&offset); f = half2float(half); } else { f = DE.GetFloat(&offset); } ss.precision(std::numeric_limits<float>::digits10); ss << f; } else if (item_byte_size == sizeof(double)) { ss.precision(std::numeric_limits<double>::digits10); ss << DE.GetDouble(&offset); } else if (item_byte_size == sizeof(long double) || item_byte_size == 10) { ss.precision(std::numeric_limits<long double>::digits10); ss << DE.GetLongDouble(&offset); } else { s->Printf("error: unsupported byte size (%" PRIu64 ") for float format", (uint64_t)item_byte_size); return offset; } ss.flush(); s->Printf("%s", ss.str().c_str()); } } break; case eFormatUnicode16: s->Printf("U+%4.4x", DE.GetU16(&offset)); break; case eFormatUnicode32: s->Printf("U+0x%8.8x", DE.GetU32(&offset)); break; case eFormatAddressInfo: { addr_t addr = DE.GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size, item_bit_offset); s->Printf("0x%*.*" PRIx64, (int)(2 * item_byte_size), (int)(2 * item_byte_size), addr); if (exe_scope) { TargetSP target_sp(exe_scope->CalculateTarget()); lldb_private::Address so_addr; if (target_sp) { if (target_sp->GetSectionLoadList().ResolveLoadAddress(addr, so_addr)) { s->PutChar(' '); so_addr.Dump(s, exe_scope, Address::DumpStyleResolvedDescription, Address::DumpStyleModuleWithFileAddress); } else { so_addr.SetOffset(addr); so_addr.Dump(s, exe_scope, Address::DumpStyleResolvedPointerDescription); } } } } break; case eFormatHexFloat: if (sizeof(float) == item_byte_size) { char float_cstr[256]; llvm::APFloat ap_float(DE.GetFloat(&offset)); ap_float.convertToHexString(float_cstr, 0, false, llvm::APFloat::rmNearestTiesToEven); s->Printf("%s", float_cstr); break; } else if (sizeof(double) == item_byte_size) { char float_cstr[256]; llvm::APFloat ap_float(DE.GetDouble(&offset)); ap_float.convertToHexString(float_cstr, 0, false, llvm::APFloat::rmNearestTiesToEven); s->Printf("%s", float_cstr); break; } else { s->Printf("error: unsupported byte size (%" PRIu64 ") for hex float format", (uint64_t)item_byte_size); return offset; } break; // please keep the single-item formats below in sync with // FormatManager::GetSingleItemFormat // if you fail to do so, users will start getting different outputs // depending on internal // implementation details they should not care about || case eFormatVectorOfChar: // || s->PutChar('{'); // \/ offset = DumpDataExtractor(DE, s, offset, eFormatCharArray, 1, item_byte_size, item_byte_size, LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfSInt8: s->PutChar('{'); offset = DumpDataExtractor(DE, s, offset, eFormatDecimal, 1, item_byte_size, item_byte_size, LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfUInt8: s->PutChar('{'); offset = DumpDataExtractor(DE, s, offset, eFormatHex, 1, item_byte_size, item_byte_size, LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfSInt16: s->PutChar('{'); offset = DumpDataExtractor( DE, s, offset, eFormatDecimal, sizeof(uint16_t), item_byte_size / sizeof(uint16_t), item_byte_size / sizeof(uint16_t), LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfUInt16: s->PutChar('{'); offset = DumpDataExtractor(DE, s, offset, eFormatHex, sizeof(uint16_t), item_byte_size / sizeof(uint16_t), item_byte_size / sizeof(uint16_t), LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfSInt32: s->PutChar('{'); offset = DumpDataExtractor( DE, s, offset, eFormatDecimal, sizeof(uint32_t), item_byte_size / sizeof(uint32_t), item_byte_size / sizeof(uint32_t), LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfUInt32: s->PutChar('{'); offset = DumpDataExtractor(DE, s, offset, eFormatHex, sizeof(uint32_t), item_byte_size / sizeof(uint32_t), item_byte_size / sizeof(uint32_t), LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfSInt64: s->PutChar('{'); offset = DumpDataExtractor( DE, s, offset, eFormatDecimal, sizeof(uint64_t), item_byte_size / sizeof(uint64_t), item_byte_size / sizeof(uint64_t), LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfUInt64: s->PutChar('{'); offset = DumpDataExtractor(DE, s, offset, eFormatHex, sizeof(uint64_t), item_byte_size / sizeof(uint64_t), item_byte_size / sizeof(uint64_t), LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfFloat16: s->PutChar('{'); offset = DumpDataExtractor(DE, s, offset, eFormatFloat, 2, item_byte_size / 2, item_byte_size / 2, LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfFloat32: s->PutChar('{'); offset = DumpDataExtractor(DE, s, offset, eFormatFloat, 4, item_byte_size / 4, item_byte_size / 4, LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfFloat64: s->PutChar('{'); offset = DumpDataExtractor(DE, s, offset, eFormatFloat, 8, item_byte_size / 8, item_byte_size / 8, LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; case eFormatVectorOfUInt128: s->PutChar('{'); offset = DumpDataExtractor(DE, s, offset, eFormatHex, 16, item_byte_size / 16, item_byte_size / 16, LLDB_INVALID_ADDRESS, 0, 0); s->PutChar('}'); break; } } if (item_format == eFormatBytesWithASCII && offset > line_start_offset) { s->Printf("%*s", static_cast<int>( (num_per_line - (offset - line_start_offset)) * 3 + 2), ""); DumpDataExtractor(DE, s, line_start_offset, eFormatCharPrintable, 1, offset - line_start_offset, SIZE_MAX, LLDB_INVALID_ADDRESS, 0, 0); } return offset; // Return the offset at which we ended up }
Error RegisterValue::SetValueFromData(const RegisterInfo *reg_info, DataExtractor &src, lldb::offset_t src_offset, bool partial_data_ok) { Error error; if (src.GetByteSize() == 0) { error.SetErrorString("empty data."); return error; } if (reg_info->byte_size == 0) { error.SetErrorString("invalid register info."); return error; } uint32_t src_len = src.GetByteSize() - src_offset; if (!partial_data_ok && (src_len < reg_info->byte_size)) { error.SetErrorString("not enough data."); return error; } // Cap the data length if there is more than enough bytes for this register // value if (src_len > reg_info->byte_size) src_len = reg_info->byte_size; // Zero out the value in case we get partial data... memset(buffer.bytes, 0, sizeof(buffer.bytes)); type128 int128; m_type = eTypeInvalid; switch (reg_info->encoding) { case eEncodingInvalid: break; case eEncodingUint: case eEncodingSint: if (reg_info->byte_size == 1) SetUInt8(src.GetMaxU32(&src_offset, src_len)); else if (reg_info->byte_size <= 2) SetUInt16(src.GetMaxU32(&src_offset, src_len)); else if (reg_info->byte_size <= 4) SetUInt32(src.GetMaxU32(&src_offset, src_len)); else if (reg_info->byte_size <= 8) SetUInt64(src.GetMaxU64(&src_offset, src_len)); else if (reg_info->byte_size <= 16) { uint64_t data1 = src.GetU64(&src_offset); uint64_t data2 = src.GetU64(&src_offset); if (src.GetByteSize() == eByteOrderBig) { int128.x[0] = data1; int128.x[1] = data2; } else { int128.x[0] = data2; int128.x[1] = data1; } SetUInt128(llvm::APInt(128, 2, int128.x)); } break; case eEncodingIEEE754: if (reg_info->byte_size == sizeof(float)) SetFloat(src.GetFloat(&src_offset)); else if (reg_info->byte_size == sizeof(double)) SetDouble(src.GetDouble(&src_offset)); else if (reg_info->byte_size == sizeof(long double)) SetLongDouble(src.GetLongDouble(&src_offset)); break; case eEncodingVector: { m_type = eTypeBytes; buffer.length = reg_info->byte_size; buffer.byte_order = src.GetByteOrder(); assert(buffer.length <= kMaxRegisterByteSize); if (buffer.length > kMaxRegisterByteSize) buffer.length = kMaxRegisterByteSize; if (src.CopyByteOrderedData( src_offset, // offset within "src" to start extracting data src_len, // src length buffer.bytes, // dst buffer buffer.length, // dst length buffer.byte_order) == 0) // dst byte order { error.SetErrorStringWithFormat( "failed to copy data for register write of %s", reg_info->name); return error; } } } if (m_type == eTypeInvalid) error.SetErrorStringWithFormat( "invalid register value type for register %s", reg_info->name); return error; }