void SpinAdapted::operatorfunctions::TensorProduct (const SpinBlock *ablock, const Baseoperator<Matrix>& a, const Baseoperator<Matrix>& b, const SpinBlock* cblock, const StateInfo* cstateinfo, DiagonalMatrix& cDiagonal, double scale) { if (fabs(scale) < TINY) return; const int aSz = a.nrows(); const int bSz = b.nrows(); const char conjC = (cblock->get_leftBlock() == ablock) ? 'n' : 't'; const SpinBlock* bblock = (cblock->get_leftBlock() == ablock) ? cblock->get_rightBlock() : cblock->get_leftBlock(); const StateInfo& s = cblock->get_stateInfo(); const StateInfo* lS = s.leftStateInfo, *rS = s.rightStateInfo; for (int aQ = 0; aQ < aSz; ++aQ) if (a.allowed(aQ, aQ)) for (int bQ = 0; bQ < bSz; ++bQ) if (b.allowed(bQ, bQ)) if (s.allowedQuanta (aQ, bQ, conjC)) { int cQ = s.quantaMap (aQ, bQ, conjC)[0]; Real scaleA = scale; Real scaleB = 1; if (conjC == 'n') { scaleB *= dmrginp.get_ninej()(lS->quanta[aQ].get_s().getirrep() , rS->quanta[bQ].get_s().getirrep(), cstateinfo->quanta[cQ].get_s().getirrep(), a.get_spin().getirrep(), b.get_spin().getirrep(), 0, lS->quanta[aQ].get_s().getirrep() , rS->quanta[bQ].get_s().getirrep(), cstateinfo->quanta[cQ].get_s().getirrep()); scaleB *= Symmetry::spatial_ninej(lS->quanta[aQ].get_symm().getirrep() , rS->quanta[bQ].get_symm().getirrep(), cstateinfo->quanta[cQ].get_symm().getirrep(), a.get_symm().getirrep(), b.get_symm().getirrep(), 0, lS->quanta[aQ].get_symm().getirrep() , rS->quanta[bQ].get_symm().getirrep(), cstateinfo->quanta[cQ].get_symm().getirrep()); if (b.get_fermion() && IsFermion (lS->quanta [aQ])) scaleB *= -1.0; for (int aQState = 0; aQState < lS->quantaStates[aQ] ; aQState++) MatrixDiagonalScale(a.operator_element(aQ, aQ)(aQState+1, aQState+1)*scaleA*scaleB, b.operator_element(bQ, bQ), cDiagonal.Store()+s.unBlockedIndex[cQ]+aQState*rS->quantaStates[bQ]); } else { scaleB *= dmrginp.get_ninej()(lS->quanta[bQ].get_s().getirrep() , rS->quanta[aQ].get_s().getirrep(), cstateinfo->quanta[cQ].get_s().getirrep(), b.get_spin().getirrep(), a.get_spin().getirrep(), 0, lS->quanta[bQ].get_s().getirrep() , rS->quanta[aQ].get_s().getirrep(), cstateinfo->quanta[cQ].get_s().getirrep()); scaleB *= Symmetry::spatial_ninej(lS->quanta[bQ].get_symm().getirrep() , rS->quanta[aQ].get_symm().getirrep(), cstateinfo->quanta[cQ].get_symm().getirrep(), b.get_symm().getirrep(), a.get_symm().getirrep(), 0, lS->quanta[bQ].get_symm().getirrep() , rS->quanta[aQ].get_symm().getirrep(), cstateinfo->quanta[cQ].get_symm().getirrep()); if (a.get_fermion()&& IsFermion(lS->quanta[bQ])) scaleB *= -1.0; for (int bQState = 0; bQState < lS->quantaStates[bQ] ; bQState++) MatrixDiagonalScale(b.operator_element(bQ, bQ)(bQState+1, bQState+1)*scaleA*scaleB, a.operator_element(aQ, aQ), cDiagonal.Store()+s.unBlockedIndex[cQ]+bQState*rS->quantaStates[aQ]); } } }
void SpinAdapted::diagonalise(Matrix& sym, DiagonalMatrix& d, Matrix& vec) { int nrows = sym.Nrows(); int ncols = sym.Ncols(); assert(nrows == ncols); d.ReSize(nrows); vec.ReSize(nrows, nrows); Matrix workmat; workmat = sym; vector<double> workquery(1); int info = 0; double* dptr = d.Store(); int query = -1; DSYEV('V', 'L', nrows, workmat.Store(), nrows, dptr, &(workquery[0]), query, info); // do query to find best size int optlength = static_cast<int>(workquery[0]); vector<double> workspace(optlength); DSYEV('V', 'U', nrows, workmat.Store(), nrows, dptr, &(workspace[0]), optlength, info); // do query to find best size if (info > 0) { pout << "failed to converge " << endl; abort(); } for (int i = 0; i < nrows; ++i) for (int j = 0; j < ncols; ++j) vec(j+1,i+1) = workmat(i+1,j+1); }
void SpinAdapted::svd(Matrix& M, DiagonalMatrix& d, Matrix& U, Matrix& V) { int nrows = M.Nrows(); int ncols = M.Ncols(); assert(nrows >= ncols); int minmn = min(nrows, ncols); int maxmn = max(nrows, ncols); int eigenrows = min(minmn, minmn); d.ReSize(minmn); Matrix Ut; Ut.ReSize(nrows, nrows); V.ReSize(ncols, ncols); int lwork = maxmn * maxmn + 100; double* workspace = new double[lwork]; // first transpose matrix Matrix Mt; Mt = M.t(); int info = 0; DGESVD('A', 'A', nrows, ncols, Mt.Store(), nrows, d.Store(), Ut.Store(), nrows, V.Store(), ncols, workspace, lwork, info); U.ReSize(nrows, ncols); SpinAdapted::Clear(U); for (int i = 0; i < nrows; ++i) for (int j = 0; j < ncols; ++j) U(i+1,j+1) = Ut(j+1,i+1); delete[] workspace; }
static void tred3(const SymmetricMatrix& X, DiagonalMatrix& D, DiagonalMatrix& E, SymmetricMatrix& A) { Tracer et("Evalue(tred3)"); Real tol = FloatingPointPrecision::Minimum()/FloatingPointPrecision::Epsilon(); int n = X.Nrows(); A = X; D.ReSize(n); E.ReSize(n); Real* ei = E.Store() + n; for (int i = n-1; i >= 0; i--) { Real h = 0.0; Real f; Real* d = D.Store(); Real* a = A.Store() + (i*(i+1))/2; int k = i; while (k--) { f = *a++; *d++ = f; h += square(f); } if (h <= tol) { *(--ei) = 0.0; h = 0.0; } else { Real g = sign(-sqrt(h), f); *(--ei) = g; h -= f*g; f -= g; *(d-1) = f; *(a-1) = f; f = 0.0; Real* dj = D.Store(); Real* ej = E.Store(); int j; for (j = 0; j < i; j++) { Real* dk = D.Store(); Real* ak = A.Store()+(j*(j+1))/2; Real g = 0.0; k = j; while (k--) g += *ak++ * *dk++; k = i-j; int l = j; while (k--) { g += *ak * *dk++; ak += ++l; } g /= h; *ej++ = g; f += g * *dj++; } Real hh = f / (2 * h); Real* ak = A.Store(); dj = D.Store(); ej = E.Store(); for (j = 0; j < i; j++) { f = *dj++; g = *ej - hh * f; *ej++ = g; Real* dk = D.Store(); Real* ek = E.Store(); k = j+1; while (k--) { *ak++ -= (f * *ek++ + g * *dk++); } } } *d = *a; *a = h; } }
static void tred2(const SymmetricMatrix& A, DiagonalMatrix& D, DiagonalMatrix& E, Matrix& Z) { Tracer et("Evalue(tred2)"); Real tol = FloatingPointPrecision::Minimum()/FloatingPointPrecision::Epsilon(); int n = A.Nrows(); Z.ReSize(n,n); Z.Inject(A); D.ReSize(n); E.ReSize(n); Real* z = Z.Store(); int i; for (i=n-1; i > 0; i--) // i=0 is excluded { Real f = Z.element(i,i-1); Real g = 0.0; int k = i-1; Real* zik = z + i*n; while (k--) g += square(*zik++); Real h = g + square(f); if (g <= tol) { E.element(i) = f; h = 0.0; } else { g = sign(-sqrt(h), f); E.element(i) = g; h -= f*g; Z.element(i,i-1) = f-g; f = 0.0; Real* zji = z + i; Real* zij = z + i*n; Real* ej = E.Store(); int j; for (j=0; j<i; j++) { *zji = (*zij++)/h; g = 0.0; Real* zjk = z + j*n; zik = z + i*n; k = j; while (k--) g += *zjk++ * (*zik++); k = i-j; while (k--) { g += *zjk * (*zik++); zjk += n; } *ej++ = g/h; f += g * (*zji); zji += n; } Real hh = f / (h + h); zij = z + i*n; ej = E.Store(); for (j=0; j<i; j++) { f = *zij++; g = *ej - hh * f; *ej++ = g; Real* zjk = z + j*n; Real* zik = z + i*n; Real* ek = E.Store(); k = j+1; while (k--) *zjk++ -= ( f*(*ek++) + g*(*zik++) ); } } D.element(i) = h; } D.element(0) = 0.0; E.element(0) = 0.0; for (i=0; i<n; i++) { if (D.element(i) != 0.0) { for (int j=0; j<i; j++) { Real g = 0.0; Real* zik = z + i*n; Real* zkj = z + j; int k = i; while (k--) { g += *zik++ * (*zkj); zkj += n; } Real* zki = z + i; zkj = z + j; k = i; while (k--) { *zkj -= g * (*zki); zkj += n; zki += n; } } } Real* zij = z + i*n; Real* zji = z + i; int j = i; while (j--) { *zij++ = 0.0; *zji = 0.0; zji += n; } D.element(i) = *zij; *zij = 1.0; } }