// // Rewrite formula with maximum arity for operators // Enode * Cnfizer::rewriteMaxArity( Enode * formula, map< enodeid_t, int > & enodeid_to_incoming_edges ) { assert( formula ); vector< Enode * > unprocessed_enodes; // Stack for unprocessed enodes unprocessed_enodes.push_back( formula ); // formula needs to be processed map< enodeid_t, Enode * > cache; // Cache of processed nodes // // Visit the DAG of the formula from the leaves to the root // while( !unprocessed_enodes.empty( ) ) { Enode * enode = unprocessed_enodes.back( ); // // Skip if the node has already been processed before // if ( cache.find( enode->getId( ) ) != cache.end( ) ) { unprocessed_enodes.pop_back( ); continue; } bool unprocessed_children = false; Enode * arg_list; for ( arg_list = enode->getCdr( ) ; arg_list != egraph.enil ; arg_list = arg_list->getCdr( ) ) { Enode * arg = arg_list->getCar( ); assert( arg->isTerm( ) ); // // Push only if it is an unprocessed boolean operator // if ( arg->isBooleanOperator( ) && cache.find( arg->getId( ) ) == cache.end( ) ) { unprocessed_enodes.push_back( arg ); unprocessed_children = true; } // // If it is an atom (either boolean or theory) just // store it in the cache // else if ( arg->isAtom( ) ) { cache.insert( make_pair( arg->getId( ), arg ) ); } } // // SKip if unprocessed_children // if ( unprocessed_children ) continue; unprocessed_enodes.pop_back( ); Enode * result = NULL; // // At this point, every child has been processed // assert ( enode->isBooleanOperator( ) ); if ( enode->isAnd( ) || enode->isOr ( ) ) { assert( enode->isAnd( ) || enode->isOr( ) ); // // Construct the new lists for the operators // result = mergeEnodeArgs( enode, cache, enodeid_to_incoming_edges ); } else { result = enode; } assert( result ); assert( cache.find( enode->getId( ) ) == cache.end( ) ); cache[ enode->getId( ) ] = result; } Enode * top_enode = cache[ formula->getId( ) ]; return top_enode; }
// // Performs the actual cnfization // bool Tseitin::cnfize( Enode * formula, map< enodeid_t, Enode * > & cnf_cache ) { (void)cnf_cache; assert( formula ); assert( !formula->isAnd( ) ); Enode * arg_def = egraph.valDupMap1( formula ); if ( arg_def != NULL ) { vector< Enode * > clause; clause.push_back( arg_def ); #ifdef PRODUCE_PROOF if ( config.produce_inter > 0 ) return solver.addSMTClause( clause, egraph.getIPartitions( formula ) ); #endif return solver.addSMTClause( clause ); } vector< Enode * > unprocessed_enodes; // Stack for unprocessed enodes unprocessed_enodes.push_back( formula ); // formula needs to be processed // // Visit the DAG of the formula from the leaves to the root // while( !unprocessed_enodes.empty( ) ) { Enode * enode = unprocessed_enodes.back( ); // // Skip if the node has already been processed before // if ( egraph.valDupMap1( enode ) != NULL ) { unprocessed_enodes.pop_back( ); continue; } bool unprocessed_children = false; Enode * arg_list; for ( arg_list = enode->getCdr( ) ; arg_list != egraph.enil ; arg_list = arg_list->getCdr( ) ) { Enode * arg = arg_list->getCar( ); assert( arg->isTerm( ) ); // // Push only if it is an unprocessed boolean operator // if ( enode->isBooleanOperator( ) && egraph.valDupMap1( arg ) == NULL ) { unprocessed_enodes.push_back( arg ); unprocessed_children = true; } // // If it is an atom (either boolean or theory) just // store it in the cache // else if ( arg->isAtom( ) ) { egraph.storeDupMap1( arg, arg ); } } // // SKip if unprocessed_children // if ( unprocessed_children ) continue; unprocessed_enodes.pop_back( ); Enode * result = NULL; // // At this point, every child has been processed // // // Do the actual cnfization, according to the node type // char def_name[ 32 ]; if ( enode->isLit( ) ) { result = enode; } else if ( enode->isNot( ) ) { Enode * arg_def = egraph.valDupMap1( enode->get1st( ) ); assert( arg_def ); result = egraph.mkNot( egraph.cons( arg_def ) ); // Toggle the literal } else { Enode * arg_def = NULL; Enode * new_arg_list = egraph.copyEnodeEtypeListWithCache( enode->getCdr( ) ); // // If the enode is not top-level it needs a definition // if ( formula != enode ) { sprintf( def_name, CNF_STR, formula->getId( ), enode->getId( ) ); egraph.newSymbol( def_name, sstore.mkBool( ) ); arg_def = egraph.mkVar( def_name ); #ifdef PRODUCE_PROOF if ( config.produce_inter > 0 ) { // Tag Positive and negative literals egraph.tagIFormula( arg_def , egraph.getIPartitions( enode ) ); egraph.tagIFormula( egraph.mkNot( egraph.cons( arg_def ) ) , egraph.getIPartitions( enode ) ); } #endif } #ifdef PRODUCE_PROOF uint64_t partitions = 0; if ( config.produce_inter > 0 ) { partitions = egraph.getIPartitions( enode ); assert( partitions != 0 ); } #endif // // Handle boolean operators // if ( enode->isAnd( ) ) cnfizeAnd( new_arg_list, arg_def #ifdef PRODUCE_PROOF , partitions #endif ); else if ( enode->isOr( ) ) cnfizeOr( new_arg_list, arg_def #ifdef PRODUCE_PROOF , partitions #endif ); else if ( enode->isIff( ) ) cnfizeIff( new_arg_list, arg_def #ifdef PRODUCE_PROOF , partitions #endif ); else if ( enode->isXor( ) ) cnfizeXor( new_arg_list, arg_def #ifdef PRODUCE_PROOF , partitions #endif ); else { opensmt_error2( "operator not handled ", enode->getCar( ) ); } if ( arg_def != NULL ) result = arg_def; } assert( egraph.valDupMap1( enode ) == NULL ); egraph.storeDupMap1( enode, result ); } if ( formula->isNot( ) ) { // Retrieve definition of argument Enode * arg_def = egraph.valDupMap1( formula->get1st( ) ); assert( arg_def ); vector< Enode * > clause; clause.push_back( toggleLit( arg_def ) ); #ifdef PRODUCE_PROOF if ( config.produce_inter > 0 ) return solver.addSMTClause( clause, egraph.getIPartitions( formula ) ); #endif return solver.addSMTClause( clause ); } return true; }
// // Compute the number of incoming edges for e and children // void Cnfizer::computeIncomingEdges( Enode * e , map< enodeid_t, int > & enodeid_to_incoming_edges ) { assert( e ); vector< Enode * > unprocessed_enodes; // Stack for unprocessed enodes unprocessed_enodes.push_back( e ); // formula needs to be processed // // Visit the DAG of the formula from the leaves to the root // while( !unprocessed_enodes.empty( ) ) { Enode * enode = unprocessed_enodes.back( ); // // Skip if the node has already been processed before // map< enodeid_t, int >::iterator it = enodeid_to_incoming_edges.find( enode->getId( ) ); if ( it != enodeid_to_incoming_edges.end( ) ) { it->second++; unprocessed_enodes.pop_back( ); continue; } bool unprocessed_children = false; if ( enode->isBooleanOperator( ) ) { for ( Enode * arg_list = enode->getCdr( ) ; !arg_list->isEnil( ) ; arg_list = arg_list->getCdr( ) ) { Enode * arg = arg_list->getCar( ); // // Push only if it is an unprocessed boolean operator // map< enodeid_t, int >::iterator it = enodeid_to_incoming_edges.find( arg->getId( ) ); if ( it == enodeid_to_incoming_edges.end( ) ) { unprocessed_enodes.push_back( arg ); unprocessed_children = true; } else { it->second ++; } } } // // SKip if unprocessed_children // if ( unprocessed_children ) continue; unprocessed_enodes.pop_back( ); // // At this point, every child has been processed // assert ( enode->isBooleanOperator( ) || enode->isAtom( ) ); assert ( enodeid_to_incoming_edges.find( enode->getId( ) ) == enodeid_to_incoming_edges.end( ) ); enodeid_to_incoming_edges[ enode->getId( ) ] = 1; } }