void MeshRefinement::flag_elements_by_mean_stddev (const ErrorVector & error_per_cell,
                                                   const Real refine_frac,
                                                   const Real coarsen_frac,
                                                   const unsigned int max_l)
{
  // The function arguments are currently just there for
  // backwards_compatibility
  if (!_use_member_parameters)
    {
      // If the user used non-default parameters, lets warn
      // that they're deprecated
      if (refine_frac != 0.3 ||
          coarsen_frac != 0.0 ||
          max_l != libMesh::invalid_uint)
        libmesh_deprecated();

      _refine_fraction = refine_frac;
      _coarsen_fraction = coarsen_frac;
      _max_h_level = max_l;
    }

  // Get the mean value from the error vector
  const Real mean = error_per_cell.mean();

  // Get the standard deviation.  This equals the
  // square-root of the variance
  const Real stddev = std::sqrt (error_per_cell.variance());

  // Check for valid fractions
  libmesh_assert_greater_equal (_refine_fraction, 0);
  libmesh_assert_less_equal (_refine_fraction, 1);
  libmesh_assert_greater_equal (_coarsen_fraction, 0);
  libmesh_assert_less_equal (_coarsen_fraction, 1);

  // The refine and coarsen cutoff
  const Real refine_cutoff  =  mean + _refine_fraction  * stddev;
  const Real coarsen_cutoff =  std::max(mean - _coarsen_fraction * stddev, 0.);

  // Loop over the elements and flag them for coarsening or
  // refinement based on the element error
  for (auto & elem : _mesh.active_element_ptr_range())
    {
      const dof_id_type id  = elem->id();

      libmesh_assert_less (id, error_per_cell.size());

      const ErrorVectorReal elem_error = error_per_cell[id];

      // Possibly flag the element for coarsening ...
      if (elem_error <= coarsen_cutoff)
        elem->set_refinement_flag(Elem::COARSEN);

      // ... or refinement
      if ((elem_error >= refine_cutoff) && (elem->level() < _max_h_level))
        elem->set_refinement_flag(Elem::REFINE);
    }
}
예제 #2
0
void ErrorEstimator::estimate_errors(const EquationSystems & equation_systems,
                                     ErrorVector & error_per_cell,
                                     const std::map<const System *, SystemNorm> & error_norms,
                                     const std::map<const System *, const NumericVector<Number> *> * solution_vectors,
                                     bool estimate_parent_error)
{
  SystemNorm old_error_norm = this->error_norm;

  // Sum the error values from each system
  for (unsigned int s = 0; s != equation_systems.n_systems(); ++s)
    {
      ErrorVector system_error_per_cell;
      const System & sys = equation_systems.get_system(s);
      if (error_norms.find(&sys) == error_norms.end())
        this->error_norm = old_error_norm;
      else
        this->error_norm = error_norms.find(&sys)->second;

      const NumericVector<Number> * solution_vector = nullptr;
      if (solution_vectors &&
          solution_vectors->find(&sys) != solution_vectors->end())
        solution_vector = solution_vectors->find(&sys)->second;

      this->estimate_error(sys, system_error_per_cell,
                           solution_vector, estimate_parent_error);

      if (s)
        {
          libmesh_assert_equal_to (error_per_cell.size(), system_error_per_cell.size());
          for (std::size_t i=0; i != error_per_cell.size(); ++i)
            error_per_cell[i] += system_error_per_cell[i];
        }
      else
        error_per_cell = system_error_per_cell;
    }

  // Restore our old state before returning
  this->error_norm = old_error_norm;
}
예제 #3
0
void JumpErrorEstimator::estimate_error (const System& system,
                                         ErrorVector& error_per_cell,
                                         const NumericVector<Number>* solution_vector,
                                         bool estimate_parent_error)
{
  START_LOG("estimate_error()", "JumpErrorEstimator");
  /*

    Conventions for assigning the direction of the normal:

    - e & f are global element ids

    Case (1.) Elements are at the same level, e<f
    Compute the flux jump on the face and
    add it as a contribution to error_per_cell[e]
    and error_per_cell[f]

    ----------------------
    |           |          |
    |           |    f     |
    |           |          |
    |    e      |---> n    |
    |           |          |
    |           |          |
    ----------------------


    Case (2.) The neighbor is at a higher level.
    Compute the flux jump on e's face and
    add it as a contribution to error_per_cell[e]
    and error_per_cell[f]

    ----------------------
    |     |     |          |
    |     |  e  |---> n    |
    |     |     |          |
    |-----------|    f     |
    |     |     |          |
    |     |     |          |
    |     |     |          |
    ----------------------
  */

  // The current mesh
  const MeshBase& mesh = system.get_mesh();

  // The number of variables in the system
  const unsigned int n_vars = system.n_vars();

  // The DofMap for this system
  const DofMap& dof_map = system.get_dof_map();

  // Resize the error_per_cell vector to be
  // the number of elements, initialize it to 0.
  error_per_cell.resize (mesh.max_elem_id());
  std::fill (error_per_cell.begin(), error_per_cell.end(), 0.);

  // Declare a vector of floats which is as long as
  // error_per_cell above, and fill with zeros.  This vector will be
  // used to keep track of the number of edges (faces) on each active
  // element which are either:
  // 1) an internal edge
  // 2) an edge on a Neumann boundary for which a boundary condition
  //    function has been specified.
  // The error estimator can be scaled by the number of flux edges (faces)
  // which the element actually has to obtain a more uniform measure
  // of the error.  Use floats instead of ints since in case 2 (above)
  // f gets 1/2 of a flux face contribution from each of his
  // neighbors
  std::vector<float> n_flux_faces;
  if (scale_by_n_flux_faces)
    n_flux_faces.resize(error_per_cell.size(), 0);

  // Prepare current_local_solution to localize a non-standard
  // solution vector if necessary
  if (solution_vector && solution_vector != system.solution.get())
    {
      NumericVector<Number>* newsol =
        const_cast<NumericVector<Number>*>(solution_vector);
      System &sys = const_cast<System&>(system);
      newsol->swap(*sys.solution);
      sys.update();
    }

  fine_context.reset(new FEMContext(system));
  coarse_context.reset(new FEMContext(system));

  // Loop over all the variables we've been requested to find jumps in, to
  // pre-request
  for (var=0; var<n_vars; var++)
    {
      // Possibly skip this variable
      if (error_norm.weight(var) == 0.0) continue;

      // FIXME: Need to generalize this to vector-valued elements. [PB]
      FEBase* side_fe = NULL;

      const std::set<unsigned char>& elem_dims =
        fine_context->elem_dimensions();

      for (std::set<unsigned char>::const_iterator dim_it =
             elem_dims.begin(); dim_it != elem_dims.end(); ++dim_it)
        {
          const unsigned char dim = *dim_it;

          fine_context->get_side_fe( var, side_fe, dim );

          libmesh_assert_not_equal_to(side_fe->get_fe_type().family, SCALAR);

          side_fe->get_xyz();
        }
    }

  this->init_context(*fine_context);
  this->init_context(*coarse_context);

  // Iterate over all the active elements in the mesh
  // that live on this processor.
  MeshBase::const_element_iterator       elem_it  = mesh.active_local_elements_begin();
  const MeshBase::const_element_iterator elem_end = mesh.active_local_elements_end();

  for (; elem_it != elem_end; ++elem_it)
    {
      // e is necessarily an active element on the local processor
      const Elem* e = *elem_it;
      const dof_id_type e_id = e->id();

#ifdef LIBMESH_ENABLE_AMR
      // See if the parent of element e has been examined yet;
      // if not, we may want to compute the estimator on it
      const Elem* parent = e->parent();

      // We only can compute and only need to compute on
      // parents with all active children
      bool compute_on_parent = true;
      if (!parent || !estimate_parent_error)
        compute_on_parent = false;
      else
        for (unsigned int c=0; c != parent->n_children(); ++c)
          if (!parent->child(c)->active())
            compute_on_parent = false;

      if (compute_on_parent &&
          !error_per_cell[parent->id()])
        {
          // Compute a projection onto the parent
          DenseVector<Number> Uparent;
          FEBase::coarsened_dof_values
            (*(system.solution), dof_map, parent, Uparent, false);

          // Loop over the neighbors of the parent
          for (unsigned int n_p=0; n_p<parent->n_neighbors(); n_p++)
            {
              if (parent->neighbor(n_p) != NULL) // parent has a neighbor here
                {
                  // Find the active neighbors in this direction
                  std::vector<const Elem*> active_neighbors;
                  parent->neighbor(n_p)->
                    active_family_tree_by_neighbor(active_neighbors,
                                                   parent);
                  // Compute the flux to each active neighbor
                  for (unsigned int a=0;
                       a != active_neighbors.size(); ++a)
                    {
                      const Elem *f = active_neighbors[a];
                      // FIXME - what about when f->level <
                      // parent->level()??
                      if (f->level() >= parent->level())
                        {
                          fine_context->pre_fe_reinit(system, f);
                          coarse_context->pre_fe_reinit(system, parent);
                          libmesh_assert_equal_to
                            (coarse_context->get_elem_solution().size(),
                             Uparent.size());
                          coarse_context->get_elem_solution() = Uparent;

                          this->reinit_sides();

                          // Loop over all significant variables in the system
                          for (var=0; var<n_vars; var++)
                            if (error_norm.weight(var) != 0.0)
                              {
                                this->internal_side_integration();

                                error_per_cell[fine_context->get_elem().id()] +=
                                  static_cast<ErrorVectorReal>(fine_error);
                                error_per_cell[coarse_context->get_elem().id()] +=
                                  static_cast<ErrorVectorReal>(coarse_error);
                              }

                          // Keep track of the number of internal flux
                          // sides found on each element
                          if (scale_by_n_flux_faces)
                            {
                              n_flux_faces[fine_context->get_elem().id()]++;
                              n_flux_faces[coarse_context->get_elem().id()] +=
                                this->coarse_n_flux_faces_increment();
                            }
                        }
                    }
                }
              else if (integrate_boundary_sides)
                {
                  fine_context->pre_fe_reinit(system, parent);
                  libmesh_assert_equal_to
                    (fine_context->get_elem_solution().size(),
                     Uparent.size());
                  fine_context->get_elem_solution() = Uparent;
                  fine_context->side = n_p;
                  fine_context->side_fe_reinit();

                  // If we find a boundary flux for any variable,
                  // let's just count it as a flux face for all
                  // variables.  Otherwise we'd need to keep track of
                  // a separate n_flux_faces and error_per_cell for
                  // every single var.
                  bool found_boundary_flux = false;

                  for (var=0; var<n_vars; var++)
                    if (error_norm.weight(var) != 0.0)
                      {
                        if (this->boundary_side_integration())
                          {
                            error_per_cell[fine_context->get_elem().id()] +=
                              static_cast<ErrorVectorReal>(fine_error);
                            found_boundary_flux = true;
                          }
                      }

                  if (scale_by_n_flux_faces && found_boundary_flux)
                    n_flux_faces[fine_context->get_elem().id()]++;
                }
            }
        }
#endif // #ifdef LIBMESH_ENABLE_AMR

      // If we do any more flux integration, e will be the fine element
      fine_context->pre_fe_reinit(system, e);

      // Loop over the neighbors of element e
      for (unsigned int n_e=0; n_e<e->n_neighbors(); n_e++)
        {
          if ((e->neighbor(n_e) != NULL) ||
              integrate_boundary_sides)
            {
              fine_context->side = n_e;
              fine_context->side_fe_reinit();
            }

          if (e->neighbor(n_e) != NULL) // e is not on the boundary
            {
              const Elem* f           = e->neighbor(n_e);
              const dof_id_type f_id = f->id();

              // Compute flux jumps if we are in case 1 or case 2.
              if ((f->active() && (f->level() == e->level()) && (e_id < f_id))
                  || (f->level() < e->level()))
                {
                  // f is now the coarse element
                  coarse_context->pre_fe_reinit(system, f);

                  this->reinit_sides();

                  // Loop over all significant variables in the system
                  for (var=0; var<n_vars; var++)
                    if (error_norm.weight(var) != 0.0)
                      {
                        this->internal_side_integration();

                        error_per_cell[fine_context->get_elem().id()] +=
                          static_cast<ErrorVectorReal>(fine_error);
                        error_per_cell[coarse_context->get_elem().id()] +=
                          static_cast<ErrorVectorReal>(coarse_error);
                      }

                  // Keep track of the number of internal flux
                  // sides found on each element
                  if (scale_by_n_flux_faces)
                    {
                      n_flux_faces[fine_context->get_elem().id()]++;
                      n_flux_faces[coarse_context->get_elem().id()] +=
                        this->coarse_n_flux_faces_increment();
                    }
                } // end if (case1 || case2)
            } // if (e->neigbor(n_e) != NULL)

          // Otherwise, e is on the boundary.  If it happens to
          // be on a Dirichlet boundary, we need not do anything.
          // On the other hand, if e is on a Neumann (flux) boundary
          // with grad(u).n = g, we need to compute the additional residual
          // (h * \int |g - grad(u_h).n|^2 dS)^(1/2).
          // We can only do this with some knowledge of the boundary
          // conditions, i.e. the user must have attached an appropriate
          // BC function.
          else if (integrate_boundary_sides)
            {
              bool found_boundary_flux = false;

              for (var=0; var<n_vars; var++)
                if (error_norm.weight(var) != 0.0)
                  if (this->boundary_side_integration())
                    {
                      error_per_cell[fine_context->get_elem().id()] +=
                        static_cast<ErrorVectorReal>(fine_error);
                      found_boundary_flux = true;
                    }

              if (scale_by_n_flux_faces && found_boundary_flux)
                n_flux_faces[fine_context->get_elem().id()]++;
            } // end if (e->neighbor(n_e) == NULL)
        } // end loop over neighbors
    } // End loop over active local elements


  // Each processor has now computed the error contribuions
  // for its local elements.  We need to sum the vector
  // and then take the square-root of each component.  Note
  // that we only need to sum if we are running on multiple
  // processors, and we only need to take the square-root
  // if the value is nonzero.  There will in general be many
  // zeros for the inactive elements.

  // First sum the vector of estimated error values
  this->reduce_error(error_per_cell, system.comm());

  // Compute the square-root of each component.
  for (std::size_t i=0; i<error_per_cell.size(); i++)
    if (error_per_cell[i] != 0.)
      error_per_cell[i] = std::sqrt(error_per_cell[i]);


  if (this->scale_by_n_flux_faces)
    {
      // Sum the vector of flux face counts
      this->reduce_error(n_flux_faces, system.comm());

      // Sanity check: Make sure the number of flux faces is
      // always an integer value
#ifdef DEBUG
      for (unsigned int i=0; i<n_flux_faces.size(); ++i)
        libmesh_assert_equal_to (n_flux_faces[i], static_cast<float>(static_cast<unsigned int>(n_flux_faces[i])) );
#endif

      // Scale the error by the number of flux faces for each element
      for (unsigned int i=0; i<n_flux_faces.size(); ++i)
        {
          if (n_flux_faces[i] == 0.0) // inactive or non-local element
            continue;

          //libMesh::out << "Element " << i << " has " << n_flux_faces[i] << " flux faces." << std::endl;
          error_per_cell[i] /= static_cast<ErrorVectorReal>(n_flux_faces[i]);
        }
    }

  // If we used a non-standard solution before, now is the time to fix
  // the current_local_solution
  if (solution_vector && solution_vector != system.solution.get())
    {
      NumericVector<Number>* newsol =
        const_cast<NumericVector<Number>*>(solution_vector);
      System &sys = const_cast<System&>(system);
      newsol->swap(*sys.solution);
      sys.update();
    }

  STOP_LOG("estimate_error()", "JumpErrorEstimator");
}
예제 #4
0
void JumpErrorEstimator::estimate_error (const System& system,
					 ErrorVector& error_per_cell,
					 const NumericVector<Number>* solution_vector,
					 bool estimate_parent_error)
{
  START_LOG("estimate_error()", "JumpErrorEstimator");
  /*

  Conventions for assigning the direction of the normal:

  - e & f are global element ids

  Case (1.) Elements are at the same level, e<f
            Compute the flux jump on the face and
	    add it as a contribution to error_per_cell[e]
	    and error_per_cell[f]

                   ----------------------
		  |           |          |
		  |           |    f     |
		  |           |          |
		  |    e      |---> n    |
		  |           |          |
		  |           |          |
                   ----------------------


   Case (2.) The neighbor is at a higher level.
             Compute the flux jump on e's face and
	     add it as a contribution to error_per_cell[e]
	     and error_per_cell[f]

                   ----------------------
		  |     |     |          |
		  |     |  e  |---> n    |
		  |     |     |          |
		  |-----------|    f     |
		  |     |     |          |
		  |     |     |          |
		  |     |     |          |
                   ----------------------
  */

  // The current mesh
  const MeshBase& mesh = system.get_mesh();

  // The dimensionality of the mesh
  const unsigned int dim = mesh.mesh_dimension();

  // The number of variables in the system
  const unsigned int n_vars = system.n_vars();

  // The DofMap for this system
  const DofMap& dof_map = system.get_dof_map();

  // Resize the error_per_cell vector to be
  // the number of elements, initialize it to 0.
  error_per_cell.resize (mesh.max_elem_id());
  std::fill (error_per_cell.begin(), error_per_cell.end(), 0.);

  // Declare a vector of floats which is as long as
  // error_per_cell above, and fill with zeros.  This vector will be
  // used to keep track of the number of edges (faces) on each active
  // element which are either:
  // 1) an internal edge
  // 2) an edge on a Neumann boundary for which a boundary condition
  //    function has been specified.
  // The error estimator can be scaled by the number of flux edges (faces)
  // which the element actually has to obtain a more uniform measure
  // of the error.  Use floats instead of ints since in case 2 (above)
  // f gets 1/2 of a flux face contribution from each of his
  // neighbors
  std::vector<float> n_flux_faces (error_per_cell.size());

  // Prepare current_local_solution to localize a non-standard
  // solution vector if necessary
  if (solution_vector && solution_vector != system.solution.get())
    {
      NumericVector<Number>* newsol =
        const_cast<NumericVector<Number>*>(solution_vector);
      System &sys = const_cast<System&>(system);
      newsol->swap(*sys.solution);
      sys.update();
    }

  // Loop over all the variables in the system
  for (var=0; var<n_vars; var++)
    {
      // Possibly skip this variable
      if (error_norm.weight(var) == 0.0) continue;

      // The type of finite element to use for this variable
      const FEType& fe_type = dof_map.variable_type (var);

      // Finite element objects for the same face from
      // different sides
      fe_fine = FEBase::build (dim, fe_type);
      fe_coarse = FEBase::build (dim, fe_type);

      // Build an appropriate Gaussian quadrature rule
      QGauss qrule (dim-1, fe_type.default_quadrature_order());

      // Tell the finite element for the fine element about the quadrature
      // rule.  The finite element for the coarse element need not know about it
      fe_fine->attach_quadrature_rule (&qrule);

      // By convention we will always do the integration
      // on the face of element e.  We'll need its Jacobian values and
      // physical point locations, at least
      fe_fine->get_JxW();
      fe_fine->get_xyz();

      // Our derived classes may want to do some initialization here
      this->initialize(system, error_per_cell, estimate_parent_error);

      // The global DOF indices for elements e & f
      std::vector<dof_id_type> dof_indices_fine;
      std::vector<dof_id_type> dof_indices_coarse;



      // Iterate over all the active elements in the mesh
      // that live on this processor.
      MeshBase::const_element_iterator       elem_it  = mesh.active_local_elements_begin();
      const MeshBase::const_element_iterator elem_end = mesh.active_local_elements_end();

      for (; elem_it != elem_end; ++elem_it)
	{
	  // e is necessarily an active element on the local processor
	  const Elem* e = *elem_it;
	  const dof_id_type e_id = e->id();

#ifdef LIBMESH_ENABLE_AMR
          // See if the parent of element e has been examined yet;
          // if not, we may want to compute the estimator on it
          const Elem* parent = e->parent();

          // We only can compute and only need to compute on
          // parents with all active children
          bool compute_on_parent = true;
          if (!parent || !estimate_parent_error)
            compute_on_parent = false;
          else
            for (unsigned int c=0; c != parent->n_children(); ++c)
              if (!parent->child(c)->active())
                compute_on_parent = false;

          if (compute_on_parent &&
              !error_per_cell[parent->id()])
	    {
              // Compute a projection onto the parent
              DenseVector<Number> Uparent;
              FEBase::coarsened_dof_values(*(system.solution),
                                           dof_map, parent, Uparent,
                                           var, false);

	      // Loop over the neighbors of the parent
	      for (unsigned int n_p=0; n_p<parent->n_neighbors(); n_p++)
                {
	          if (parent->neighbor(n_p) != NULL) // parent has a neighbor here
		    {
                      // Find the active neighbors in this direction
                      std::vector<const Elem*> active_neighbors;
                      parent->neighbor(n_p)->
		        active_family_tree_by_neighbor(active_neighbors,
                                                       parent);
                      // Compute the flux to each active neighbor
                      for (unsigned int a=0;
                           a != active_neighbors.size(); ++a)
                        {
                          const Elem *f = active_neighbors[a];
                      // FIXME - what about when f->level <
                      // parent->level()??
                          if (f->level() >= parent->level())
                            {
                              fine_elem = f;
                              coarse_elem = parent;
                              Ucoarse = Uparent;

		              dof_map.dof_indices (fine_elem, dof_indices_fine, var);
		              const unsigned int n_dofs_fine =
				libmesh_cast_int<unsigned int>(dof_indices_fine.size());
                              Ufine.resize(n_dofs_fine);

			      for (unsigned int i=0; i<n_dofs_fine; i++)
			        Ufine(i) = system.current_solution(dof_indices_fine[i]);
                              this->reinit_sides();
                              this->internal_side_integration();

                              error_per_cell[fine_elem->id()] +=
				static_cast<ErrorVectorReal>(fine_error);
                              error_per_cell[coarse_elem->id()] += 
				static_cast<ErrorVectorReal>(coarse_error);

                              // Keep track of the number of internal flux
                              // sides found on each element
                              n_flux_faces[fine_elem->id()]++;
                              n_flux_faces[coarse_elem->id()] += this->coarse_n_flux_faces_increment();
                            }
                        }
		    }
		  else if (integrate_boundary_sides)
		    {
                      fine_elem = parent;
                      Ufine = Uparent;

                      // Reinitialize shape functions on the fine element side
                      fe_fine->reinit (fine_elem, fine_side);

                      if (this->boundary_side_integration())
                        {
                          error_per_cell[fine_elem->id()] +=
			    static_cast<ErrorVectorReal>(fine_error);
                          n_flux_faces[fine_elem->id()]++;
                        }
                    }
		}
	    }
#endif // #ifdef LIBMESH_ENABLE_AMR

          // If we do any more flux integration, e will be the fine element
          fine_elem = e;

	  // Loop over the neighbors of element e
	  for (unsigned int n_e=0; n_e<e->n_neighbors(); n_e++)
	    {
              fine_side = n_e;

	      if (e->neighbor(n_e) != NULL) // e is not on the boundary
		{
		  const Elem* f           = e->neighbor(n_e);
		  const dof_id_type f_id = f->id();

		  // Compute flux jumps if we are in case 1 or case 2.
		  if ((f->active() && (f->level() == e->level()) && (e_id < f_id))
		      || (f->level() < e->level()))
		    {
                      // f is now the coarse element
                      coarse_elem = f;

		      // Get the DOF indices for the two elements
		      dof_map.dof_indices (fine_elem, dof_indices_fine, var);
		      dof_map.dof_indices (coarse_elem, dof_indices_coarse, var);

		      // The number of DOFS on each element
		      const unsigned int n_dofs_fine = 
			libmesh_cast_int<unsigned int>(dof_indices_fine.size());
		      const unsigned int n_dofs_coarse =
			libmesh_cast_int<unsigned int>(dof_indices_coarse.size());
                      Ufine.resize(n_dofs_fine);
                      Ucoarse.resize(n_dofs_coarse);

		      // The local solutions on each element
		      for (unsigned int i=0; i<n_dofs_fine; i++)
			Ufine(i) = system.current_solution(dof_indices_fine[i]);
		      for (unsigned int i=0; i<n_dofs_coarse; i++)
			Ucoarse(i) = system.current_solution(dof_indices_coarse[i]);

                      this->reinit_sides();
                      this->internal_side_integration();

                      error_per_cell[fine_elem->id()] +=
			static_cast<ErrorVectorReal>(fine_error);
                      error_per_cell[coarse_elem->id()] +=
			static_cast<ErrorVectorReal>(coarse_error);

                      // Keep track of the number of internal flux
                      // sides found on each element
                      n_flux_faces[fine_elem->id()]++;
                      n_flux_faces[coarse_elem->id()] += this->coarse_n_flux_faces_increment();
		    } // end if (case1 || case2)
		} // if (e->neigbor(n_e) != NULL)

	      // Otherwise, e is on the boundary.  If it happens to
	      // be on a Dirichlet boundary, we need not do anything.
	      // On the other hand, if e is on a Neumann (flux) boundary
	      // with grad(u).n = g, we need to compute the additional residual
	      // (h * \int |g - grad(u_h).n|^2 dS)^(1/2).
	      // We can only do this with some knowledge of the boundary
	      // conditions, i.e. the user must have attached an appropriate
	      // BC function.
	      else
		{
		  if (integrate_boundary_sides)
		    {
                      // Reinitialize shape functions on the fine element side
                      fe_fine->reinit (fine_elem, fine_side);

		      // Get the DOF indices
		      dof_map.dof_indices (fine_elem, dof_indices_fine, var);

		      // The number of DOFS on each element
		      const unsigned int n_dofs_fine =
			libmesh_cast_int<unsigned int>(dof_indices_fine.size());
                      Ufine.resize(n_dofs_fine);

                      for (unsigned int i=0; i<n_dofs_fine; i++)
                        Ufine(i) = system.current_solution(dof_indices_fine[i]);

                      if (this->boundary_side_integration())
                        {
                          error_per_cell[fine_elem->id()] +=
			    static_cast<ErrorVectorReal>(fine_error);
                          n_flux_faces[fine_elem->id()]++;
                        }
                    } // end if _bc_function != NULL
		} // end if (e->neighbor(n_e) == NULL)
	    } // end loop over neighbors
	} // End loop over active local elements
    } // End loop over variables



  // Each processor has now computed the error contribuions
  // for its local elements.  We need to sum the vector
  // and then take the square-root of each component.  Note
  // that we only need to sum if we are running on multiple
  // processors, and we only need to take the square-root
  // if the value is nonzero.  There will in general be many
  // zeros for the inactive elements.

  // First sum the vector of estimated error values
  this->reduce_error(error_per_cell);

  // Compute the square-root of each component.
  for (std::size_t i=0; i<error_per_cell.size(); i++)
    if (error_per_cell[i] != 0.)
      error_per_cell[i] = std::sqrt(error_per_cell[i]);


  if (this->scale_by_n_flux_faces)
    {
      // Sum the vector of flux face counts
      this->reduce_error(n_flux_faces);

      // Sanity check: Make sure the number of flux faces is
      // always an integer value
#ifdef DEBUG
      for (unsigned int i=0; i<n_flux_faces.size(); ++i)
	libmesh_assert_equal_to (n_flux_faces[i], static_cast<float>(static_cast<unsigned int>(n_flux_faces[i])) );
#endif

      // Scale the error by the number of flux faces for each element
      for (unsigned int i=0; i<n_flux_faces.size(); ++i)
	{
	  if (n_flux_faces[i] == 0.0) // inactive or non-local element
	    continue;

	  //libMesh::out << "Element " << i << " has " << n_flux_faces[i] << " flux faces." << std::endl;
	  error_per_cell[i] /= static_cast<ErrorVectorReal>(n_flux_faces[i]);
	}
    }

  // If we used a non-standard solution before, now is the time to fix
  // the current_local_solution
  if (solution_vector && solution_vector != system.solution.get())
    {
      NumericVector<Number>* newsol =
        const_cast<NumericVector<Number>*>(solution_vector);
      System &sys = const_cast<System&>(system);
      newsol->swap(*sys.solution);
      sys.update();
    }

  STOP_LOG("estimate_error()", "JumpErrorEstimator");
}
예제 #5
0
void ExactErrorEstimator::estimate_error (const System & system,
                                          ErrorVector & error_per_cell,
                                          const NumericVector<Number> * solution_vector,
                                          bool estimate_parent_error)
{
  // Ignore the fact that this variable is unused when !LIBMESH_ENABLE_AMR
  libmesh_ignore(estimate_parent_error);

  // The current mesh
  const MeshBase & mesh = system.get_mesh();

  // The dimensionality of the mesh
  const unsigned int dim = mesh.mesh_dimension();

  // The number of variables in the system
  const unsigned int n_vars = system.n_vars();

  // The DofMap for this system
  const DofMap & dof_map = system.get_dof_map();

  // Resize the error_per_cell vector to be
  // the number of elements, initialize it to 0.
  error_per_cell.resize (mesh.max_elem_id());
  std::fill (error_per_cell.begin(), error_per_cell.end(), 0.);

  // Prepare current_local_solution to localize a non-standard
  // solution vector if necessary
  if (solution_vector && solution_vector != system.solution.get())
    {
      NumericVector<Number> * newsol =
        const_cast<NumericVector<Number> *>(solution_vector);
      System & sys = const_cast<System &>(system);
      newsol->swap(*sys.solution);
      sys.update();
    }

  // Loop over all the variables in the system
  for (unsigned int var=0; var<n_vars; var++)
    {
      // Possibly skip this variable
      if (error_norm.weight(var) == 0.0) continue;

      // The (string) name of this variable
      const std::string & var_name = system.variable_name(var);

      // The type of finite element to use for this variable
      const FEType & fe_type = dof_map.variable_type (var);

      UniquePtr<FEBase> fe (FEBase::build (dim, fe_type));

      // Build an appropriate Gaussian quadrature rule
      UniquePtr<QBase> qrule =
        fe_type.default_quadrature_rule (dim,
                                         _extra_order);

      fe->attach_quadrature_rule (qrule.get());

      // Prepare a global solution and a MeshFunction of the fine system if we need one
      UniquePtr<MeshFunction> fine_values;
      UniquePtr<NumericVector<Number> > fine_soln = NumericVector<Number>::build(system.comm());
      if (_equation_systems_fine)
        {
          const System & fine_system = _equation_systems_fine->get_system(system.name());

          std::vector<Number> global_soln;
          // FIXME - we're assuming that the fine system solution gets
          // used even when a different vector is used for the coarse
          // system
          fine_system.update_global_solution(global_soln);
          fine_soln->init
            (cast_int<numeric_index_type>(global_soln.size()), true,
             SERIAL);
          (*fine_soln) = global_soln;

          fine_values = UniquePtr<MeshFunction>
            (new MeshFunction(*_equation_systems_fine,
                              *fine_soln,
                              fine_system.get_dof_map(),
                              fine_system.variable_number(var_name)));
          fine_values->init();
        } else {
        // Initialize functors if we're using them
        for (unsigned int i=0; i != _exact_values.size(); ++i)
          if (_exact_values[i])
            _exact_values[i]->init();

        for (unsigned int i=0; i != _exact_derivs.size(); ++i)
          if (_exact_derivs[i])
            _exact_derivs[i]->init();

        for (unsigned int i=0; i != _exact_hessians.size(); ++i)
          if (_exact_hessians[i])
            _exact_hessians[i]->init();
      }

      // Request the data we'll need to compute with
      fe->get_JxW();
      fe->get_phi();
      fe->get_dphi();
#ifdef LIBMESH_ENABLE_SECOND_DERIVATIVES
      fe->get_d2phi();
#endif
      fe->get_xyz();

#ifdef LIBMESH_ENABLE_AMR
      // If we compute on parent elements, we'll want to do so only
      // once on each, so we need to keep track of which we've done.
      std::vector<bool> computed_var_on_parent;

      if (estimate_parent_error)
        computed_var_on_parent.resize(error_per_cell.size(), false);
#endif

      // TODO: this ought to be threaded (and using subordinate
      // MeshFunction objects in each thread rather than a single
      // master)

      // Iterate over all the active elements in the mesh
      // that live on this processor.
      MeshBase::const_element_iterator
        elem_it  = mesh.active_local_elements_begin();
      const MeshBase::const_element_iterator
        elem_end = mesh.active_local_elements_end();

      for (;elem_it != elem_end; ++elem_it)
        {
          // e is necessarily an active element on the local processor
          const Elem * elem = *elem_it;
          const dof_id_type e_id = elem->id();

#ifdef LIBMESH_ENABLE_AMR
          // See if the parent of element e has been examined yet;
          // if not, we may want to compute the estimator on it
          const Elem * parent = elem->parent();

          // We only can compute and only need to compute on
          // parents with all active children
          bool compute_on_parent = true;
          if (!parent || !estimate_parent_error)
            compute_on_parent = false;
          else
            for (unsigned int c=0; c != parent->n_children(); ++c)
              if (!parent->child_ptr(c)->active())
                compute_on_parent = false;

          if (compute_on_parent &&
              !computed_var_on_parent[parent->id()])
            {
              computed_var_on_parent[parent->id()] = true;

              // Compute a projection onto the parent
              DenseVector<Number> Uparent;
              FEBase::coarsened_dof_values(*(system.current_local_solution),
                                           dof_map, parent, Uparent,
                                           var, false);

              error_per_cell[parent->id()] +=
                static_cast<ErrorVectorReal>
                (find_squared_element_error(system, var_name,
                                            parent, Uparent,
                                            fe.get(),
                                            fine_values.get()));
            }
#endif

          // Get the local to global degree of freedom maps
          std::vector<dof_id_type> dof_indices;
          dof_map.dof_indices (elem, dof_indices, var);
          const unsigned int n_dofs =
            cast_int<unsigned int>(dof_indices.size());
          DenseVector<Number> Uelem(n_dofs);
          for (unsigned int i=0; i != n_dofs; ++i)
            Uelem(i) = system.current_solution(dof_indices[i]);

          error_per_cell[e_id] +=
            static_cast<ErrorVectorReal>
            (find_squared_element_error(system, var_name, elem,
                                        Uelem, fe.get(),
                                        fine_values.get()));

        } // End loop over active local elements
    } // End loop over variables



  // Each processor has now computed the error contribuions
  // for its local elements.  We need to sum the vector
  // and then take the square-root of each component.  Note
  // that we only need to sum if we are running on multiple
  // processors, and we only need to take the square-root
  // if the value is nonzero.  There will in general be many
  // zeros for the inactive elements.

  // First sum the vector of estimated error values
  this->reduce_error(error_per_cell, system.comm());

  // Compute the square-root of each component.
  {
    LOG_SCOPE("std::sqrt()", "ExactErrorEstimator");
    for (dof_id_type i=0; i<error_per_cell.size(); i++)
      if (error_per_cell[i] != 0.)
        {
          libmesh_assert_greater (error_per_cell[i], 0.);
          error_per_cell[i] = std::sqrt(error_per_cell[i]);
        }
  }

  // If we used a non-standard solution before, now is the time to fix
  // the current_local_solution
  if (solution_vector && solution_vector != system.solution.get())
    {
      NumericVector<Number> * newsol =
        const_cast<NumericVector<Number> *>(solution_vector);
      System & sys = const_cast<System &>(system);
      newsol->swap(*sys.solution);
      sys.update();
    }
}
void AdjointResidualErrorEstimator::estimate_error (const System & _system,
                                                    ErrorVector & error_per_cell,
                                                    const NumericVector<Number> * solution_vector,
                                                    bool estimate_parent_error)
{
  LOG_SCOPE("estimate_error()", "AdjointResidualErrorEstimator");

  // The current mesh
  const MeshBase & mesh = _system.get_mesh();

  // Resize the error_per_cell vector to be
  // the number of elements, initialize it to 0.
  error_per_cell.resize (mesh.max_elem_id());
  std::fill (error_per_cell.begin(), error_per_cell.end(), 0.);

  // Get the number of variables in the system
  unsigned int n_vars = _system.n_vars();

  // We need to make a map of the pointer to the solution vector
  std::map<const System *, const NumericVector<Number> *>solutionvecs;
  solutionvecs[&_system] = _system.solution.get();

  // Solve the dual problem if we have to
  if (!_system.is_adjoint_already_solved())
    {
      // FIXME - we'll need to change a lot of APIs to make this trick
      // work with a const System...
      System &  system = const_cast<System &>(_system);
      system.adjoint_solve(_qoi_set);
    }

  // Flag to check whether we have not been asked to weight the variable error contributions in any specific manner
  bool error_norm_is_identity = error_norm.is_identity();

  // Create an ErrorMap/ErrorVector to store the primal, dual and total_dual variable errors
  ErrorMap primal_errors_per_cell;
  ErrorMap dual_errors_per_cell;
  ErrorMap total_dual_errors_per_cell;
  // Allocate ErrorVectors to this map if we're going to use it
  if (!error_norm_is_identity)
    for(unsigned int v = 0; v < n_vars; v++)
      {
        primal_errors_per_cell[std::make_pair(&_system, v)] = new ErrorVector;
        dual_errors_per_cell[std::make_pair(&_system, v)] = new ErrorVector;
        total_dual_errors_per_cell[std::make_pair(&_system, v)] = new ErrorVector;
      }
  ErrorVector primal_error_per_cell;
  ErrorVector dual_error_per_cell;
  ErrorVector total_dual_error_per_cell;

  // Have we been asked to weight the variable error contributions in any specific manner
  if(!error_norm_is_identity) // If we do
    {
      // Estimate the primal problem error for each variable
      _primal_error_estimator->estimate_errors
        (_system.get_equation_systems(), primal_errors_per_cell, &solutionvecs, estimate_parent_error);
    }
  else // If not
    {
      // Just get the combined error estimate
      _primal_error_estimator->estimate_error
        (_system, primal_error_per_cell, solution_vector, estimate_parent_error);
    }

  // Sum and weight the dual error estimate based on our QoISet
  for (unsigned int i = 0; i != _system.qoi.size(); ++i)
    {
      if (_qoi_set.has_index(i))
        {
          // Get the weight for the current QoI
          Real error_weight = _qoi_set.weight(i);

          // We need to make a map of the pointer to the adjoint solution vector
          std::map<const System *, const NumericVector<Number> *>adjointsolutionvecs;
          adjointsolutionvecs[&_system] = &_system.get_adjoint_solution(i);

          // Have we been asked to weight the variable error contributions in any specific manner
          if(!error_norm_is_identity) // If we have
            {
              _dual_error_estimator->estimate_errors
                (_system.get_equation_systems(), dual_errors_per_cell, &adjointsolutionvecs,
                 estimate_parent_error);
            }
          else // If not
            {
              // Just get the combined error estimate
              _dual_error_estimator->estimate_error
                (_system, dual_error_per_cell, &(_system.get_adjoint_solution(i)), estimate_parent_error);
            }

          std::size_t error_size;

          // Get the size of the first ErrorMap vector; this will give us the number of elements
          if(!error_norm_is_identity) // If in non default weights case
            {
              error_size = dual_errors_per_cell[std::make_pair(&_system, 0)]->size();
            }
          else // If in the standard default weights case
            {
              error_size = dual_error_per_cell.size();
            }

          // Resize the ErrorVector(s)
          if(!error_norm_is_identity)
            {
              // Loop over variables
              for(unsigned int v = 0; v < n_vars; v++)
                {
                  libmesh_assert(!total_dual_errors_per_cell[std::make_pair(&_system, v)]->size() ||
                                 total_dual_errors_per_cell[std::make_pair(&_system, v)]->size() == error_size) ;
                  total_dual_errors_per_cell[std::make_pair(&_system, v)]->resize(error_size);
                }
            }
          else
            {
              libmesh_assert(!total_dual_error_per_cell.size() ||
                             total_dual_error_per_cell.size() == error_size);
              total_dual_error_per_cell.resize(error_size);
            }

          for (std::size_t e = 0; e != error_size; ++e)
            {
              // Have we been asked to weight the variable error contributions in any specific manner
              if(!error_norm_is_identity) // If we have
                {
                  // Loop over variables
                  for(unsigned int v = 0; v < n_vars; v++)
                    {
                      // Now fill in total_dual_error ErrorMap with the weight
                      (*total_dual_errors_per_cell[std::make_pair(&_system, v)])[e] +=
                        static_cast<ErrorVectorReal>
                        (error_weight *
                         (*dual_errors_per_cell[std::make_pair(&_system, v)])[e]);
                    }
                }
              else // If not
                {
                  total_dual_error_per_cell[e] +=
                    static_cast<ErrorVectorReal>(error_weight * dual_error_per_cell[e]);
                }
            }
        }
    }

  // Do some debugging plots if requested
  if (!error_plot_suffix.empty())
    {
      if(!error_norm_is_identity) // If we have
        {
          // Loop over variables
          for(unsigned int v = 0; v < n_vars; v++)
            {
              std::ostringstream primal_out;
              std::ostringstream dual_out;
              primal_out << "primal_" << error_plot_suffix << ".";
              dual_out << "dual_" << error_plot_suffix << ".";

              primal_out << std::setw(1)
                         << std::setprecision(0)
                         << std::setfill('0')
                         << std::right
                         << v;

              dual_out << std::setw(1)
                       << std::setprecision(0)
                       << std::setfill('0')
                       << std::right
                       << v;

              (*primal_errors_per_cell[std::make_pair(&_system, v)]).plot_error(primal_out.str(), _system.get_mesh());
              (*total_dual_errors_per_cell[std::make_pair(&_system, v)]).plot_error(dual_out.str(), _system.get_mesh());

              primal_out.clear();
              dual_out.clear();
            }
        }
      else // If not
        {
          std::ostringstream primal_out;
          std::ostringstream dual_out;
          primal_out << "primal_" << error_plot_suffix ;
          dual_out << "dual_" << error_plot_suffix ;

          primal_error_per_cell.plot_error(primal_out.str(), _system.get_mesh());
          total_dual_error_per_cell.plot_error(dual_out.str(), _system.get_mesh());

          primal_out.clear();
          dual_out.clear();
        }
    }

  // Weight the primal error by the dual error using the system norm object
  // FIXME: we ought to thread this
  for (unsigned int i=0; i != error_per_cell.size(); ++i)
    {
      // Have we been asked to weight the variable error contributions in any specific manner
      if(!error_norm_is_identity) // If we do
        {
          // Create Error Vectors to pass to calculate_norm
          std::vector<Real> cell_primal_error;
          std::vector<Real> cell_dual_error;

          for(unsigned int v = 0; v < n_vars; v++)
            {
              cell_primal_error.push_back((*primal_errors_per_cell[std::make_pair(&_system, v)])[i]);
              cell_dual_error.push_back((*total_dual_errors_per_cell[std::make_pair(&_system, v)])[i]);
            }

          error_per_cell[i] =
            static_cast<ErrorVectorReal>
            (error_norm.calculate_norm(cell_primal_error, cell_dual_error));
        }
      else // If not
        {
          error_per_cell[i] = primal_error_per_cell[i]*total_dual_error_per_cell[i];
        }
    }

  // Deallocate the ErrorMap contents if we allocated them earlier
  if (!error_norm_is_identity)
    for(unsigned int v = 0; v < n_vars; v++)
      {
        delete primal_errors_per_cell[std::make_pair(&_system, v)];
        delete dual_errors_per_cell[std::make_pair(&_system, v)];
        delete total_dual_errors_per_cell[std::make_pair(&_system, v)];
      }
}
//-----------------------------------------------------------------
// Mesh refinement methods
void MeshRefinement::flag_elements_by_error_fraction (const ErrorVector& error_per_cell,
						      const Real refine_frac,
						      const Real coarsen_frac,
						      const unsigned int max_l)
{
  parallel_only();

  // The function arguments are currently just there for
  // backwards_compatibility
  if (!_use_member_parameters)
  {
    // If the user used non-default parameters, lets warn
    // that they're deprecated
    if (refine_frac != 0.3 ||
	coarsen_frac != 0.0 ||
	max_l != libMesh::invalid_uint)
      libmesh_deprecated();

    _refine_fraction = refine_frac;
    _coarsen_fraction = coarsen_frac;
    _max_h_level = max_l;
  }

  // Check for valid fractions..
  // The fraction values must be in [0,1]
  libmesh_assert_greater_equal (_refine_fraction, 0);
  libmesh_assert_less_equal (_refine_fraction, 1);
  libmesh_assert_greater_equal (_coarsen_fraction, 0);
  libmesh_assert_less_equal (_coarsen_fraction, 1);

  // Clean up the refinement flags.  These could be left
  // over from previous refinement steps.
  this->clean_refinement_flags();

  // We're getting the minimum and maximum error values
  // for the ACTIVE elements
  Real error_min = 1.e30;
  Real error_max = 0.;

  // And, if necessary, for their parents
  Real parent_error_min = 1.e30;
  Real parent_error_max = 0.;

  // Prepare another error vector if we need to sum parent errors
  ErrorVector error_per_parent;
  if (_coarsen_by_parents)
  {
    create_parent_error_vector(error_per_cell,
			       error_per_parent,
			       parent_error_min,
			       parent_error_max);
  }

  // We need to loop over all active elements to find the minimum
  MeshBase::element_iterator       el_it  =
    _mesh.active_local_elements_begin();
  const MeshBase::element_iterator el_end =
    _mesh.active_local_elements_end();

  for (; el_it != el_end; ++el_it)
  {
    const unsigned int id  = (*el_it)->id();
    libmesh_assert_less (id, error_per_cell.size());

    error_max = std::max (error_max, error_per_cell[id]);
    error_min = std::min (error_min, error_per_cell[id]);
  }
  CommWorld.max(error_max);
  CommWorld.min(error_min);

  // Compute the cutoff values for coarsening and refinement
  const Real error_delta = (error_max - error_min);
  const Real parent_error_delta = parent_error_max - parent_error_min;

  const Real refine_cutoff  = (1.- _refine_fraction)*error_max;
  const Real coarsen_cutoff = _coarsen_fraction*error_delta + error_min;
  const Real parent_cutoff = _coarsen_fraction*parent_error_delta + error_min;

//   // Print information about the error
//   libMesh::out << " Error Information:"                     << std::endl
// 	    << " ------------------"                     << std::endl
// 	    << "   min:              " << error_min      << std::endl
// 	    << "   max:              " << error_max      << std::endl
// 	    << "   delta:            " << error_delta    << std::endl
// 	    << "     refine_cutoff:  " << refine_cutoff  << std::endl
// 	    << "     coarsen_cutoff: " << coarsen_cutoff << std::endl;



  // Loop over the elements and flag them for coarsening or
  // refinement based on the element error

  MeshBase::element_iterator       e_it  =
    _mesh.active_elements_begin();
  const MeshBase::element_iterator e_end =
    _mesh.active_elements_end();
  for (; e_it != e_end; ++e_it)
  {
    Elem* elem             = *e_it;
    const unsigned int id  = elem->id();

    libmesh_assert_less (id, error_per_cell.size());

    const float elem_error = error_per_cell[id];

    if (_coarsen_by_parents)
    {
      Elem* parent           = elem->parent();
      if (parent)
      {
	const unsigned int parentid  = parent->id();
	if (error_per_parent[parentid] >= 0. &&
	    error_per_parent[parentid] <= parent_cutoff)
	  elem->set_refinement_flag(Elem::COARSEN);
      }
    }
    // Flag the element for coarsening if its error
    // is <= coarsen_fraction*delta + error_min
    else if (elem_error <= coarsen_cutoff)
    {
      elem->set_refinement_flag(Elem::COARSEN);
    }

    // Flag the element for refinement if its error
    // is >= refinement_cutoff.
    if (elem_error >= refine_cutoff)
      if (elem->level() < _max_h_level)
	elem->set_refinement_flag(Elem::REFINE);
  }
}
bool MeshRefinement::flag_elements_by_nelem_target (const ErrorVector& error_per_cell)
{
  parallel_only();

  // Check for valid fractions..
  // The fraction values must be in [0,1]
  libmesh_assert_greater_equal (_refine_fraction, 0);
  libmesh_assert_less_equal (_refine_fraction, 1);
  libmesh_assert_greater_equal (_coarsen_fraction, 0);
  libmesh_assert_less_equal (_coarsen_fraction, 1);

  // This function is currently only coded to work when coarsening by
  // parents - it's too hard to guess how many coarsenings will be
  // performed otherwise.
  libmesh_assert (_coarsen_by_parents);

  // The number of active elements in the mesh - hopefully less than
  // 2 billion on 32 bit machines
  const unsigned int n_active_elem  = _mesh.n_active_elem();

  // The maximum number of active elements to flag for coarsening
  const unsigned int max_elem_coarsen =
    static_cast<unsigned int>(_coarsen_fraction * n_active_elem) + 1;

  // The maximum number of elements to flag for refinement
  const unsigned int max_elem_refine  =
    static_cast<unsigned int>(_refine_fraction  * n_active_elem) + 1;

  // Clean up the refinement flags.  These could be left
  // over from previous refinement steps.
  this->clean_refinement_flags();

  // The target number of elements to add or remove
  const int n_elem_new = _nelem_target - n_active_elem;

  // Create an vector with active element errors and ids,
  // sorted by highest errors first
  const unsigned int max_elem_id = _mesh.max_elem_id();
  std::vector<std::pair<float, unsigned int> > sorted_error;

  sorted_error.reserve (n_active_elem);

  // On a ParallelMesh, we need to communicate to know which remote ids
  // correspond to active elements.
  {
    std::vector<bool> is_active(max_elem_id, false);

    MeshBase::element_iterator       elem_it  = _mesh.active_local_elements_begin();
    const MeshBase::element_iterator elem_end = _mesh.active_local_elements_end();
    for (; elem_it != elem_end; ++elem_it)
      {
        const unsigned int eid = (*elem_it)->id();
        is_active[eid] = true;
        libmesh_assert_less (eid, error_per_cell.size());
        sorted_error.push_back
          (std::make_pair(error_per_cell[eid], eid));
      }

    CommWorld.max(is_active);

    CommWorld.allgather(sorted_error);
  }

  // Default sort works since pairs are sorted lexicographically
  std::sort (sorted_error.begin(), sorted_error.end());
  std::reverse (sorted_error.begin(), sorted_error.end());

  // Create a sorted error vector with coarsenable parent elements
  // only, sorted by lowest errors first
  ErrorVector error_per_parent;
  std::vector<std::pair<float, unsigned int> > sorted_parent_error;
  Real parent_error_min, parent_error_max;

  create_parent_error_vector(error_per_cell,
                             error_per_parent,
                             parent_error_min,
                             parent_error_max);

  // create_parent_error_vector sets values for non-parents and
  // non-coarsenable parents to -1.  Get rid of them.
  for (unsigned int i=0; i != error_per_parent.size(); ++i)
    if (error_per_parent[i] != -1)
      sorted_parent_error.push_back(std::make_pair(error_per_parent[i], i));

  std::sort (sorted_parent_error.begin(), sorted_parent_error.end());

  // Keep track of how many elements we plan to coarsen & refine
  unsigned int coarsen_count = 0;
  unsigned int refine_count = 0;

  const unsigned int dim = _mesh.mesh_dimension();
  unsigned int twotodim = 1;
  for (unsigned int i=0; i!=dim; ++i)
    twotodim *= 2;

  // First, let's try to get our element count to target_nelem
  if (n_elem_new >= 0)
  {
    // Every element refinement creates at least
    // 2^dim-1 new elements
    refine_count =
      std::min(static_cast<unsigned int>(n_elem_new / (twotodim-1)),
	       max_elem_refine);
  }
  else
  {
    // Every successful element coarsening is likely to destroy
    // 2^dim-1 net elements.
    coarsen_count =
      std::min(static_cast<unsigned int>(-n_elem_new / (twotodim-1)),
	       max_elem_coarsen);
  }

  // Next, let's see if we can trade any refinement for coarsening
  while (coarsen_count < max_elem_coarsen &&
         refine_count < max_elem_refine &&
         coarsen_count < sorted_parent_error.size() &&
         refine_count < sorted_error.size() &&
         sorted_error[refine_count].first >
	 sorted_parent_error[coarsen_count].first * _coarsen_threshold)
  {
    coarsen_count++;
    refine_count++;
  }

  // On a ParallelMesh, we need to communicate to know which remote ids
  // correspond to refinable elements
  unsigned int successful_refine_count = 0;
  {
    std::vector<bool> is_refinable(max_elem_id, false);

    for (unsigned int i=0; i != sorted_error.size(); ++i)
      {
        unsigned int eid = sorted_error[i].second;
        Elem *elem = _mesh.query_elem(eid);
        if (elem && elem->level() < _max_h_level)
	  is_refinable[eid] = true;
      }
    CommWorld.max(is_refinable);

    if (refine_count > max_elem_refine)
      refine_count = max_elem_refine;
    for (unsigned int i=0; i != sorted_error.size(); ++i)
      {
        if (successful_refine_count >= refine_count)
          break;

        unsigned int eid = sorted_error[i].second;
        Elem *elem = _mesh.query_elem(eid);
        if (is_refinable[eid])
          {
            if (elem)
	      elem->set_refinement_flag(Elem::REFINE);
	    successful_refine_count++;
          }
      }
  }

  // If we couldn't refine enough elements, don't coarsen too many
  // either
  if (coarsen_count < (refine_count - successful_refine_count))
    coarsen_count = 0;
  else
    coarsen_count -= (refine_count - successful_refine_count);

  if (coarsen_count > max_elem_coarsen)
    coarsen_count = max_elem_coarsen;

  unsigned int successful_coarsen_count = 0;
  if (coarsen_count)
    {
      for (unsigned int i=0; i != sorted_parent_error.size(); ++i)
        {
          if (successful_coarsen_count >= coarsen_count * twotodim)
            break;

          unsigned int parent_id = sorted_parent_error[i].second;
          Elem *parent = _mesh.query_elem(parent_id);

          // On a ParallelMesh we skip remote elements
          if (!parent)
            continue;

          libmesh_assert(parent->has_children());
          for (unsigned int c=0; c != parent->n_children(); ++c)
            {
              Elem *elem = parent->child(c);
              if (elem && elem != remote_elem)
                {
                  libmesh_assert(elem->active());
                  elem->set_refinement_flag(Elem::COARSEN);
                  successful_coarsen_count++;
                }
            }
        }
    }

  // Return true if we've done all the AMR/C we can
  if (!successful_coarsen_count &&
      !successful_refine_count)
    return true;
  // And false if there may still be more to do.
  return false;
}