double nlopt_eval_enode(const double* x, void * extra) { auto extra_info = static_cast<tuple<Enode *, box const &, bool> *>(extra); Enode * e = get<0>(*extra_info); box const & b = get<1>(*extra_info); bool const polarity = get<2>(*extra_info); unordered_map<Enode *, double> var_map; unsigned i = 0; for (Enode * e : b.get_vars()) { if (e->isForallVar()) { var_map.emplace(e, x[i]); i++; } else { var_map.emplace(e, b[e].mid()); } } try { double const ret1 = eval_enode(e->get1st(), var_map); double const ret2 = eval_enode(e->get2nd(), var_map); double ret = 0; if (e->isLt() || e->isLeq() || e->isEq()) { ret = ret1 - ret2; } else if (e->isGt() || e->isGeq()) { ret = ret2 - ret1; } else if (e->isEq()) { throw runtime_error("nlopt_obj: something is wrong."); } if (!polarity) { ret = - ret; } return ret; } catch (exception & e) { DREAL_LOG_FATAL << "Exception in nlopt_eval_enode: " << e.what() << endl; throw e; } }
box refine_CE_with_nlopt_core(box counterexample, vector<Enode*> const & opt_ctrs, vector<Enode*> const & side_ctrs) { // Plug-in `a` into the constraint and optimize `b` in the counterexample `M` by solving: // // ∃ y_opt ∈ I_y. ∀ y ∈ I_y. f(a, y_opt) >= f(a, y) — (2) // // using local optimizer (i.e. nlopt). // Let `M’ = (a, b_opt)` be a model for (2). DREAL_LOG_DEBUG << "================================" << endl; DREAL_LOG_DEBUG << " Before Refinement " << endl; DREAL_LOG_DEBUG << "================================" << endl; DREAL_LOG_DEBUG << counterexample << endl; DREAL_LOG_DEBUG << "================================" << endl; static bool initialized = false; static vector<double> lb, ub, init; init.clear(); for (Enode * e : counterexample.get_vars()) { if (e->isForallVar()) { if (!initialized) { lb.push_back(e->getDomainLowerBound()); ub.push_back(e->getDomainUpperBound()); } init.push_back(counterexample[e].mid()); DREAL_LOG_DEBUG << lb.back() << " <= " << init.back() << " <= " << ub.back() << endl; } } auto const n = init.size(); static nlopt::opt opt(nlopt::LD_SLSQP, n); if (!initialized) { opt.set_lower_bounds(lb); opt.set_upper_bounds(ub); // set tollerance // TODO(soonhok): set precision // opt.set_xtol_rel(0.0001); opt.set_xtol_abs(0.001); opt.set_maxtime(0.01); initialized = true; } opt.remove_equality_constraints(); opt.remove_inequality_constraints(); // set objective function vector<tuple<Enode *, box const &, bool> *> extra_vec; Enode * e = opt_ctrs[0]; bool polarity = false; while (e->isNot()) { e = e->get1st(); polarity = !polarity; } auto extra = new tuple<Enode *, box const &, bool>(e, counterexample, polarity); extra_vec.push_back(extra); opt.set_min_objective(nlopt_obj, extra); opt.add_inequality_constraint(nlopt_side_condition, extra); DREAL_LOG_DEBUG << "objective function is added: " << e << endl; // set side conditions for (Enode * e : side_ctrs) { bool polarity = false; while (e->isNot()) { e = e->get1st(); polarity = !polarity; } auto extra = new tuple<Enode *, box const &, bool>(e, counterexample, polarity); extra_vec.push_back(extra); DREAL_LOG_DEBUG << "refine_counterexample_with_nlopt: Side condition is added: " << e << endl; if (e->isEq()) { opt.add_equality_constraint(nlopt_side_condition, extra); } else if (e->isLt() || e->isLeq() || e->isGt() || e->isGeq()) { opt.add_inequality_constraint(nlopt_side_condition, extra); } } try { vector<double> output = opt.optimize(init); unsigned i = 0; for (Enode * e : counterexample.get_vars()) { if (e->isForallVar()) { counterexample[e] = output[i]; i++; } } } catch (nlopt::roundoff_limited & e) { } catch (std::runtime_error & e) { DREAL_LOG_DEBUG << e.what() << endl; } for (auto extra : extra_vec) { delete extra; } DREAL_LOG_DEBUG << "================================" << endl; DREAL_LOG_DEBUG << " After Refinement " << endl; DREAL_LOG_DEBUG << "================================" << endl; DREAL_LOG_DEBUG << counterexample << endl; DREAL_LOG_DEBUG << "================================" << endl; return counterexample; }