예제 #1
0
Error
ELFLinuxPrPsInfo::Parse(DataExtractor &data, ArchSpec &arch)
{
    Error error;
    ByteOrder byteorder = data.GetByteOrder();
    if (GetSize(arch) > data.GetByteSize())
    {
        error.SetErrorStringWithFormat("NT_PRPSINFO size should be %lu, but the remaining bytes are: %lu",
                                       GetSize(arch), data.GetByteSize());
        return error;
    }

    switch(arch.GetCore())
    {
        case ArchSpec::eCore_s390x_generic:
        case ArchSpec::eCore_x86_64_x86_64:
            data.ExtractBytes(0, sizeof(ELFLinuxPrPsInfo), byteorder, this);
            break;
        case ArchSpec::eCore_x86_32_i386:
        case ArchSpec::eCore_x86_32_i486:
        {
            // Parsing from a 32 bit ELF core file, and populating/reusing the structure
            // properly, because the struct is for the 64 bit version
            size_t size = 0;
            offset_t offset = 0;

            pr_state = data.GetU8(&offset);
            pr_sname = data.GetU8(&offset);
            pr_zomb = data.GetU8(&offset);
            pr_nice = data.GetU8(&offset);

            pr_flag = data.GetU32(&offset);
            pr_uid = data.GetU16(&offset);
            pr_gid = data.GetU16(&offset);

            pr_pid = data.GetU32(&offset);
            pr_ppid = data.GetU32(&offset);
            pr_pgrp = data.GetU32(&offset);
            pr_sid = data.GetU32(&offset);

            size = 16;
            data.ExtractBytes(offset, size, byteorder, pr_fname);
            offset += size;

            size = 80;
            data.ExtractBytes(offset, size, byteorder, pr_psargs);
            offset += size;

            break;
        }
        default:
            error.SetErrorStringWithFormat("ELFLinuxPrPsInfo::%s Unknown architecture", __FUNCTION__);
            break;
    }

    return error;
}
예제 #2
0
bool
DWARFCompileUnit::Extract(const DataExtractor &debug_info, uint32_t* offset_ptr)
{
    Clear();

    m_offset = *offset_ptr;

    if (debug_info.ValidOffset(*offset_ptr))
    {
        dw_offset_t abbr_offset;
        const DWARFDebugAbbrev *abbr = m_dwarf2Data->DebugAbbrev();
        m_length        = debug_info.GetU32(offset_ptr);
        m_version       = debug_info.GetU16(offset_ptr);
        abbr_offset     = debug_info.GetU32(offset_ptr);
        m_addr_size     = debug_info.GetU8 (offset_ptr);

        bool length_OK = debug_info.ValidOffset(GetNextCompileUnitOffset()-1);
        bool version_OK = SymbolFileDWARF::SupportedVersion(m_version);
        bool abbr_offset_OK = m_dwarf2Data->get_debug_abbrev_data().ValidOffset(abbr_offset);
        bool addr_size_OK = ((m_addr_size == 4) || (m_addr_size == 8));

        if (length_OK && version_OK && addr_size_OK && abbr_offset_OK && abbr != NULL)
        {
            m_abbrevs = abbr->GetAbbreviationDeclarationSet(abbr_offset);
            return true;
        }

        // reset the offset to where we tried to parse from if anything went wrong
        *offset_ptr = m_offset;
    }

    return false;
}
예제 #3
0
bool
CommunicationKDP::SendRequestAndGetReply (const CommandType command,
        const uint8_t request_sequence_id,
        const PacketStreamType &request_packet,
        DataExtractor &reply_packet)
{
    if (IsRunning())
    {
        LogSP log (ProcessKDPLog::GetLogIfAllCategoriesSet (KDP_LOG_PACKETS));
        if (log)
        {
            PacketStreamType log_strm;
            DumpPacket (log_strm, request_packet.GetData(), request_packet.GetSize());
            log->Printf("error: kdp running, not sending packet: %.*s", (uint32_t)log_strm.GetSize(), log_strm.GetData());
        }
        return false;
    }

    Mutex::Locker locker(m_sequence_mutex);
#ifdef LLDB_CONFIGURATION_DEBUG
    // NOTE: this only works for packets that are in native endian byte order
    assert (request_packet.GetSize() == *((uint16_t *)(request_packet.GetData() + 2)));
#endif
    if (SendRequestPacketNoLock(request_packet))
    {
        if (WaitForPacketWithTimeoutMicroSecondsNoLock (reply_packet, GetPacketTimeoutInMicroSeconds ()))
        {
            uint32_t offset = 0;
            const uint8_t reply_command = reply_packet.GetU8 (&offset);
            const uint8_t reply_sequence_id = reply_packet.GetU8 (&offset);
            if ((reply_command & eCommandTypeMask) == command)
            {
                if (request_sequence_id == reply_sequence_id)
                {
                    if (command == KDP_RESUMECPUS)
                        m_is_running.SetValue(true, eBroadcastAlways);
                    return true;
                }
            }
        }
    }
    reply_packet.Clear();
    return false;
}
예제 #4
0
bool
DWARFDebugMacinfoEntry::Extract(const DataExtractor& mac_info_data, dw_offset_t* offset_ptr)
{
    if (mac_info_data.ValidOffset(*offset_ptr))
    {
        m_type_code = mac_info_data.GetU8(offset_ptr);

        switch (m_type_code)
        {

        case DW_MACINFO_define:
        case DW_MACINFO_undef:
            // 2 operands:
            // Arg 1: operand encodes the line number of the source line on which
            //      the relevant defining or undefining pre-processor directives
            //      appeared.
            m_line  = mac_info_data.GetULEB128(offset_ptr);
            // Arg 2: define string
            m_op2.cstr  = mac_info_data.GetCStr(offset_ptr);
            break;

        case DW_MACINFO_start_file:
            // 2 operands:
            // Op 1: line number of the source line on which the inclusion
            //      pre-processor directive occurred.
            m_line  = mac_info_data.GetULEB128(offset_ptr);
            // Op 2: a source file name index to a file number in the statement
            //      information table for the relevant compilation unit.
            m_op2.file_idx  = mac_info_data.GetULEB128(offset_ptr);
            break;

        case 0: // End of list
        case DW_MACINFO_end_file:
            // No operands
            m_line = DW_INVALID_OFFSET;
            m_op2.cstr = NULL;
            break;
        default:
            // Vendor specific entries always have a ULEB128 and a string
            m_line      = mac_info_data.GetULEB128(offset_ptr);
            m_op2.cstr  = mac_info_data.GetCStr(offset_ptr);
            break;
        }
        return true;
    }
    else
        m_type_code = 0;

    return false;
}
예제 #5
0
dw_offset_t
DWARFCompileUnit::Extract(dw_offset_t offset, const DataExtractor& debug_info_data, const DWARFAbbreviationDeclarationSet* abbrevs)
{
    Clear();

    m_offset = offset;

    if (debug_info_data.ValidOffset(offset))
    {
        m_length        = debug_info_data.GetU32(&offset);
        m_version       = debug_info_data.GetU16(&offset);
        bool abbrevs_OK = debug_info_data.GetU32(&offset) == abbrevs->GetOffset();
        m_abbrevs       = abbrevs;
        m_addr_size     = debug_info_data.GetU8 (&offset);

        bool version_OK = SymbolFileDWARF::SupportedVersion(m_version);
        bool addr_size_OK = ((m_addr_size == 4) || (m_addr_size == 8));

        if (version_OK && addr_size_OK && abbrevs_OK && debug_info_data.ValidOffset(offset))
            return offset;
    }
    return DW_INVALID_OFFSET;
}
예제 #6
0
void
ThreadKDP::SetStopInfoFrom_KDP_EXCEPTION (const DataExtractor &exc_reply_packet)
{
    lldb::offset_t offset = 0;
    uint8_t reply_command = exc_reply_packet.GetU8(&offset);
    if (reply_command == CommunicationKDP::KDP_EXCEPTION)
    {
        offset = 8;
        const uint32_t count = exc_reply_packet.GetU32 (&offset);
        if (count >= 1)
        {
            //const uint32_t cpu = exc_reply_packet.GetU32 (&offset);
            offset += 4; // Skip the useless CPU field
            const uint32_t exc_type = exc_reply_packet.GetU32 (&offset);
            const uint32_t exc_code = exc_reply_packet.GetU32 (&offset);
            const uint32_t exc_subcode = exc_reply_packet.GetU32 (&offset);
            // We have to make a copy of the stop info because the thread list
            // will iterate through the threads and clear all stop infos..
            
            // Let the StopInfoMachException::CreateStopReasonWithMachException()
            // function update the PC if needed as we might hit a software breakpoint
            // and need to decrement the PC (i386 and x86_64 need this) and KDP
            // doesn't do this for us.
            const bool pc_already_adjusted = false;
            const bool adjust_pc_if_needed = true;

            m_cached_stop_info_sp = StopInfoMachException::CreateStopReasonWithMachException (*this,
                                                                                              exc_type,
                                                                                              2,
                                                                                              exc_code,
                                                                                              exc_subcode,
                                                                                              0,
                                                                                              pc_already_adjusted,
                                                                                              adjust_pc_if_needed);            
        }
    }
}
예제 #7
0
bool
RegisterContextMach_i386::WriteRegisterBytes (uint32_t reg, DataExtractor &data, uint32_t data_offset)
{
    int set = GetSetForNativeRegNum (reg);

    if (set == -1)
        return false;

    if (ReadRegisterSet(set, false) != KERN_SUCCESS)
        return false;


    const RegisterInfo * reg_info = GetRegisterInfoAtIndex (reg);
    if (reg_info == NULL && data.ValidOffsetForDataOfSize(data_offset, reg_info->byte_size))
        return false;

    uint32_t offset = data_offset;
    switch (reg)
    {
    case gpr_eax:
    case gpr_ebx:
    case gpr_ecx:
    case gpr_edx:
    case gpr_edi:
    case gpr_esi:
    case gpr_ebp:
    case gpr_esp:
    case gpr_ss:
    case gpr_eflags:
    case gpr_eip:
    case gpr_cs:
    case gpr_ds:
    case gpr_es:
    case gpr_fs:
    case gpr_gs:
        (&gpr.eax)[reg - gpr_eax] = data.GetU32 (&offset);
        break;

    case fpu_fcw:
        fpu.fcw = data.GetU16(&offset);
        break;

    case fpu_fsw:
        fpu.fsw = data.GetU16(&offset);
        break;

    case fpu_ftw:
        fpu.ftw = data.GetU8(&offset);
        break;

    case fpu_fop:
        fpu.fop = data.GetU16(&offset);
        break;

    case fpu_ip:
        fpu.ip = data.GetU32(&offset);
        break;

    case fpu_cs:
        fpu.cs = data.GetU16(&offset);
        break;

    case fpu_dp:
        fpu.dp = data.GetU32(&offset);
        break;

    case fpu_ds:
        fpu.ds = data.GetU16(&offset);
        break;

    case fpu_mxcsr:
        fpu.mxcsr = data.GetU32(&offset);
        break;

    case fpu_mxcsrmask:
        fpu.mxcsrmask = data.GetU32(&offset);
        break;

    case fpu_stmm0:
    case fpu_stmm1:
    case fpu_stmm2:
    case fpu_stmm3:
    case fpu_stmm4:
    case fpu_stmm5:
    case fpu_stmm6:
    case fpu_stmm7:
        ::memcpy (fpu.stmm[reg - fpu_stmm0].bytes, data.PeekData(offset, reg_info->byte_size), reg_info->byte_size);
        return false;

    case fpu_xmm0:
    case fpu_xmm1:
    case fpu_xmm2:
    case fpu_xmm3:
    case fpu_xmm4:
    case fpu_xmm5:
    case fpu_xmm6:
    case fpu_xmm7:
        // These values don't fit into scalar types, RegisterContext::ReadRegisterBytes()
        // must be used for these registers
        ::memcpy (fpu.xmm[reg - fpu_xmm0].bytes, data.PeekData(offset, reg_info->byte_size), reg_info->byte_size);
        return false;

    case exc_trapno:
        exc.trapno = data.GetU32 (&offset);
        break;

    case exc_err:
        exc.err = data.GetU32 (&offset);
        break;

    case exc_faultvaddr:
        exc.faultvaddr = data.GetU32 (&offset);
        break;

    default:
        return false;
    }
    return WriteRegisterSet(set) == KERN_SUCCESS;
}
예제 #8
0
static int
print_dwarf_exp_op (Stream &s,
                    const DataExtractor& data,
                    uint32_t* offset_ptr,
                    int address_size,
                    int dwarf_ref_size)
{
    uint8_t opcode = data.GetU8(offset_ptr);
    DRC_class opcode_class;
    uint64_t  uint;
    int64_t   sint;

    int size;

    opcode_class = DW_OP_value_to_class (opcode) & (~DRC_DWARFv3);

    s.Printf("%s ", DW_OP_value_to_name (opcode));

    /* Does this take zero parameters?  If so we can shortcut this function.  */
    if (opcode_class == DRC_ZEROOPERANDS)
        return 0;

    if (opcode_class == DRC_TWOOPERANDS && opcode == DW_OP_bregx)
    {
        uint = data.GetULEB128(offset_ptr);
        sint = data.GetSLEB128(offset_ptr);
        s.Printf("%llu %lli", uint, sint);
        return 0;
    }
    if (opcode_class != DRC_ONEOPERAND)
    {
        s.Printf("UNKNOWN OP %u", opcode);
        return 1;
    }

    switch (opcode)
    {
        case DW_OP_addr:    size = address_size;    break;
        case DW_OP_const1u: size = 1;               break;
        case DW_OP_const1s: size = -1;              break;
        case DW_OP_const2u: size = 2;               break;
        case DW_OP_const2s: size = -2;              break;
        case DW_OP_const4u: size = 4;               break;
        case DW_OP_const4s: size = -4;              break;
        case DW_OP_const8u: size = 8;               break;
        case DW_OP_const8s: size = -8;              break;
        case DW_OP_constu:  size = 128;             break;
        case DW_OP_consts:  size = -128;            break;
        case DW_OP_fbreg:   size = -128;            break;
        case DW_OP_breg0:
        case DW_OP_breg1:
        case DW_OP_breg2:
        case DW_OP_breg3:
        case DW_OP_breg4:
        case DW_OP_breg5:
        case DW_OP_breg6:
        case DW_OP_breg7:
        case DW_OP_breg8:
        case DW_OP_breg9:
        case DW_OP_breg10:
        case DW_OP_breg11:
        case DW_OP_breg12:
        case DW_OP_breg13:
        case DW_OP_breg14:
        case DW_OP_breg15:
        case DW_OP_breg16:
        case DW_OP_breg17:
        case DW_OP_breg18:
        case DW_OP_breg19:
        case DW_OP_breg20:
        case DW_OP_breg21:
        case DW_OP_breg22:
        case DW_OP_breg23:
        case DW_OP_breg24:
        case DW_OP_breg25:
        case DW_OP_breg26:
        case DW_OP_breg27:
        case DW_OP_breg28:
        case DW_OP_breg29:
        case DW_OP_breg30:
        case DW_OP_breg31:
            size = -128; break;
        case DW_OP_pick:
            size = 1;       break;
        case DW_OP_deref_size:
            size = 1;       break;
        case DW_OP_xderef_size:
            size = 1;       break;
        case DW_OP_plus_uconst:
            size = 128;     break;
        case DW_OP_skip:
            size = -2;      break;
        case DW_OP_bra:
            size = -2;      break;
        case DW_OP_call2:
            size = 2;       break;
        case DW_OP_call4:
            size = 4;       break;
        case DW_OP_call_ref:
            size = dwarf_ref_size;  break;
        case DW_OP_piece:
            size = 128; break;
        case DW_OP_regx:
            size = 128; break;
        default:
            s.Printf("UNKNOWN ONE-OPERAND OPCODE, #%u", opcode);
            return 1;
    }

    switch (size)
    {
    case -1:    sint = (int8_t)     data.GetU8(offset_ptr);     s.Printf("%+lli", sint); break;
    case -2:    sint = (int16_t)    data.GetU16(offset_ptr);    s.Printf("%+lli", sint); break;
    case -4:    sint = (int32_t)    data.GetU32(offset_ptr);    s.Printf("%+lli", sint); break;
    case -8:    sint = (int64_t)    data.GetU64(offset_ptr);    s.Printf("%+lli", sint); break;
    case -128:  sint = data.GetSLEB128(offset_ptr);             s.Printf("%+lli", sint); break;
    case 1:     uint = data.GetU8(offset_ptr);                  s.Printf("0x%2.2llx", uint); break;
    case 2:     uint = data.GetU16(offset_ptr);                 s.Printf("0x%4.4llx", uint); break;
    case 4:     uint = data.GetU32(offset_ptr);                 s.Printf("0x%8.8llx", uint); break;
    case 8:     uint = data.GetU64(offset_ptr);                 s.Printf("0x%16.16llx", uint); break;
    case 128:   uint = data.GetULEB128(offset_ptr);             s.Printf("0x%llx", uint); break;
    }

    return 0;
}
예제 #9
0
void CommunicationKDP::DumpPacket(Stream &s, const DataExtractor &packet) {
  const char *error_desc = NULL;
  if (packet.GetByteSize() < 8) {
    error_desc = "error: invalid packet (too short): ";
  } else {
    lldb::offset_t offset = 0;
    const uint8_t first_packet_byte = packet.GetU8(&offset);
    const uint8_t sequence_id = packet.GetU8(&offset);
    const uint16_t length = packet.GetU16(&offset);
    const uint32_t key = packet.GetU32(&offset);
    const CommandType command = ExtractCommand(first_packet_byte);
    const char *command_name = GetCommandAsCString(command);
    if (command_name) {
      const bool is_reply = ExtractIsReply(first_packet_byte);
      s.Printf("(running=%i) %s %24s: 0x%2.2x 0x%2.2x 0x%4.4x 0x%8.8x ",
               IsRunning(), is_reply ? "<--" : "-->", command_name,
               first_packet_byte, sequence_id, length, key);

      if (is_reply) {
        // Dump request reply packets
        switch (command) {
        // Commands that return a single 32 bit error
        case KDP_CONNECT:
        case KDP_WRITEMEM:
        case KDP_WRITEMEM64:
        case KDP_BREAKPOINT_SET:
        case KDP_BREAKPOINT_REMOVE:
        case KDP_BREAKPOINT_SET64:
        case KDP_BREAKPOINT_REMOVE64:
        case KDP_WRITEREGS:
        case KDP_LOAD:
        case KDP_WRITEIOPORT:
        case KDP_WRITEMSR64: {
          const uint32_t error = packet.GetU32(&offset);
          s.Printf(" (error=0x%8.8x)", error);
        } break;

        case KDP_DISCONNECT:
        case KDP_REATTACH:
        case KDP_HOSTREBOOT:
        case KDP_SUSPEND:
        case KDP_RESUMECPUS:
        case KDP_EXCEPTION:
        case KDP_TERMINATION:
          // No return value for the reply, just the header to ack
          s.PutCString(" ()");
          break;

        case KDP_HOSTINFO: {
          const uint32_t cpu_mask = packet.GetU32(&offset);
          const uint32_t cpu_type = packet.GetU32(&offset);
          const uint32_t cpu_subtype = packet.GetU32(&offset);
          s.Printf(" (cpu_mask=0x%8.8x, cpu_type=0x%8.8x, cpu_subtype=0x%8.8x)",
                   cpu_mask, cpu_type, cpu_subtype);
        } break;

        case KDP_VERSION: {
          const uint32_t version = packet.GetU32(&offset);
          const uint32_t feature = packet.GetU32(&offset);
          s.Printf(" (version=0x%8.8x, feature=0x%8.8x)", version, feature);
        } break;

        case KDP_REGIONS: {
          const uint32_t region_count = packet.GetU32(&offset);
          s.Printf(" (count = %u", region_count);
          for (uint32_t i = 0; i < region_count; ++i) {
            const addr_t region_addr = packet.GetPointer(&offset);
            const uint32_t region_size = packet.GetU32(&offset);
            const uint32_t region_prot = packet.GetU32(&offset);
            s.Printf("\n\tregion[%" PRIu64 "] = { range = [0x%16.16" PRIx64
                     " - 0x%16.16" PRIx64 "), size = 0x%8.8x, prot = %s }",
                     region_addr, region_addr, region_addr + region_size,
                     region_size, GetPermissionsAsCString(region_prot));
          }
        } break;

        case KDP_READMEM:
        case KDP_READMEM64:
        case KDP_READPHYSMEM64: {
          const uint32_t error = packet.GetU32(&offset);
          const uint32_t count = packet.GetByteSize() - offset;
          s.Printf(" (error = 0x%8.8x:\n", error);
          if (count > 0)
            DumpDataExtractor(packet, 
                              &s,                      // Stream to dump to
                              offset,                  // Offset within "packet"
                              eFormatBytesWithASCII,   // Format to use
                              1,                       // Size of each item 
                                                       // in bytes
                              count,                   // Number of items
                              16,                      // Number per line
                              m_last_read_memory_addr, // Don't show addresses
                                                       // before each line
                              0, 0);                   // No bitfields
        } break;

        case KDP_READREGS: {
          const uint32_t error = packet.GetU32(&offset);
          const uint32_t count = packet.GetByteSize() - offset;
          s.Printf(" (error = 0x%8.8x regs:\n", error);
          if (count > 0)
            DumpDataExtractor(packet, 
                              &s,                       // Stream to dump to
                              offset,                   // Offset within "packet"
                              eFormatHex,               // Format to use
                              m_addr_byte_size,         // Size of each item 
                                                        // in bytes
                              count / m_addr_byte_size, // Number of items
                              16 / m_addr_byte_size,    // Number per line
                              LLDB_INVALID_ADDRESS, 
                                                        // Don't 
                                                        // show addresses before
                                                        // each line
                              0, 0);                    // No bitfields
        } break;

        case KDP_KERNELVERSION: {
          const char *kernel_version = packet.PeekCStr(8);
          s.Printf(" (version = \"%s\")", kernel_version);
        } break;

        case KDP_MAXBYTES: {
          const uint32_t max_bytes = packet.GetU32(&offset);
          s.Printf(" (max_bytes = 0x%8.8x (%u))", max_bytes, max_bytes);
        } break;
        case KDP_IMAGEPATH: {
          const char *path = packet.GetCStr(&offset);
          s.Printf(" (path = \"%s\")", path);
        } break;

        case KDP_READIOPORT:
        case KDP_READMSR64: {
          const uint32_t error = packet.GetU32(&offset);
          const uint32_t count = packet.GetByteSize() - offset;
          s.Printf(" (error = 0x%8.8x io:\n", error);
          if (count > 0)
            DumpDataExtractor(packet, 
                              &s,                   // Stream to dump to
                              offset,               // Offset within "packet"
                              eFormatHex,           // Format to use
                              1,                    // Size of each item in bytes
                              count,                // Number of items
                              16,                   // Number per line
                              LLDB_INVALID_ADDRESS, // Don't show addresses 
                                                    // before each line
                              0, 0);                // No bitfields
        } break;
        case KDP_DUMPINFO: {
          const uint32_t count = packet.GetByteSize() - offset;
          s.Printf(" (count = %u, bytes = \n", count);
          if (count > 0)
            DumpDataExtractor(packet, 
                              &s,                   // Stream to dump to
                              offset,               // Offset within "packet"
                              eFormatHex,           // Format to use
                              1,                    // Size of each item in 
                                                    // bytes
                              count,                // Number of items
                              16,                   // Number per line
                              LLDB_INVALID_ADDRESS, // Don't show addresses 
                                                    // before each line
                              0, 0);                // No bitfields

        } break;

        default:
          s.Printf(" (add support for dumping this packet reply!!!");
          break;
        }
      } else {
        // Dump request packets
        switch (command) {
        case KDP_CONNECT: {
          const uint16_t reply_port = ntohs(packet.GetU16(&offset));
          const uint16_t exc_port = ntohs(packet.GetU16(&offset));
          s.Printf(" (reply_port = %u, exc_port = %u, greeting = \"%s\")",
                   reply_port, exc_port, packet.GetCStr(&offset));
        } break;

        case KDP_DISCONNECT:
        case KDP_HOSTREBOOT:
        case KDP_HOSTINFO:
        case KDP_VERSION:
        case KDP_REGIONS:
        case KDP_KERNELVERSION:
        case KDP_MAXBYTES:
        case KDP_IMAGEPATH:
        case KDP_SUSPEND:
          // No args, just the header in the request...
          s.PutCString(" ()");
          break;

        case KDP_RESUMECPUS: {
          const uint32_t cpu_mask = packet.GetU32(&offset);
          s.Printf(" (cpu_mask = 0x%8.8x)", cpu_mask);
        } break;

        case KDP_READMEM: {
          const uint32_t addr = packet.GetU32(&offset);
          const uint32_t size = packet.GetU32(&offset);
          s.Printf(" (addr = 0x%8.8x, size = %u)", addr, size);
          m_last_read_memory_addr = addr;
        } break;

        case KDP_WRITEMEM: {
          const uint32_t addr = packet.GetU32(&offset);
          const uint32_t size = packet.GetU32(&offset);
          s.Printf(" (addr = 0x%8.8x, size = %u, bytes = \n", addr, size);
          if (size > 0)
            DumpHexBytes(&s, packet.GetData(&offset, size), size, 32, addr);
        } break;

        case KDP_READMEM64: {
          const uint64_t addr = packet.GetU64(&offset);
          const uint32_t size = packet.GetU32(&offset);
          s.Printf(" (addr = 0x%16.16" PRIx64 ", size = %u)", addr, size);
          m_last_read_memory_addr = addr;
        } break;

        case KDP_READPHYSMEM64: {
          const uint64_t addr = packet.GetU64(&offset);
          const uint32_t size = packet.GetU32(&offset);
          const uint32_t lcpu = packet.GetU16(&offset);
          s.Printf(" (addr = 0x%16.16llx, size = %u, lcpu = %u)", addr, size,
                   lcpu);
          m_last_read_memory_addr = addr;
        } break;

        case KDP_WRITEMEM64: {
          const uint64_t addr = packet.GetU64(&offset);
          const uint32_t size = packet.GetU32(&offset);
          s.Printf(" (addr = 0x%16.16" PRIx64 ", size = %u, bytes = \n", addr,
                   size);
          if (size > 0)
            DumpHexBytes(&s, packet.GetData(&offset, size), size, 32, addr);
        } break;

        case KDP_WRITEPHYSMEM64: {
          const uint64_t addr = packet.GetU64(&offset);
          const uint32_t size = packet.GetU32(&offset);
          const uint32_t lcpu = packet.GetU16(&offset);
          s.Printf(" (addr = 0x%16.16llx, size = %u, lcpu = %u, bytes = \n",
                   addr, size, lcpu);
          if (size > 0)
            DumpHexBytes(&s, packet.GetData(&offset, size), size, 32, addr);
        } break;

        case KDP_READREGS: {
          const uint32_t cpu = packet.GetU32(&offset);
          const uint32_t flavor = packet.GetU32(&offset);
          s.Printf(" (cpu = %u, flavor = %u)", cpu, flavor);
        } break;

        case KDP_WRITEREGS: {
          const uint32_t cpu = packet.GetU32(&offset);
          const uint32_t flavor = packet.GetU32(&offset);
          const uint32_t nbytes = packet.GetByteSize() - offset;
          s.Printf(" (cpu = %u, flavor = %u, regs = \n", cpu, flavor);
          if (nbytes > 0)
            DumpDataExtractor(packet, 
                              &s,                        // Stream to dump to
                              offset,                    // Offset within 
                                                         // "packet"
                              eFormatHex,                // Format to use
                              m_addr_byte_size,          // Size of each item in 
                                                         // bytes
                              nbytes / m_addr_byte_size, // Number of items
                              16 / m_addr_byte_size,     // Number per line
                              LLDB_INVALID_ADDRESS,      // Don't show addresses
                                                         // before each line
                              0, 0);                // No bitfields
        } break;

        case KDP_BREAKPOINT_SET:
        case KDP_BREAKPOINT_REMOVE: {
          const uint32_t addr = packet.GetU32(&offset);
          s.Printf(" (addr = 0x%8.8x)", addr);
        } break;

        case KDP_BREAKPOINT_SET64:
        case KDP_BREAKPOINT_REMOVE64: {
          const uint64_t addr = packet.GetU64(&offset);
          s.Printf(" (addr = 0x%16.16" PRIx64 ")", addr);
        } break;

        case KDP_LOAD: {
          const char *path = packet.GetCStr(&offset);
          s.Printf(" (path = \"%s\")", path);
        } break;

        case KDP_EXCEPTION: {
          const uint32_t count = packet.GetU32(&offset);

          for (uint32_t i = 0; i < count; ++i) {
            const uint32_t cpu = packet.GetU32(&offset);
            const uint32_t exc = packet.GetU32(&offset);
            const uint32_t code = packet.GetU32(&offset);
            const uint32_t subcode = packet.GetU32(&offset);
            const char *exc_cstr = NULL;
            switch (exc) {
            case 1:
              exc_cstr = "EXC_BAD_ACCESS";
              break;
            case 2:
              exc_cstr = "EXC_BAD_INSTRUCTION";
              break;
            case 3:
              exc_cstr = "EXC_ARITHMETIC";
              break;
            case 4:
              exc_cstr = "EXC_EMULATION";
              break;
            case 5:
              exc_cstr = "EXC_SOFTWARE";
              break;
            case 6:
              exc_cstr = "EXC_BREAKPOINT";
              break;
            case 7:
              exc_cstr = "EXC_SYSCALL";
              break;
            case 8:
              exc_cstr = "EXC_MACH_SYSCALL";
              break;
            case 9:
              exc_cstr = "EXC_RPC_ALERT";
              break;
            case 10:
              exc_cstr = "EXC_CRASH";
              break;
            default:
              break;
            }

            s.Printf("{ cpu = 0x%8.8x, exc = %s (%u), code = %u (0x%8.8x), "
                     "subcode = %u (0x%8.8x)} ",
                     cpu, exc_cstr, exc, code, code, subcode, subcode);
          }
        } break;

        case KDP_TERMINATION: {
          const uint32_t term_code = packet.GetU32(&offset);
          const uint32_t exit_code = packet.GetU32(&offset);
          s.Printf(" (term_code = 0x%8.8x (%u), exit_code = 0x%8.8x (%u))",
                   term_code, term_code, exit_code, exit_code);
        } break;

        case KDP_REATTACH: {
          const uint16_t reply_port = ntohs(packet.GetU16(&offset));
          s.Printf(" (reply_port = %u)", reply_port);
        } break;

        case KDP_READMSR64: {
          const uint32_t address = packet.GetU32(&offset);
          const uint16_t lcpu = packet.GetU16(&offset);
          s.Printf(" (address=0x%8.8x, lcpu=0x%4.4x)", address, lcpu);
        } break;

        case KDP_WRITEMSR64: {
          const uint32_t address = packet.GetU32(&offset);
          const uint16_t lcpu = packet.GetU16(&offset);
          const uint32_t nbytes = packet.GetByteSize() - offset;
          s.Printf(" (address=0x%8.8x, lcpu=0x%4.4x, nbytes=0x%8.8x)", lcpu,
                   address, nbytes);
          if (nbytes > 0)
            DumpDataExtractor(packet, 
                              &s,                   // Stream to dump to
                              offset,               // Offset within "packet"
                              eFormatHex,           // Format to use
                              1,                    // Size of each item in 
                                                    // bytes
                              nbytes,               // Number of items
                              16,                   // Number per line
                              LLDB_INVALID_ADDRESS, // Don't show addresses 
                                                    // before each line
                              0, 0);                // No bitfields
        } break;

        case KDP_READIOPORT: {
          const uint16_t lcpu = packet.GetU16(&offset);
          const uint16_t address = packet.GetU16(&offset);
          const uint16_t nbytes = packet.GetU16(&offset);
          s.Printf(" (lcpu=0x%4.4x, address=0x%4.4x, nbytes=%u)", lcpu, address,
                   nbytes);
        } break;

        case KDP_WRITEIOPORT: {
          const uint16_t lcpu = packet.GetU16(&offset);
          const uint16_t address = packet.GetU16(&offset);
          const uint16_t nbytes = packet.GetU16(&offset);
          s.Printf(" (lcpu = %u, addr = 0x%4.4x, nbytes = %u, bytes = \n", lcpu,
                   address, nbytes);
          if (nbytes > 0)
            DumpDataExtractor(packet, 
                              &s,                   // Stream to dump to
                              offset,               // Offset within "packet"
                              eFormatHex,           // Format to use
                              1,                    // Size of each item in 
                                                    // bytes
                              nbytes,               // Number of items
                              16,                   // Number per line
                              LLDB_INVALID_ADDRESS, // Don't show addresses 
                                                    // before each line
                              0, 0);                // No bitfields
        } break;

        case KDP_DUMPINFO: {
          const uint32_t count = packet.GetByteSize() - offset;
          s.Printf(" (count = %u, bytes = \n", count);
          if (count > 0)
            DumpDataExtractor(packet, 
                &s,                   // Stream to dump to
                offset,               // Offset within "packet"
                eFormatHex,           // Format to use
                1,                    // Size of each item in bytes
                count,                // Number of items
                16,                   // Number per line
                LLDB_INVALID_ADDRESS, // Don't show addresses before each line
                0, 0);                // No bitfields

        } break;
        }
      }
    } else {
      error_desc = "error: invalid packet command: ";
    }
  }

  if (error_desc) {
    s.PutCString(error_desc);

    DumpDataExtractor(packet,
                      &s,                   // Stream to dump to
                      0,                    // Offset into "packet"
                      eFormatBytes,         // Dump as hex bytes
                      1,                    // Size of each item is 1 for 
                                            // single bytes
                      packet.GetByteSize(), // Number of bytes
                      UINT32_MAX,           // Num bytes per line
                      LLDB_INVALID_ADDRESS, // Base address
                      0, 0);                // Bitfield info set to not do  
                                            // anything bitfield related
  }
}
예제 #10
0
bool CommunicationKDP::SendRequestAndGetReply(
    const CommandType command, const PacketStreamType &request_packet,
    DataExtractor &reply_packet) {
  if (IsRunning()) {
    Log *log(ProcessKDPLog::GetLogIfAllCategoriesSet(KDP_LOG_PACKETS));
    if (log) {
      PacketStreamType log_strm;
      DumpPacket(log_strm, request_packet.GetData(), request_packet.GetSize());
      log->Printf("error: kdp running, not sending packet: %.*s",
                  (uint32_t)log_strm.GetSize(), log_strm.GetData());
    }
    return false;
  }

  std::lock_guard<std::recursive_mutex> guard(m_sequence_mutex);
#ifdef LLDB_CONFIGURATION_DEBUG
  // NOTE: this only works for packets that are in native endian byte order
  assert(request_packet.GetSize() ==
         *((const uint16_t *)(request_packet.GetData() + 2)));
#endif
  lldb::offset_t offset = 1;
  const uint32_t num_retries = 3;
  for (uint32_t i = 0; i < num_retries; ++i) {
    if (SendRequestPacketNoLock(request_packet)) {
      const uint8_t request_sequence_id = (uint8_t)request_packet.GetData()[1];
      while (1) {
        if (WaitForPacketWithTimeoutMicroSecondsNoLock(
                reply_packet,
                std::chrono::microseconds(GetPacketTimeout()).count())) {
          offset = 0;
          const uint8_t reply_command = reply_packet.GetU8(&offset);
          const uint8_t reply_sequence_id = reply_packet.GetU8(&offset);
          if (request_sequence_id == reply_sequence_id) {
            // The sequent ID was correct, now verify we got the response we
            // were looking for
            if ((reply_command & eCommandTypeMask) == command) {
              // Success
              if (command == KDP_RESUMECPUS)
                m_is_running.SetValue(true, eBroadcastAlways);
              return true;
            } else {
              // Failed to get the correct response, bail
              reply_packet.Clear();
              return false;
            }
          } else if (reply_sequence_id > request_sequence_id) {
            // Sequence ID was greater than the sequence ID of the packet we
            // sent, something is really wrong...
            reply_packet.Clear();
            return false;
          } else {
            // The reply sequence ID was less than our current packet's
            // sequence ID so we should keep trying to get a response because
            // this was a response for a previous packet that we must have
            // retried.
          }
        } else {
          // Break and retry sending the packet as we didn't get a response due
          // to timeout
          break;
        }
      }
    }
  }
  reply_packet.Clear();
  return false;
}
예제 #11
0
bool CommunicationKDP::CheckForPacket(const uint8_t *src, size_t src_len,
                                      DataExtractor &packet) {
  // Put the packet data into the buffer in a thread safe fashion
  std::lock_guard<std::recursive_mutex> guard(m_bytes_mutex);

  Log *log(ProcessKDPLog::GetLogIfAllCategoriesSet(KDP_LOG_PACKETS));

  if (src && src_len > 0) {
    if (log && log->GetVerbose()) {
      PacketStreamType log_strm;
      DumpHexBytes(&log_strm, src, src_len, UINT32_MAX, LLDB_INVALID_ADDRESS);
      log->Printf("CommunicationKDP::%s adding %u bytes: %s", __FUNCTION__,
                  (uint32_t)src_len, log_strm.GetData());
    }
    m_bytes.append((const char *)src, src_len);
  }

  // Make sure we at least have enough bytes for a packet header
  const size_t bytes_available = m_bytes.size();
  if (bytes_available >= 8) {
    packet.SetData(&m_bytes[0], bytes_available, m_byte_order);
    lldb::offset_t offset = 0;
    uint8_t reply_command = packet.GetU8(&offset);
    switch (reply_command) {
    case ePacketTypeRequest | KDP_EXCEPTION:
    case ePacketTypeRequest | KDP_TERMINATION:
      // We got an exception request, so be sure to send an ACK
      {
        PacketStreamType request_ack_packet(Stream::eBinary, m_addr_byte_size,
                                            m_byte_order);
        // Set the reply but and make the ACK packet
        request_ack_packet.PutHex8(reply_command | ePacketTypeReply);
        request_ack_packet.PutHex8(packet.GetU8(&offset));
        request_ack_packet.PutHex16(packet.GetU16(&offset));
        request_ack_packet.PutHex32(packet.GetU32(&offset));
        m_is_running.SetValue(false, eBroadcastAlways);
        // Ack to the exception or termination
        SendRequestPacketNoLock(request_ack_packet);
      }
      // Fall through to case below to get packet contents
      LLVM_FALLTHROUGH;
    case ePacketTypeReply | KDP_CONNECT:
    case ePacketTypeReply | KDP_DISCONNECT:
    case ePacketTypeReply | KDP_HOSTINFO:
    case ePacketTypeReply | KDP_VERSION:
    case ePacketTypeReply | KDP_MAXBYTES:
    case ePacketTypeReply | KDP_READMEM:
    case ePacketTypeReply | KDP_WRITEMEM:
    case ePacketTypeReply | KDP_READREGS:
    case ePacketTypeReply | KDP_WRITEREGS:
    case ePacketTypeReply | KDP_LOAD:
    case ePacketTypeReply | KDP_IMAGEPATH:
    case ePacketTypeReply | KDP_SUSPEND:
    case ePacketTypeReply | KDP_RESUMECPUS:
    case ePacketTypeReply | KDP_BREAKPOINT_SET:
    case ePacketTypeReply | KDP_BREAKPOINT_REMOVE:
    case ePacketTypeReply | KDP_REGIONS:
    case ePacketTypeReply | KDP_REATTACH:
    case ePacketTypeReply | KDP_HOSTREBOOT:
    case ePacketTypeReply | KDP_READMEM64:
    case ePacketTypeReply | KDP_WRITEMEM64:
    case ePacketTypeReply | KDP_BREAKPOINT_SET64:
    case ePacketTypeReply | KDP_BREAKPOINT_REMOVE64:
    case ePacketTypeReply | KDP_KERNELVERSION:
    case ePacketTypeReply | KDP_READPHYSMEM64:
    case ePacketTypeReply | KDP_WRITEPHYSMEM64:
    case ePacketTypeReply | KDP_READIOPORT:
    case ePacketTypeReply | KDP_WRITEIOPORT:
    case ePacketTypeReply | KDP_READMSR64:
    case ePacketTypeReply | KDP_WRITEMSR64:
    case ePacketTypeReply | KDP_DUMPINFO: {
      offset = 2;
      const uint16_t length = packet.GetU16(&offset);
      if (length <= bytes_available) {
        // We have an entire packet ready, we need to copy the data bytes into
        // a buffer that will be owned by the packet and erase the bytes from
        // our communcation buffer "m_bytes"
        packet.SetData(DataBufferSP(new DataBufferHeap(&m_bytes[0], length)));
        m_bytes.erase(0, length);

        if (log) {
          PacketStreamType log_strm;
          DumpPacket(log_strm, packet);

          log->Printf("%.*s", (uint32_t)log_strm.GetSize(), log_strm.GetData());
        }
        return true;
      }
    } break;

    default:
      // Unrecognized reply command byte, erase this byte and try to get back
      // on track
      if (log)
        log->Printf("CommunicationKDP::%s: tossing junk byte: 0x%2.2x",
                    __FUNCTION__, (uint8_t)m_bytes[0]);
      m_bytes.erase(0, 1);
      break;
    }
  }
  packet.Clear();
  return false;
}
예제 #12
0
bool
DWARFFormValue::SkipValue(dw_form_t form, const DataExtractor& debug_info_data, lldb::offset_t *offset_ptr, const DWARFCompileUnit* cu)
{
    switch (form)
    {
    // Blocks if inlined data that have a length field and the data bytes
    // inlined in the .debug_info
    case DW_FORM_exprloc:
    case DW_FORM_block:  { dw_uleb128_t size = debug_info_data.GetULEB128(offset_ptr); *offset_ptr += size; } return true;
    case DW_FORM_block1: { dw_uleb128_t size = debug_info_data.GetU8(offset_ptr);      *offset_ptr += size; } return true;
    case DW_FORM_block2: { dw_uleb128_t size = debug_info_data.GetU16(offset_ptr);     *offset_ptr += size; } return true;
    case DW_FORM_block4: { dw_uleb128_t size = debug_info_data.GetU32(offset_ptr);     *offset_ptr += size; } return true;

    // Inlined NULL terminated C-strings
    case DW_FORM_string:
        debug_info_data.GetCStr(offset_ptr);
        return true;

    // Compile unit address sized values
    case DW_FORM_addr:
        *offset_ptr += DWARFCompileUnit::GetAddressByteSize(cu);
        return true;

    case DW_FORM_ref_addr:
        if (cu->GetVersion() <= 2)
            *offset_ptr += DWARFCompileUnit::GetAddressByteSize(cu);
        else
            *offset_ptr += 4;// 4 for DWARF32, 8 for DWARF64, but we don't support DWARF64 yet
        return true;

    // 0 bytes values (implied from DW_FORM)
    case DW_FORM_flag_present:
        return true;

    // 1 byte values
    case DW_FORM_data1:
    case DW_FORM_flag:
    case DW_FORM_ref1:
        *offset_ptr += 1;
        return true;

    // 2 byte values
    case DW_FORM_data2:
    case DW_FORM_ref2:
        *offset_ptr += 2;
        return true;

    // 32 bit for DWARF 32, 64 for DWARF 64
    case DW_FORM_sec_offset:
        *offset_ptr += 4;
        return true;

    // 4 byte values
    case DW_FORM_strp:
    case DW_FORM_data4:
    case DW_FORM_ref4:
        *offset_ptr += 4;
        return true;

    // 8 byte values
    case DW_FORM_data8:
    case DW_FORM_ref8:
    case DW_FORM_ref_sig8:
        *offset_ptr += 8;
        return true;

    // signed or unsigned LEB 128 values
    case DW_FORM_sdata:
    case DW_FORM_udata:
    case DW_FORM_ref_udata:
        debug_info_data.Skip_LEB128(offset_ptr);
        return true;

    case DW_FORM_indirect:
        {
            dw_form_t indirect_form = debug_info_data.GetULEB128(offset_ptr);
            return DWARFFormValue::SkipValue (indirect_form,
                                              debug_info_data,
                                              offset_ptr,
                                              cu);
        }

    default:
        break;
    }
    return false;
}
bool
DynamicLoaderMacOSXDYLD::ReadAllImageInfosStructure ()
{
    std::lock_guard<std::recursive_mutex> guard(m_mutex);

    // the all image infos is already valid for this process stop ID
    if (m_process->GetStopID() == m_dyld_all_image_infos_stop_id)
        return true;

    m_dyld_all_image_infos.Clear();
    if (m_dyld_all_image_infos_addr != LLDB_INVALID_ADDRESS)
    {
        ByteOrder byte_order = m_process->GetTarget().GetArchitecture().GetByteOrder();
        uint32_t addr_size = 4;
        if (m_dyld_all_image_infos_addr > UINT32_MAX)
            addr_size = 8;

        uint8_t buf[256];
        DataExtractor data (buf, sizeof(buf), byte_order, addr_size);
        lldb::offset_t offset = 0;

        const size_t count_v2 =  sizeof (uint32_t) + // version
                                 sizeof (uint32_t) + // infoArrayCount
                                 addr_size +         // infoArray
                                 addr_size +         // notification
                                 addr_size +         // processDetachedFromSharedRegion + libSystemInitialized + pad
                                 addr_size;          // dyldImageLoadAddress
        const size_t count_v11 = count_v2 +
                                 addr_size +         // jitInfo
                                 addr_size +         // dyldVersion
                                 addr_size +         // errorMessage
                                 addr_size +         // terminationFlags
                                 addr_size +         // coreSymbolicationShmPage
                                 addr_size +         // systemOrderFlag
                                 addr_size +         // uuidArrayCount
                                 addr_size +         // uuidArray
                                 addr_size +         // dyldAllImageInfosAddress
                                 addr_size +         // initialImageCount
                                 addr_size +         // errorKind
                                 addr_size +         // errorClientOfDylibPath
                                 addr_size +         // errorTargetDylibPath
                                 addr_size;          // errorSymbol
        const size_t count_v13 = count_v11 +
                                 addr_size +         // sharedCacheSlide
                                 sizeof (uuid_t);    // sharedCacheUUID
        UNUSED_IF_ASSERT_DISABLED(count_v13);
        assert (sizeof (buf) >= count_v13);

        Error error;
        if (m_process->ReadMemory (m_dyld_all_image_infos_addr, buf, 4, error) == 4)
        {
            m_dyld_all_image_infos.version = data.GetU32(&offset);
            // If anything in the high byte is set, we probably got the byte 
            // order incorrect (the process might not have it set correctly 
            // yet due to attaching to a program without a specified file).
            if (m_dyld_all_image_infos.version & 0xff000000)
            {
                // We have guessed the wrong byte order. Swap it and try
                // reading the version again.
                if (byte_order == eByteOrderLittle)
                    byte_order = eByteOrderBig;
                else
                    byte_order = eByteOrderLittle;

                data.SetByteOrder (byte_order);
                offset = 0;
                m_dyld_all_image_infos.version = data.GetU32(&offset);
            }
        }
        else
        {
            return false;
        }

        const size_t count = (m_dyld_all_image_infos.version >= 11) ? count_v11 : count_v2;

        const size_t bytes_read = m_process->ReadMemory (m_dyld_all_image_infos_addr, buf, count, error);
        if (bytes_read == count)
        {
            offset = 0;
            m_dyld_all_image_infos.version = data.GetU32(&offset);
            m_dyld_all_image_infos.dylib_info_count = data.GetU32(&offset);
            m_dyld_all_image_infos.dylib_info_addr = data.GetPointer(&offset);
            m_dyld_all_image_infos.notification = data.GetPointer(&offset);
            m_dyld_all_image_infos.processDetachedFromSharedRegion = data.GetU8(&offset);
            m_dyld_all_image_infos.libSystemInitialized = data.GetU8(&offset);
            // Adjust for padding.
            offset += addr_size - 2;
            m_dyld_all_image_infos.dyldImageLoadAddress = data.GetPointer(&offset);
            if (m_dyld_all_image_infos.version >= 11)
            {
                offset += addr_size * 8;
                uint64_t dyld_all_image_infos_addr = data.GetPointer(&offset);

                // When we started, we were given the actual address of the all_image_infos
                // struct (probably via TASK_DYLD_INFO) in memory - this address is stored in
                // m_dyld_all_image_infos_addr and is the most accurate address we have.

                // We read the dyld_all_image_infos struct from memory; it contains its own address.
                // If the address in the struct does not match the actual address,
                // the dyld we're looking at has been loaded at a different location (slid) from
                // where it intended to load.  The addresses in the dyld_all_image_infos struct
                // are the original, non-slid addresses, and need to be adjusted.  Most importantly
                // the address of dyld and the notification address need to be adjusted.

                if (dyld_all_image_infos_addr != m_dyld_all_image_infos_addr)
                {
                    uint64_t image_infos_offset = dyld_all_image_infos_addr - m_dyld_all_image_infos.dyldImageLoadAddress;
                    uint64_t notification_offset = m_dyld_all_image_infos.notification - m_dyld_all_image_infos.dyldImageLoadAddress;
                    m_dyld_all_image_infos.dyldImageLoadAddress = m_dyld_all_image_infos_addr - image_infos_offset;
                    m_dyld_all_image_infos.notification = m_dyld_all_image_infos.dyldImageLoadAddress + notification_offset;
                }
            }
            m_dyld_all_image_infos_stop_id = m_process->GetStopID();
            return true;
        }
    }
    return false;
}
예제 #14
0
lldb::offset_t lldb_private::DumpDataExtractor(
    const DataExtractor &DE, Stream *s, offset_t start_offset,
    lldb::Format item_format, size_t item_byte_size, size_t item_count,
    size_t num_per_line, uint64_t base_addr,
    uint32_t item_bit_size,   // If zero, this is not a bitfield value, if
                              // non-zero, the value is a bitfield
    uint32_t item_bit_offset, // If "item_bit_size" is non-zero, this is the
                              // shift amount to apply to a bitfield
    ExecutionContextScope *exe_scope) {
  if (s == nullptr)
    return start_offset;

  if (item_format == eFormatPointer) {
    if (item_byte_size != 4 && item_byte_size != 8)
      item_byte_size = s->GetAddressByteSize();
  }

  offset_t offset = start_offset;

  if (item_format == eFormatInstruction) {
    TargetSP target_sp;
    if (exe_scope)
      target_sp = exe_scope->CalculateTarget();
    if (target_sp) {
      DisassemblerSP disassembler_sp(Disassembler::FindPlugin(
          target_sp->GetArchitecture(),
          target_sp->GetDisassemblyFlavor(), nullptr));
      if (disassembler_sp) {
        lldb::addr_t addr = base_addr + start_offset;
        lldb_private::Address so_addr;
        bool data_from_file = true;
        if (target_sp->GetSectionLoadList().ResolveLoadAddress(addr, so_addr)) {
          data_from_file = false;
        } else {
          if (target_sp->GetSectionLoadList().IsEmpty() ||
              !target_sp->GetImages().ResolveFileAddress(addr, so_addr))
            so_addr.SetRawAddress(addr);
        }

        size_t bytes_consumed = disassembler_sp->DecodeInstructions(
            so_addr, DE, start_offset, item_count, false, data_from_file);

        if (bytes_consumed) {
          offset += bytes_consumed;
          const bool show_address = base_addr != LLDB_INVALID_ADDRESS;
          const bool show_bytes = true;
          ExecutionContext exe_ctx;
          exe_scope->CalculateExecutionContext(exe_ctx);
          disassembler_sp->GetInstructionList().Dump(s, show_address,
                                                     show_bytes, &exe_ctx);
        }
      }
    } else
      s->Printf("invalid target");

    return offset;
  }

  if ((item_format == eFormatOSType || item_format == eFormatAddressInfo) &&
      item_byte_size > 8)
    item_format = eFormatHex;

  lldb::offset_t line_start_offset = start_offset;
  for (uint32_t count = 0; DE.ValidOffset(offset) && count < item_count;
       ++count) {
    if ((count % num_per_line) == 0) {
      if (count > 0) {
        if (item_format == eFormatBytesWithASCII &&
            offset > line_start_offset) {
          s->Printf("%*s",
                    static_cast<int>(
                        (num_per_line - (offset - line_start_offset)) * 3 + 2),
                    "");
          DumpDataExtractor(DE, s, line_start_offset, eFormatCharPrintable, 1,
                            offset - line_start_offset, SIZE_MAX,
                            LLDB_INVALID_ADDRESS, 0, 0);
        }
        s->EOL();
      }
      if (base_addr != LLDB_INVALID_ADDRESS)
        s->Printf("0x%8.8" PRIx64 ": ",
                  (uint64_t)(base_addr +
                             (offset - start_offset) / DE.getTargetByteSize()));

      line_start_offset = offset;
    } else if (item_format != eFormatChar &&
               item_format != eFormatCharPrintable &&
               item_format != eFormatCharArray && count > 0) {
      s->PutChar(' ');
    }

    switch (item_format) {
    case eFormatBoolean:
      if (item_byte_size <= 8)
        s->Printf("%s", DE.GetMaxU64Bitfield(&offset, item_byte_size,
                                             item_bit_size, item_bit_offset)
                            ? "true"
                            : "false");
      else {
        s->Printf("error: unsupported byte size (%" PRIu64
                  ") for boolean format",
                  (uint64_t)item_byte_size);
        return offset;
      }
      break;

    case eFormatBinary:
      if (item_byte_size <= 8) {
        uint64_t uval64 = DE.GetMaxU64Bitfield(&offset, item_byte_size,
                                               item_bit_size, item_bit_offset);
        // Avoid std::bitset<64>::to_string() since it is missing in
        // earlier C++ libraries
        std::string binary_value(64, '0');
        std::bitset<64> bits(uval64);
        for (uint32_t i = 0; i < 64; ++i)
          if (bits[i])
            binary_value[64 - 1 - i] = '1';
        if (item_bit_size > 0)
          s->Printf("0b%s", binary_value.c_str() + 64 - item_bit_size);
        else if (item_byte_size > 0 && item_byte_size <= 8)
          s->Printf("0b%s", binary_value.c_str() + 64 - item_byte_size * 8);
      } else {
        const bool is_signed = false;
        const unsigned radix = 2;
        offset = DumpAPInt(s, DE, offset, item_byte_size, is_signed, radix);
      }
      break;

    case eFormatBytes:
    case eFormatBytesWithASCII:
      for (uint32_t i = 0; i < item_byte_size; ++i) {
        s->Printf("%2.2x", DE.GetU8(&offset));
      }

      // Put an extra space between the groups of bytes if more than one
      // is being dumped in a group (item_byte_size is more than 1).
      if (item_byte_size > 1)
        s->PutChar(' ');
      break;

    case eFormatChar:
    case eFormatCharPrintable:
    case eFormatCharArray: {
      // If we are only printing one character surround it with single
      // quotes
      if (item_count == 1 && item_format == eFormatChar)
        s->PutChar('\'');

      const uint64_t ch = DE.GetMaxU64Bitfield(&offset, item_byte_size,
                                               item_bit_size, item_bit_offset);
      if (isprint(ch))
        s->Printf("%c", (char)ch);
      else if (item_format != eFormatCharPrintable) {
        switch (ch) {
        case '\033':
          s->Printf("\\e");
          break;
        case '\a':
          s->Printf("\\a");
          break;
        case '\b':
          s->Printf("\\b");
          break;
        case '\f':
          s->Printf("\\f");
          break;
        case '\n':
          s->Printf("\\n");
          break;
        case '\r':
          s->Printf("\\r");
          break;
        case '\t':
          s->Printf("\\t");
          break;
        case '\v':
          s->Printf("\\v");
          break;
        case '\0':
          s->Printf("\\0");
          break;
        default:
          if (item_byte_size == 1)
            s->Printf("\\x%2.2x", (uint8_t)ch);
          else
            s->Printf("%" PRIu64, ch);
          break;
        }
      } else {
        s->PutChar(NON_PRINTABLE_CHAR);
      }

      // If we are only printing one character surround it with single quotes
      if (item_count == 1 && item_format == eFormatChar)
        s->PutChar('\'');
    } break;

    case eFormatEnum: // Print enum value as a signed integer when we don't get
                      // the enum type
    case eFormatDecimal:
      if (item_byte_size <= 8)
        s->Printf("%" PRId64,
                  DE.GetMaxS64Bitfield(&offset, item_byte_size, item_bit_size,
                                       item_bit_offset));
      else {
        const bool is_signed = true;
        const unsigned radix = 10;
        offset = DumpAPInt(s, DE, offset, item_byte_size, is_signed, radix);
      }
      break;

    case eFormatUnsigned:
      if (item_byte_size <= 8)
        s->Printf("%" PRIu64,
                  DE.GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size,
                                       item_bit_offset));
      else {
        const bool is_signed = false;
        const unsigned radix = 10;
        offset = DumpAPInt(s, DE, offset, item_byte_size, is_signed, radix);
      }
      break;

    case eFormatOctal:
      if (item_byte_size <= 8)
        s->Printf("0%" PRIo64,
                  DE.GetMaxS64Bitfield(&offset, item_byte_size, item_bit_size,
                                       item_bit_offset));
      else {
        const bool is_signed = false;
        const unsigned radix = 8;
        offset = DumpAPInt(s, DE, offset, item_byte_size, is_signed, radix);
      }
      break;

    case eFormatOSType: {
      uint64_t uval64 = DE.GetMaxU64Bitfield(&offset, item_byte_size,
                                             item_bit_size, item_bit_offset);
      s->PutChar('\'');
      for (uint32_t i = 0; i < item_byte_size; ++i) {
        uint8_t ch = (uint8_t)(uval64 >> ((item_byte_size - i - 1) * 8));
        if (isprint(ch))
          s->Printf("%c", ch);
        else {
          switch (ch) {
          case '\033':
            s->Printf("\\e");
            break;
          case '\a':
            s->Printf("\\a");
            break;
          case '\b':
            s->Printf("\\b");
            break;
          case '\f':
            s->Printf("\\f");
            break;
          case '\n':
            s->Printf("\\n");
            break;
          case '\r':
            s->Printf("\\r");
            break;
          case '\t':
            s->Printf("\\t");
            break;
          case '\v':
            s->Printf("\\v");
            break;
          case '\0':
            s->Printf("\\0");
            break;
          default:
            s->Printf("\\x%2.2x", ch);
            break;
          }
        }
      }
      s->PutChar('\'');
    } break;

    case eFormatCString: {
      const char *cstr = DE.GetCStr(&offset);

      if (!cstr) {
        s->Printf("NULL");
        offset = LLDB_INVALID_OFFSET;
      } else {
        s->PutChar('\"');

        while (const char c = *cstr) {
          if (isprint(c)) {
            s->PutChar(c);
          } else {
            switch (c) {
            case '\033':
              s->Printf("\\e");
              break;
            case '\a':
              s->Printf("\\a");
              break;
            case '\b':
              s->Printf("\\b");
              break;
            case '\f':
              s->Printf("\\f");
              break;
            case '\n':
              s->Printf("\\n");
              break;
            case '\r':
              s->Printf("\\r");
              break;
            case '\t':
              s->Printf("\\t");
              break;
            case '\v':
              s->Printf("\\v");
              break;
            default:
              s->Printf("\\x%2.2x", c);
              break;
            }
          }

          ++cstr;
        }

        s->PutChar('\"');
      }
    } break;

    case eFormatPointer:
      s->Address(DE.GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size,
                                      item_bit_offset),
                 sizeof(addr_t));
      break;

    case eFormatComplexInteger: {
      size_t complex_int_byte_size = item_byte_size / 2;

      if (complex_int_byte_size > 0 && complex_int_byte_size <= 8) {
        s->Printf("%" PRIu64,
                  DE.GetMaxU64Bitfield(&offset, complex_int_byte_size, 0, 0));
        s->Printf(" + %" PRIu64 "i",
                  DE.GetMaxU64Bitfield(&offset, complex_int_byte_size, 0, 0));
      } else {
        s->Printf("error: unsupported byte size (%" PRIu64
                  ") for complex integer format",
                  (uint64_t)item_byte_size);
        return offset;
      }
    } break;

    case eFormatComplex:
      if (sizeof(float) * 2 == item_byte_size) {
        float f32_1 = DE.GetFloat(&offset);
        float f32_2 = DE.GetFloat(&offset);

        s->Printf("%g + %gi", f32_1, f32_2);
        break;
      } else if (sizeof(double) * 2 == item_byte_size) {
        double d64_1 = DE.GetDouble(&offset);
        double d64_2 = DE.GetDouble(&offset);

        s->Printf("%lg + %lgi", d64_1, d64_2);
        break;
      } else if (sizeof(long double) * 2 == item_byte_size) {
        long double ld64_1 = DE.GetLongDouble(&offset);
        long double ld64_2 = DE.GetLongDouble(&offset);
        s->Printf("%Lg + %Lgi", ld64_1, ld64_2);
        break;
      } else {
        s->Printf("error: unsupported byte size (%" PRIu64
                  ") for complex float format",
                  (uint64_t)item_byte_size);
        return offset;
      }
      break;

    default:
    case eFormatDefault:
    case eFormatHex:
    case eFormatHexUppercase: {
      bool wantsuppercase = (item_format == eFormatHexUppercase);
      switch (item_byte_size) {
      case 1:
      case 2:
      case 4:
      case 8:
        s->Printf(wantsuppercase ? "0x%*.*" PRIX64 : "0x%*.*" PRIx64,
                  (int)(2 * item_byte_size), (int)(2 * item_byte_size),
                  DE.GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size,
                                       item_bit_offset));
        break;
      default: {
        assert(item_bit_size == 0 && item_bit_offset == 0);
        const uint8_t *bytes =
            (const uint8_t *)DE.GetData(&offset, item_byte_size);
        if (bytes) {
          s->PutCString("0x");
          uint32_t idx;
          if (DE.GetByteOrder() == eByteOrderBig) {
            for (idx = 0; idx < item_byte_size; ++idx)
              s->Printf(wantsuppercase ? "%2.2X" : "%2.2x", bytes[idx]);
          } else {
            for (idx = 0; idx < item_byte_size; ++idx)
              s->Printf(wantsuppercase ? "%2.2X" : "%2.2x",
                        bytes[item_byte_size - 1 - idx]);
          }
        }
      } break;
      }
    } break;

    case eFormatFloat: {
      TargetSP target_sp;
      bool used_apfloat = false;
      if (exe_scope)
        target_sp = exe_scope->CalculateTarget();
      if (target_sp) {
        ClangASTContext *clang_ast = target_sp->GetScratchClangASTContext();
        if (clang_ast) {
          clang::ASTContext *ast = clang_ast->getASTContext();
          if (ast) {
            llvm::SmallVector<char, 256> sv;
            // Show full precision when printing float values
            const unsigned format_precision = 0;
            const unsigned format_max_padding = 100;
            size_t item_bit_size = item_byte_size * 8;

            if (item_bit_size == ast->getTypeSize(ast->FloatTy)) {
              llvm::APInt apint(item_bit_size,
                                DE.GetMaxU64(&offset, item_byte_size));
              llvm::APFloat apfloat(ast->getFloatTypeSemantics(ast->FloatTy),
                                    apint);
              apfloat.toString(sv, format_precision, format_max_padding);
            } else if (item_bit_size == ast->getTypeSize(ast->DoubleTy)) {
              llvm::APInt apint;
              if (GetAPInt(DE, &offset, item_byte_size, apint)) {
                llvm::APFloat apfloat(ast->getFloatTypeSemantics(ast->DoubleTy),
                                      apint);
                apfloat.toString(sv, format_precision, format_max_padding);
              }
            } else if (item_bit_size == ast->getTypeSize(ast->LongDoubleTy)) {
              const auto &semantics =
                  ast->getFloatTypeSemantics(ast->LongDoubleTy);
              const auto byte_size =
                  (llvm::APFloat::getSizeInBits(semantics) + 7) / 8;

              llvm::APInt apint;
              if (GetAPInt(DE, &offset, byte_size, apint)) {
                llvm::APFloat apfloat(semantics, apint);
                apfloat.toString(sv, format_precision, format_max_padding);
              }
            } else if (item_bit_size == ast->getTypeSize(ast->HalfTy)) {
              llvm::APInt apint(item_bit_size, DE.GetU16(&offset));
              llvm::APFloat apfloat(ast->getFloatTypeSemantics(ast->HalfTy),
                                    apint);
              apfloat.toString(sv, format_precision, format_max_padding);
            }

            if (!sv.empty()) {
              s->Printf("%*.*s", (int)sv.size(), (int)sv.size(), sv.data());
              used_apfloat = true;
            }
          }
        }
      }

      if (!used_apfloat) {
        std::ostringstream ss;
        if (item_byte_size == sizeof(float) || item_byte_size == 2) {
          float f;
          if (item_byte_size == 2) {
            uint16_t half = DE.GetU16(&offset);
            f = half2float(half);
          } else {
            f = DE.GetFloat(&offset);
          }
          ss.precision(std::numeric_limits<float>::digits10);
          ss << f;
        } else if (item_byte_size == sizeof(double)) {
          ss.precision(std::numeric_limits<double>::digits10);
          ss << DE.GetDouble(&offset);
        } else if (item_byte_size == sizeof(long double) ||
                   item_byte_size == 10) {
          ss.precision(std::numeric_limits<long double>::digits10);
          ss << DE.GetLongDouble(&offset);
        } else {
          s->Printf("error: unsupported byte size (%" PRIu64
                    ") for float format",
                    (uint64_t)item_byte_size);
          return offset;
        }
        ss.flush();
        s->Printf("%s", ss.str().c_str());
      }
    } break;

    case eFormatUnicode16:
      s->Printf("U+%4.4x", DE.GetU16(&offset));
      break;

    case eFormatUnicode32:
      s->Printf("U+0x%8.8x", DE.GetU32(&offset));
      break;

    case eFormatAddressInfo: {
      addr_t addr = DE.GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size,
                                         item_bit_offset);
      s->Printf("0x%*.*" PRIx64, (int)(2 * item_byte_size),
                (int)(2 * item_byte_size), addr);
      if (exe_scope) {
        TargetSP target_sp(exe_scope->CalculateTarget());
        lldb_private::Address so_addr;
        if (target_sp) {
          if (target_sp->GetSectionLoadList().ResolveLoadAddress(addr,
                                                                 so_addr)) {
            s->PutChar(' ');
            so_addr.Dump(s, exe_scope, Address::DumpStyleResolvedDescription,
                         Address::DumpStyleModuleWithFileAddress);
          } else {
            so_addr.SetOffset(addr);
            so_addr.Dump(s, exe_scope,
                         Address::DumpStyleResolvedPointerDescription);
          }
        }
      }
    } break;

    case eFormatHexFloat:
      if (sizeof(float) == item_byte_size) {
        char float_cstr[256];
        llvm::APFloat ap_float(DE.GetFloat(&offset));
        ap_float.convertToHexString(float_cstr, 0, false,
                                    llvm::APFloat::rmNearestTiesToEven);
        s->Printf("%s", float_cstr);
        break;
      } else if (sizeof(double) == item_byte_size) {
        char float_cstr[256];
        llvm::APFloat ap_float(DE.GetDouble(&offset));
        ap_float.convertToHexString(float_cstr, 0, false,
                                    llvm::APFloat::rmNearestTiesToEven);
        s->Printf("%s", float_cstr);
        break;
      } else {
        s->Printf("error: unsupported byte size (%" PRIu64
                  ") for hex float format",
                  (uint64_t)item_byte_size);
        return offset;
      }
      break;

    // please keep the single-item formats below in sync with
    // FormatManager::GetSingleItemFormat
    // if you fail to do so, users will start getting different outputs
    // depending on internal
    // implementation details they should not care about ||
    case eFormatVectorOfChar: //   ||
      s->PutChar('{');        //   \/
      offset =
          DumpDataExtractor(DE, s, offset, eFormatCharArray, 1, item_byte_size,
                            item_byte_size, LLDB_INVALID_ADDRESS, 0, 0);
      s->PutChar('}');
      break;

    case eFormatVectorOfSInt8:
      s->PutChar('{');
      offset =
          DumpDataExtractor(DE, s, offset, eFormatDecimal, 1, item_byte_size,
                            item_byte_size, LLDB_INVALID_ADDRESS, 0, 0);
      s->PutChar('}');
      break;

    case eFormatVectorOfUInt8:
      s->PutChar('{');
      offset = DumpDataExtractor(DE, s, offset, eFormatHex, 1, item_byte_size,
                                 item_byte_size, LLDB_INVALID_ADDRESS, 0, 0);
      s->PutChar('}');
      break;

    case eFormatVectorOfSInt16:
      s->PutChar('{');
      offset = DumpDataExtractor(
          DE, s, offset, eFormatDecimal, sizeof(uint16_t),
          item_byte_size / sizeof(uint16_t), item_byte_size / sizeof(uint16_t),
          LLDB_INVALID_ADDRESS, 0, 0);
      s->PutChar('}');
      break;

    case eFormatVectorOfUInt16:
      s->PutChar('{');
      offset = DumpDataExtractor(DE, s, offset, eFormatHex, sizeof(uint16_t),
                                 item_byte_size / sizeof(uint16_t),
                                 item_byte_size / sizeof(uint16_t),
                                 LLDB_INVALID_ADDRESS, 0, 0);
      s->PutChar('}');
      break;

    case eFormatVectorOfSInt32:
      s->PutChar('{');
      offset = DumpDataExtractor(
          DE, s, offset, eFormatDecimal, sizeof(uint32_t),
          item_byte_size / sizeof(uint32_t), item_byte_size / sizeof(uint32_t),
          LLDB_INVALID_ADDRESS, 0, 0);
      s->PutChar('}');
      break;

    case eFormatVectorOfUInt32:
      s->PutChar('{');
      offset = DumpDataExtractor(DE, s, offset, eFormatHex, sizeof(uint32_t),
                                 item_byte_size / sizeof(uint32_t),
                                 item_byte_size / sizeof(uint32_t),
                                 LLDB_INVALID_ADDRESS, 0, 0);
      s->PutChar('}');
      break;

    case eFormatVectorOfSInt64:
      s->PutChar('{');
      offset = DumpDataExtractor(
          DE, s, offset, eFormatDecimal, sizeof(uint64_t),
          item_byte_size / sizeof(uint64_t), item_byte_size / sizeof(uint64_t),
          LLDB_INVALID_ADDRESS, 0, 0);
      s->PutChar('}');
      break;

    case eFormatVectorOfUInt64:
      s->PutChar('{');
      offset = DumpDataExtractor(DE, s, offset, eFormatHex, sizeof(uint64_t),
                                 item_byte_size / sizeof(uint64_t),
                                 item_byte_size / sizeof(uint64_t),
                                 LLDB_INVALID_ADDRESS, 0, 0);
      s->PutChar('}');
      break;

    case eFormatVectorOfFloat16:
      s->PutChar('{');
      offset =
          DumpDataExtractor(DE, s, offset, eFormatFloat, 2, item_byte_size / 2,
                            item_byte_size / 2, LLDB_INVALID_ADDRESS, 0, 0);
      s->PutChar('}');
      break;

    case eFormatVectorOfFloat32:
      s->PutChar('{');
      offset =
          DumpDataExtractor(DE, s, offset, eFormatFloat, 4, item_byte_size / 4,
                            item_byte_size / 4, LLDB_INVALID_ADDRESS, 0, 0);
      s->PutChar('}');
      break;

    case eFormatVectorOfFloat64:
      s->PutChar('{');
      offset =
          DumpDataExtractor(DE, s, offset, eFormatFloat, 8, item_byte_size / 8,
                            item_byte_size / 8, LLDB_INVALID_ADDRESS, 0, 0);
      s->PutChar('}');
      break;

    case eFormatVectorOfUInt128:
      s->PutChar('{');
      offset =
          DumpDataExtractor(DE, s, offset, eFormatHex, 16, item_byte_size / 16,
                            item_byte_size / 16, LLDB_INVALID_ADDRESS, 0, 0);
      s->PutChar('}');
      break;
    }
  }

  if (item_format == eFormatBytesWithASCII && offset > line_start_offset) {
    s->Printf("%*s", static_cast<int>(
                         (num_per_line - (offset - line_start_offset)) * 3 + 2),
              "");
    DumpDataExtractor(DE, s, line_start_offset, eFormatCharPrintable, 1,
                      offset - line_start_offset, SIZE_MAX,
                      LLDB_INVALID_ADDRESS, 0, 0);
  }
  return offset; // Return the offset at which we ended up
}
예제 #15
0
bool
DWARFDebugArangeSet::Extract(const DataExtractor &data, lldb::offset_t *offset_ptr)
{
    if (data.ValidOffset(*offset_ptr))
    {
        m_arange_descriptors.clear();
        m_offset = *offset_ptr;

        // 7.20 Address Range Table
        //
        // Each set of entries in the table of address ranges contained in
        // the .debug_aranges section begins with a header consisting of: a
        // 4-byte length containing the length of the set of entries for this
        // compilation unit, not including the length field itself; a 2-byte
        // version identifier containing the value 2 for DWARF Version 2; a
        // 4-byte offset into the.debug_infosection; a 1-byte unsigned integer
        // containing the size in bytes of an address (or the offset portion of
        // an address for segmented addressing) on the target system; and a
        // 1-byte unsigned integer containing the size in bytes of a segment
        // descriptor on the target system. This header is followed by a series
        // of tuples. Each tuple consists of an address and a length, each in
        // the size appropriate for an address on the target architecture.
        m_header.length     = data.GetU32(offset_ptr);
        m_header.version    = data.GetU16(offset_ptr);
        m_header.cu_offset  = data.GetU32(offset_ptr);
        m_header.addr_size  = data.GetU8(offset_ptr);
        m_header.seg_size   = data.GetU8(offset_ptr);


        // The first tuple following the header in each set begins at an offset
        // that is a multiple of the size of a single tuple (that is, twice the
        // size of an address). The header is padded, if necessary, to the
        // appropriate boundary.
        const uint32_t header_size = *offset_ptr - m_offset;
        const uint32_t tuple_size = m_header.addr_size << 1;
        uint32_t first_tuple_offset = 0;
        while (first_tuple_offset < header_size)
            first_tuple_offset += tuple_size;

        *offset_ptr = m_offset + first_tuple_offset;

        Descriptor arangeDescriptor;

        assert(sizeof(arangeDescriptor.address) == sizeof(arangeDescriptor.length));
        assert(sizeof(arangeDescriptor.address) >= m_header.addr_size);

        while (data.ValidOffset(*offset_ptr))
        {
            arangeDescriptor.address    = data.GetMaxU64(offset_ptr, m_header.addr_size);
            arangeDescriptor.length     = data.GetMaxU64(offset_ptr, m_header.addr_size);

            // Each set of tuples is terminated by a 0 for the address and 0
            // for the length.
            if (arangeDescriptor.address || arangeDescriptor.length)
                m_arange_descriptors.push_back(arangeDescriptor);
            else
                break;  // We are done if we get a zero address and length
        }

        return !m_arange_descriptors.empty();
    }
    return false;
}
예제 #16
0
    virtual void
    CalculateMnemonicOperandsAndComment (const lldb_private::ExecutionContext *exe_ctx)
    {
        DataExtractor data;
        const AddressClass address_class = GetAddressClass ();

        if (m_opcode.GetData(data, address_class))
        {
            char out_string[512];
            
            ::LLVMDisasmContextRef disasm_context;
            
            if (address_class == eAddressClassCodeAlternateISA)
                disasm_context = m_disasm.m_alternate_disasm_context;
            else
                disasm_context = m_disasm.m_disasm_context;
            
            lldb::addr_t pc = LLDB_INVALID_ADDRESS;
            
            if (exe_ctx)
            {
                Target *target = exe_ctx->GetTargetPtr();
                if (target)
                    pc = m_address.GetLoadAddress(target);
            }
            
            if (pc == LLDB_INVALID_ADDRESS)
                pc = m_address.GetFileAddress();
            
            m_disasm.Lock(this, exe_ctx);
            uint8_t *opcode_data = const_cast<uint8_t *>(data.PeekData (0, 1));
            const size_t opcode_data_len = data.GetByteSize();
            size_t inst_size = ::LLVMDisasmInstruction (disasm_context,
                                                        opcode_data,
                                                        opcode_data_len,
                                                        pc,
                                                        out_string,
                                                        sizeof(out_string));
            
            m_disasm.Unlock();
            
            if (inst_size == 0)
            {
                m_comment.assign ("unknown opcode");
                inst_size = m_opcode.GetByteSize();
                StreamString mnemonic_strm;
                uint32_t offset = 0;
                switch (inst_size)
                {
                    case 1:
                        {
                            const uint8_t uval8 = data.GetU8 (&offset);
                            m_opcode.SetOpcode8 (uval8);
                            m_opcode_name.assign (".byte");
                            mnemonic_strm.Printf("0x%2.2x", uval8);
                        }
                        break;
                    case 2:
                        {
                            const uint16_t uval16 = data.GetU16(&offset);
                            m_opcode.SetOpcode16(uval16);
                            m_opcode_name.assign (".short");
                            mnemonic_strm.Printf("0x%4.4x", uval16);
                        }
                        break;
                    case 4:
                        {
                            const uint32_t uval32 = data.GetU32(&offset);
                            m_opcode.SetOpcode32(uval32);
                            m_opcode_name.assign (".long");
                            mnemonic_strm.Printf("0x%8.8x", uval32);
                        }
                        break;
                    case 8:
                        {
                            const uint64_t uval64 = data.GetU64(&offset);
                            m_opcode.SetOpcode64(uval64);
                            m_opcode_name.assign (".quad");
                            mnemonic_strm.Printf("0x%16.16llx", uval64);
                        }
                        break;
                    default:
                        if (inst_size == 0)
                            return;
                        else
                        {
                            const uint8_t *bytes = data.PeekData(offset, inst_size);
                            if (bytes == NULL)
                                return;
                            m_opcode_name.assign (".byte");
                            m_opcode.SetOpcodeBytes(bytes, inst_size);
                            mnemonic_strm.Printf("0x%2.2x", bytes[0]);
                            for (uint32_t i=1; i<inst_size; ++i)
                                mnemonic_strm.Printf(" 0x%2.2x", bytes[i]);
                        }
                        break;
                }
                m_mnemocics.swap(mnemonic_strm.GetString());
                return;
            }
            else
            {
                if (m_does_branch == eLazyBoolCalculate)
                {
                    if (StringRepresentsBranch (out_string, strlen(out_string)))
                        m_does_branch = eLazyBoolYes;
                    else
                        m_does_branch = eLazyBoolNo;
                }
            }
            
            if (!s_regex_compiled)
            {
                ::regcomp(&s_regex, "[ \t]*([^ ^\t]+)[ \t]*([^ ^\t].*)?", REG_EXTENDED);
                s_regex_compiled = true;
            }
            
            ::regmatch_t matches[3];
            
            if (!::regexec(&s_regex, out_string, sizeof(matches) / sizeof(::regmatch_t), matches, 0))
            {
                if (matches[1].rm_so != -1)
                    m_opcode_name.assign(out_string + matches[1].rm_so, matches[1].rm_eo - matches[1].rm_so);
                if (matches[2].rm_so != -1)
                    m_mnemocics.assign(out_string + matches[2].rm_so, matches[2].rm_eo - matches[2].rm_so);
            }
        }
    }
예제 #17
0
    virtual void
    CalculateMnemonicOperandsAndComment (const lldb_private::ExecutionContext *exe_ctx)
    {
        DataExtractor data;
        const AddressClass address_class = GetAddressClass ();

        if (m_opcode.GetData(data))
        {
            char out_string[512];
            
            DisassemblerLLVMC &llvm_disasm = GetDisassemblerLLVMC();

            DisassemblerLLVMC::LLVMCDisassembler *mc_disasm_ptr;
            
            if (address_class == eAddressClassCodeAlternateISA)
                mc_disasm_ptr = llvm_disasm.m_alternate_disasm_ap.get();
            else
                mc_disasm_ptr = llvm_disasm.m_disasm_ap.get();
            
            lldb::addr_t pc = m_address.GetFileAddress();
            m_using_file_addr = true;
            
            const bool data_from_file = GetDisassemblerLLVMC().m_data_from_file;
            bool use_hex_immediates = true;
            Disassembler::HexImmediateStyle hex_style = Disassembler::eHexStyleC;

            if (exe_ctx)
            {
                Target *target = exe_ctx->GetTargetPtr();
                if (target)
                {
                    use_hex_immediates = target->GetUseHexImmediates();
                    hex_style = target->GetHexImmediateStyle();

                    if (!data_from_file)
                    {
                        const lldb::addr_t load_addr = m_address.GetLoadAddress(target);
                        if (load_addr != LLDB_INVALID_ADDRESS)
                        {
                            pc = load_addr;
                            m_using_file_addr = false;
                        }
                    }
                }
            }
            
            llvm_disasm.Lock(this, exe_ctx);
            
            const uint8_t *opcode_data = data.GetDataStart();
            const size_t opcode_data_len = data.GetByteSize();
            llvm::MCInst inst;
            size_t inst_size = mc_disasm_ptr->GetMCInst (opcode_data,
                                                         opcode_data_len,
                                                         pc,
                                                         inst);

            if (inst_size > 0)
            {
                mc_disasm_ptr->SetStyle(use_hex_immediates, hex_style);
                mc_disasm_ptr->PrintMCInst(inst, out_string, sizeof(out_string));
            }

            llvm_disasm.Unlock();
            
            if (inst_size == 0)
            {
                m_comment.assign ("unknown opcode");
                inst_size = m_opcode.GetByteSize();
                StreamString mnemonic_strm;
                lldb::offset_t offset = 0;
                lldb::ByteOrder byte_order = data.GetByteOrder();
                switch (inst_size)
                {
                    case 1:
                        {
                            const uint8_t uval8 = data.GetU8 (&offset);
                            m_opcode.SetOpcode8 (uval8, byte_order);
                            m_opcode_name.assign (".byte");
                            mnemonic_strm.Printf("0x%2.2x", uval8);
                        }
                        break;
                    case 2:
                        {
                            const uint16_t uval16 = data.GetU16(&offset);
                            m_opcode.SetOpcode16(uval16, byte_order);
                            m_opcode_name.assign (".short");
                            mnemonic_strm.Printf("0x%4.4x", uval16);
                        }
                        break;
                    case 4:
                        {
                            const uint32_t uval32 = data.GetU32(&offset);
                            m_opcode.SetOpcode32(uval32, byte_order);
                            m_opcode_name.assign (".long");
                            mnemonic_strm.Printf("0x%8.8x", uval32);
                        }
                        break;
                    case 8:
                        {
                            const uint64_t uval64 = data.GetU64(&offset);
                            m_opcode.SetOpcode64(uval64, byte_order);
                            m_opcode_name.assign (".quad");
                            mnemonic_strm.Printf("0x%16.16" PRIx64, uval64);
                        }
                        break;
                    default:
                        if (inst_size == 0)
                            return;
                        else
                        {
                            const uint8_t *bytes = data.PeekData(offset, inst_size);
                            if (bytes == NULL)
                                return;
                            m_opcode_name.assign (".byte");
                            m_opcode.SetOpcodeBytes(bytes, inst_size);
                            mnemonic_strm.Printf("0x%2.2x", bytes[0]);
                            for (uint32_t i=1; i<inst_size; ++i)
                                mnemonic_strm.Printf(" 0x%2.2x", bytes[i]);
                        }
                        break;
                }
                m_mnemonics.swap(mnemonic_strm.GetString());
                return;
            }
            else
            {
                if (m_does_branch == eLazyBoolCalculate)
                {
                    const bool can_branch = mc_disasm_ptr->CanBranch(inst);
                    if (can_branch)
                        m_does_branch = eLazyBoolYes;
                    else
                        m_does_branch = eLazyBoolNo;

                }
            }
            
            static RegularExpression s_regex("[ \t]*([^ ^\t]+)[ \t]*([^ ^\t].*)?", REG_EXTENDED);
            
            RegularExpression::Match matches(3);
            
            if (s_regex.Execute(out_string, &matches))
            {
                matches.GetMatchAtIndex(out_string, 1, m_opcode_name);
                matches.GetMatchAtIndex(out_string, 2, m_mnemonics);
            }
        }
    }
예제 #18
0
bool
DWARFFormValue::ExtractValue(const DataExtractor& data, lldb::offset_t* offset_ptr, const DWARFCompileUnit* cu)
{
    bool indirect = false;
    bool is_block = false;
    m_value.data = NULL;
    // Read the value for the form into value and follow and DW_FORM_indirect instances we run into
    do
    {
        indirect = false;
        switch (m_form)
        {
        case DW_FORM_addr:      m_value.value.uval = data.GetMaxU64(offset_ptr, DWARFCompileUnit::GetAddressByteSize(cu));  break;
        case DW_FORM_block2:    m_value.value.uval = data.GetU16(offset_ptr); is_block = true;          break;
        case DW_FORM_block4:    m_value.value.uval = data.GetU32(offset_ptr); is_block = true;          break;
        case DW_FORM_data2:     m_value.value.uval = data.GetU16(offset_ptr);                           break;
        case DW_FORM_data4:     m_value.value.uval = data.GetU32(offset_ptr);                           break;
        case DW_FORM_data8:     m_value.value.uval = data.GetU64(offset_ptr);                           break;
        case DW_FORM_string:    m_value.value.cstr = data.GetCStr(offset_ptr);
                                // Set the string value to also be the data for inlined cstr form values only
                                // so we can tell the differnence between DW_FORM_string and DW_FORM_strp form
                                // values;
                                m_value.data = (uint8_t*)m_value.value.cstr;                            break;
        case DW_FORM_exprloc:
        case DW_FORM_block:     m_value.value.uval = data.GetULEB128(offset_ptr); is_block = true;      break;
        case DW_FORM_block1:    m_value.value.uval = data.GetU8(offset_ptr); is_block = true;           break;
        case DW_FORM_data1:     m_value.value.uval = data.GetU8(offset_ptr);                            break;
        case DW_FORM_flag:      m_value.value.uval = data.GetU8(offset_ptr);                            break;
        case DW_FORM_sdata:     m_value.value.sval = data.GetSLEB128(offset_ptr);                       break;
        case DW_FORM_strp:      m_value.value.uval = data.GetU32(offset_ptr);                           break;
    //  case DW_FORM_APPLE_db_str:
        case DW_FORM_udata:     m_value.value.uval = data.GetULEB128(offset_ptr);                       break;
        case DW_FORM_ref_addr:
            if (cu->GetVersion() <= 2)
                m_value.value.uval = data.GetMaxU64(offset_ptr, DWARFCompileUnit::GetAddressByteSize(cu));
            else
                m_value.value.uval = data.GetU32(offset_ptr); // 4 for DWARF32, 8 for DWARF64, but we don't support DWARF64 yet
            break;
        case DW_FORM_ref1:      m_value.value.uval = data.GetU8(offset_ptr);                            break;
        case DW_FORM_ref2:      m_value.value.uval = data.GetU16(offset_ptr);                           break;
        case DW_FORM_ref4:      m_value.value.uval = data.GetU32(offset_ptr);                           break;
        case DW_FORM_ref8:      m_value.value.uval = data.GetU64(offset_ptr);                           break;
        case DW_FORM_ref_udata: m_value.value.uval = data.GetULEB128(offset_ptr);                       break;
        case DW_FORM_indirect:
            m_form = data.GetULEB128(offset_ptr);
            indirect = true;
            break;

        case DW_FORM_sec_offset:    m_value.value.uval = data.GetU32(offset_ptr);                       break;
        case DW_FORM_flag_present:  m_value.value.uval = 1;                                             break;
        case DW_FORM_ref_sig8:      m_value.value.uval = data.GetU64(offset_ptr);                       break;
        default:
            return false;
            break;
        }
    } while (indirect);

    if (is_block)
    {
        m_value.data = data.PeekData(*offset_ptr, m_value.value.uval);
        if (m_value.data != NULL)
        {
            *offset_ptr += m_value.value.uval;
        }
    }

    return true;
}