BOOL OGF::dbg_SphereContainsVertex(Fvector& c, float R) { Fsphere S; S.set(c,R); for (u32 it=0; it<vertices.size(); it++) if (S.contains(vertices[it].P)) return TRUE; return FALSE ; }
void ComputeSphere(Fsphere &B, FvectorVec& V) { if (V.size()<3) { B.P.set(0,0,0); B.R=0.f; return; } // 1: calc first variation Fsphere S1; Fsphere_compute (S1,V.begin(),V.size()); BOOL B1 = SphereValid(V,S1); // 2: calc ordinary algorithm (2nd) Fsphere S2; Fbox bbox; bbox.invalidate (); for (FvectorIt I=V.begin(); I!=V.end(); I++) bbox.modify(*I); bbox.grow (EPS_L); bbox.getsphere (S2.P,S2.R); S2.R = -1; for (I=V.begin(); I!=V.end(); I++) { float d = S2.P.distance_to_sqr(*I); if (d>S2.R) S2.R=d; } S2.R = _sqrt (_abs(S2.R)); BOOL B2 = SphereValid(V,S2); // 3: calc magic-fm Mgc::Sphere _S3 = Mgc::MinSphere(V.size(), (const Mgc::Vector3*) V.begin()); Fsphere S3; S3.P.set (_S3.Center().x,_S3.Center().y,_S3.Center().z); S3.R = _S3.Radius(); BOOL B3 = SphereValid(V,S3); // select best one if (B1 && (S1.R<S2.R)){ // miniball or FM if (B3 && (S3.R<S1.R)){ // FM wins B.set (S3); }else{ // MiniBall wins B.set (S1); } }else{ // base or FM if (B3 && (S3.R<S2.R)){ // FM wins B.set (S3); }else{ // Base wins :) R_ASSERT(B2); B.set (S2); } } }
void base_lighting::select (xr_vector<R_Light>& dest, xr_vector<R_Light>& src, Fvector& P, float R) { Fsphere Sphere; Sphere.set (P,R); dest.clear (); R_Light* L = &*src.begin(); for (; L!=&*src.end(); L++) { if (L->type==LT_POINT) { float dist = Sphere.P.distance_to(L->position); if (dist>(Sphere.R+L->range)) continue; } dest.push_back(*L); } }
//---------------------------------------------------------------------- int CObjectSpace::GetNearest ( xr_vector<ISpatial*>& q_spatial, xr_vector<CObject*>& q_nearest, const Fvector &point, float range, CObject* ignore_object ) { q_spatial.clear_not_free ( ); // Query objects q_nearest.clear_not_free ( ); Fsphere Q; Q.set (point,range); Fvector B; B.set (range,range,range); g_SpatialSpace->q_box(q_spatial,0,STYPE_COLLIDEABLE,point,B); // Iterate xr_vector<ISpatial*>::iterator it = q_spatial.begin (); xr_vector<ISpatial*>::iterator end = q_spatial.end (); for (; it!=end; it++) { CObject* O = (*it)->dcast_CObject (); if (0==O) continue; if (O==ignore_object) continue; Fsphere mS = { O->spatial.sphere.P, O->spatial.sphere.R }; if (Q.intersect(mS)) q_nearest.push_back(O); } return q_nearest.size(); }