void addNoise(GArgReader& args) { GMatrix* pData = loadData(args.pop_string()); Holder<GMatrix> hData(pData); double dev = args.pop_double(); // Parse the options unsigned int seed = getpid() * (unsigned int)time(NULL); int excludeLast = 0; while(args.next_is_flag()) { if(args.if_pop("-seed")) seed = args.pop_uint(); else if(args.if_pop("-excludelast")) excludeLast = args.pop_uint(); else ThrowError("Invalid neighbor finder option: ", args.peek()); } GRand prng(seed); size_t cols = pData->cols() - excludeLast; for(size_t r = 0; r < pData->rows(); r++) { double* pRow = pData->row(r); for(size_t c = 0; c < cols; c++) *(pRow++) += dev * prng.normal(); } pData->print(cout); }
void lle(GArgReader& args) { // Load the file and params GMatrix* pData = loadData(args.pop_string()); Holder<GMatrix> hData(pData); unsigned int nSeed = getpid() * (unsigned int)time(NULL); GRand prng(nSeed); GNeighborFinder* pNF = instantiateNeighborFinder(pData, &prng, args); Holder<GNeighborFinder> hNF(pNF); int targetDims = args.pop_uint(); // Parse Options while(args.size() > 0) { if(args.if_pop("-seed")) prng.setSeed(args.pop_uint()); else throw Ex("Invalid option: ", args.peek()); } // Transform the data GLLE transform(pNF->neighborCount(), targetDims, &prng); transform.setNeighborFinder(pNF); GMatrix* pDataAfter = transform.doit(*pData); Holder<GMatrix> hDataAfter(pDataAfter); pDataAfter->print(cout); }
void split(GArgReader& args) { // Load GMatrix* pData = loadData(args.pop_string()); Holder<GMatrix> hData(pData); int pats = (int)pData->rows() - args.pop_uint(); if(pats < 0) ThrowError("out of range. The data only has ", to_str(pData->rows()), " rows."); const char* szFilename1 = args.pop_string(); const char* szFilename2 = args.pop_string(); unsigned int nSeed = getpid() * (unsigned int)time(NULL); bool shouldShuffle = false; while(args.size() > 0){ if(args.if_pop("-shuffle")){ shouldShuffle = true; }else if(args.if_pop("-seed")){ nSeed = args.pop_uint(); }else ThrowError("Invalid option: ", args.peek()); } // Shuffle if necessary GRand rng(nSeed); if(shouldShuffle){ pData->shuffle(rng); } // Split GMatrix other(pData->relation()); pData->splitBySize(&other, pats); pData->saveArff(szFilename1); other.saveArff(szFilename2); }
void crossValidate(GArgReader& args) { // Parse options unsigned int seed = getpid() * (unsigned int)time(NULL); size_t folds = 2; while(args.next_is_flag()) { if(args.if_pop("-seed")) seed = args.pop_uint(); else if(args.if_pop("-folds")) folds = args.pop_uint(); else ThrowError("Invalid crossvalidate option: ", args.peek()); } if(folds < 2) ThrowError("There must be at least 2 folds."); // Load the data if(args.size() < 1) ThrowError("No dataset specified."); GMatrix* pData = loadData(args.pop_string()); Holder<GMatrix> hData(pData); // Instantiate the recommender GRand prng(seed); GCollaborativeFilter* pModel = InstantiateAlgorithm(prng, args); Holder<GCollaborativeFilter> hModel(pModel); if(args.size() > 0) ThrowError("Superfluous argument: ", args.peek()); // Do cross-validation double mae; double mse = pModel->crossValidate(*pData, folds, &mae); cout << "RMSE=" << sqrt(mse) << ", MSE=" << mse << ", MAE=" << mae << "\n"; }
void kmeans(GArgReader& args) { // Load the file and params GMatrix data; loadData(data, args.pop_string()); int clusters = args.pop_uint(); // Parse Options unsigned int nSeed = getpid() * (unsigned int)time(NULL); size_t reps = 1; while(args.size() > 0) { if(args.if_pop("-seed")) nSeed = args.pop_uint(); else if(args.if_pop("-reps")) reps = args.pop_uint(); else throw Ex("Invalid option: ", args.peek()); } // Do the clustering GRand prng(nSeed); GKMeans clusterer(clusters, &prng); clusterer.setReps(reps); GMatrix* pOut = clusterer.reduce(data); std::unique_ptr<GMatrix> hOut(pOut); pOut->print(cout); }
void isomap(GArgReader& args) { // Load the file and params GMatrix* pData = loadData(args.pop_string()); Holder<GMatrix> hData(pData); unsigned int nSeed = getpid() * (unsigned int)time(NULL); GRand prng(nSeed); GNeighborFinder* pNF = instantiateNeighborFinder(pData, &prng, args); Holder<GNeighborFinder> hNF(pNF); int targetDims = args.pop_uint(); // Parse Options bool tolerant = false; while(args.size() > 0) { if(args.if_pop("-seed")) prng.setSeed(args.pop_uint()); else if(args.if_pop("-tolerant")) tolerant = true; else throw Ex("Invalid option: ", args.peek()); } // Transform the data GIsomap transform(pNF->neighborCount(), targetDims, &prng); transform.setNeighborFinder(pNF); if(tolerant) transform.dropDisconnectedPoints(); GMatrix* pDataAfter = transform.reduce(*pData); Holder<GMatrix> hDataAfter(pDataAfter); pDataAfter->print(cout); }
void breadthFirstUnfolding(GArgReader& args) { // Load the file and params GMatrix* pData = loadData(args.pop_string()); Holder<GMatrix> hData(pData); size_t nSeed = getpid() * (unsigned int)time(NULL); GRand prng(nSeed); GNeighborFinder* pNF = instantiateNeighborFinder(pData, &prng, args); Holder<GNeighborFinder> hNF(pNF); int targetDims = args.pop_uint(); // Parse Options size_t reps = 1; Holder<GMatrix> hControlData(NULL); while(args.size() > 0) { if(args.if_pop("-seed")) nSeed = args.pop_uint(); else if(args.if_pop("-reps")) reps = args.pop_uint(); else throw Ex("Invalid option: ", args.peek()); } // Transform the data GBreadthFirstUnfolding transform(reps, pNF->neighborCount(), targetDims); transform.rand().setSeed(nSeed); transform.setNeighborFinder(pNF); GMatrix* pDataAfter = transform.reduce(*pData); Holder<GMatrix> hDataAfter(pDataAfter); pDataAfter->print(cout); }
void curviness2(GArgReader& args) { GMatrix* pData = loadData(args.pop_string()); Holder<GMatrix> hData(pData); GNormalize norm; GMatrix* pDataNormalized = norm.doit(*pData); Holder<GMatrix> hDataNormalized(pDataNormalized); hData.reset(); pData = NULL; // Parse Options size_t maxEigs = 10; unsigned int seed = getpid() * (unsigned int)time(NULL); Holder<GMatrix> hControlData(NULL); while(args.size() > 0) { if(args.if_pop("-seed")) seed = args.pop_uint(); else if(args.if_pop("-maxeigs")) maxEigs = args.pop_uint(); else throw Ex("Invalid option: ", args.peek()); } GRand rand(seed); size_t targetDims = std::min(maxEigs, pDataNormalized->cols()); // Do linear PCA GNeuroPCA np1(targetDims, &rand); np1.setActivation(new GActivationIdentity()); np1.computeEigVals(); GMatrix* pResults1 = np1.doit(*pDataNormalized); Holder<GMatrix> hResults1(pResults1); double* pEigVals1 = np1.eigVals(); for(size_t i = 0; i + 1 < targetDims; i++) pEigVals1[i] = sqrt(pEigVals1[i]) - sqrt(pEigVals1[i + 1]); size_t max1 = GVec::indexOfMax(pEigVals1, targetDims - 1, &rand); double v1 = (double)max1; if(max1 > 0 && max1 + 2 < targetDims) v1 += (pEigVals1[max1 - 1] - pEigVals1[max1 + 1]) / (2.0 * (pEigVals1[max1 - 1] + pEigVals1[max1 + 1] - 2.0 * pEigVals1[max1])); // Do non-linear PCA GNeuroPCA np2(targetDims, &rand); np1.setActivation(new GActivationLogistic()); np2.computeEigVals(); GMatrix* pResults2 = np2.doit(*pDataNormalized); Holder<GMatrix> hResults2(pResults2); double* pEigVals2 = np2.eigVals(); for(size_t i = 0; i + 1 < targetDims; i++) pEigVals2[i] = sqrt(pEigVals2[i]) - sqrt(pEigVals2[i + 1]); size_t max2 = GVec::indexOfMax(pEigVals2, targetDims - 1, &rand); double v2 = (double)max2; if(max2 > 0 && max2 + 2 < targetDims) v2 += (pEigVals2[max2 - 1] - pEigVals2[max2 + 1]) / (2.0 * (pEigVals2[max2 - 1] + pEigVals2[max2 + 1] - 2.0 * pEigVals2[max2])); // Compute the difference in where the eigenvalues fall cout.precision(14); cout << (v1 - v2) << "\n"; }
void ManifoldSculpting(GArgReader& args) { // Load the file and params GMatrix* pData = loadData(args.pop_string()); Holder<GMatrix> hData(pData); unsigned int nSeed = getpid() * (unsigned int)time(NULL); GRand prng(nSeed); GNeighborFinder* pNF = instantiateNeighborFinder(pData, &prng, args); Holder<GNeighborFinder> hNF(pNF); size_t targetDims = args.pop_uint(); // Parse Options const char* szPreprocessedData = NULL; double scaleRate = 0.999; while(args.size() > 0) { if(args.if_pop("-seed")) prng.setSeed(args.pop_uint()); else if(args.if_pop("-continue")) szPreprocessedData = args.pop_string(); else if(args.if_pop("-scalerate")) scaleRate = args.pop_double(); else throw Ex("Invalid option: ", args.peek()); } // Load the hint data GMatrix* pDataHint = NULL; Holder<GMatrix> hDataHint(NULL); if(szPreprocessedData) { pDataHint = loadData(szPreprocessedData); hDataHint.reset(pDataHint); if(pDataHint->relation()->size() != targetDims) throw Ex("Wrong number of dims in the hint data"); if(pDataHint->rows() != pData->rows()) throw Ex("Wrong number of patterns in the hint data"); } // Transform the data GManifoldSculpting transform(pNF->neighborCount(), targetDims, &prng); transform.setSquishingRate(scaleRate); if(pDataHint) transform.setPreprocessedData(hDataHint.release()); transform.setNeighborFinder(pNF); GMatrix* pDataAfter = transform.doit(*pData); Holder<GMatrix> hDataAfter(pDataAfter); pDataAfter->print(cout); }
void splitClass(GArgReader& args) { const char* filename = args.pop_string(); GMatrix* pData = loadData(filename); Holder<GMatrix> hData(pData); size_t classAttr = args.pop_uint(); bool dropClass = false; while(args.size() > 0) { if(args.if_pop("-dropclass")) dropClass = true; else ThrowError("Invalid option: ", args.peek()); } for(size_t i = 0; i < pData->relation()->valueCount(classAttr); i++) { GMatrix tmp(pData->relation(), pData->heap()); pData->splitByNominalValue(&tmp, classAttr, i); std::ostringstream oss; PathData pd; GFile::parsePath(filename, &pd); string fn; fn.assign(filename + pd.fileStart, pd.extStart - pd.fileStart); oss << fn << "_"; pData->relation()->printAttrValue(oss, classAttr, (double)i); oss << ".arff"; string s = oss.str(); if(dropClass) tmp.deleteColumn(classAttr); tmp.saveArff(s.c_str()); } }
void aggregateCols(GArgReader& args) { size_t c = args.pop_uint(); vector<string> files; GFile::fileList(files); GMatrix* pResults = NULL; Holder<GMatrix> hResults; size_t i = 0; for(vector<string>::iterator it = files.begin(); it != files.end(); it++) { PathData pd; GFile::parsePath(it->c_str(), &pd); if(strcmp(it->c_str() + pd.extStart, ".arff") != 0) continue; GMatrix* pData = loadData(it->c_str()); Holder<GMatrix> hData(pData); if(!pResults) { pResults = new GMatrix(pData->rows(), files.size()); hResults.reset(pResults); } pResults->copyColumns(i, pData, c, 1); i++; } pResults->print(cout); }
void nominalToCat(GArgReader& args) { // Load the file GMatrix* pData = loadData(args.pop_string()); Holder<GMatrix> hData(pData); // Parse Options int maxValues = 12; while(args.size() > 0) { if(args.if_pop("-maxvalues")) maxValues = args.pop_uint(); else ThrowError("Invalid option: ", args.peek()); } // Transform the data GNominalToCat transform(maxValues); transform.train(*pData); GMatrix* pDataNew = transform.transformBatch(*pData); Holder<GMatrix> hDataNew(pDataNew); // Print results pDataNew->print(cout); }
void neighbors(GArgReader& args) { // Load the data GMatrix* pData = loadData(args.pop_string()); Holder<GMatrix> hData(pData); int neighborCount = args.pop_uint(); // Find the neighbors GKdTree neighborFinder(pData, neighborCount, NULL, true); GTEMPBUF(size_t, neighbors, neighborCount); GTEMPBUF(double, distances, neighborCount); double sumClosest = 0; double sumAll = 0; for(size_t i = 0; i < pData->rows(); i++) { neighborFinder.neighbors(neighbors, distances, i); neighborFinder.sortNeighbors(neighbors, distances); sumClosest += sqrt(distances[0]); for(int j = 0; j < neighborCount; j++) sumAll += sqrt(distances[j]); } cout.precision(14); cout << "average closest neighbor distance = " << (sumClosest / pData->rows()) << "\n"; cout << "average neighbor distance = " << (sumAll / (pData->rows() * neighborCount)) << "\n"; }
void GRecommenderLib::transacc(GArgReader& args) { // Parse options unsigned int seed = getpid() * (unsigned int)time(NULL); while(args.next_is_flag()) { if(args.if_pop("-seed")) seed = args.pop_uint(); else throw Ex("Invalid crossvalidate option: ", args.peek()); } // Load the data if(args.size() < 1) throw Ex("No training set specified."); GMatrix train; loadData(train, args.pop_string()); if(args.size() < 1) throw Ex("No test set specified."); GMatrix test; loadData(test, args.pop_string()); // Instantiate the recommender GCollaborativeFilter* pModel = InstantiateAlgorithm(args); std::unique_ptr<GCollaborativeFilter> hModel(pModel); if(args.size() > 0) throw Ex("Superfluous argument: ", args.peek()); pModel->rand().setSeed(seed); // Do cross-validation double mae; double mse = pModel->trainAndTest(train, test, &mae); cout << "MSE=" << mse << ", MAE=" << mae << "\n"; }
void GRecommenderLib::precisionRecall(GArgReader& args) { // Parse options unsigned int seed = getpid() * (unsigned int)time(NULL); bool ideal = false; while(args.next_is_flag()) { if(args.if_pop("-seed")) seed = args.pop_uint(); else if(args.if_pop("-ideal")) ideal = true; else throw Ex("Invalid option: ", args.peek()); } // Load the data if(args.size() < 1) throw Ex("No dataset specified."); GMatrix data; loadData(data, args.pop_string()); // Instantiate the recommender GCollaborativeFilter* pModel = InstantiateAlgorithm(args); std::unique_ptr<GCollaborativeFilter> hModel(pModel); if(args.size() > 0) throw Ex("Superfluous argument: ", args.peek()); pModel->rand().setSeed(seed); // Generate precision-recall data GMatrix* pResults = pModel->precisionRecall(data, ideal); std::unique_ptr<GMatrix> hResults(pResults); pResults->deleteColumns(2, 1); // we don't need the false-positive rate column pResults->print(cout); }
void fillMissingValues(GArgReader& args) { // Load GMatrix* pData = loadData(args.pop_string()); Holder<GMatrix> hData(pData); // Parse options unsigned int nSeed = getpid() * (unsigned int)time(NULL); bool random = false; while(args.size() > 0) { if(args.if_pop("-seed")) nSeed = args.pop_uint(); else if(args.if_pop("-random")) random = true; else ThrowError("Invalid option: ", args.peek()); } // Replace missing values and print GRand prng(nSeed); if(random) { for(size_t i = 0; i < pData->relation()->size(); i++) pData->replaceMissingValuesRandomly(i, &prng); } else { for(size_t i = 0; i < pData->relation()->size(); i++) pData->replaceMissingValuesWithBaseline(i); } pData->print(cout); }
void transacc(GArgReader& args) { // Parse options unsigned int seed = getpid() * (unsigned int)time(NULL); while(args.next_is_flag()) { if(args.if_pop("-seed")) seed = args.pop_uint(); else ThrowError("Invalid crossvalidate option: ", args.peek()); } // Load the data if(args.size() < 1) ThrowError("No training set specified."); GMatrix* pTrain = loadData(args.pop_string()); Holder<GMatrix> hTrain(pTrain); if(args.size() < 1) ThrowError("No test set specified."); GMatrix* pTest = loadData(args.pop_string()); Holder<GMatrix> hTest(pTest); // Instantiate the recommender GRand prng(seed); GCollaborativeFilter* pModel = InstantiateAlgorithm(prng, args); Holder<GCollaborativeFilter> hModel(pModel); if(args.size() > 0) ThrowError("Superfluous argument: ", args.peek()); // Do cross-validation double mae; double mse = pModel->trainAndTest(*pTrain, *pTest, &mae); cout << "MSE=" << mse << ", MAE=" << mae << "\n"; }
void correlation(GArgReader& args) { GMatrix* pA = loadData(args.pop_string()); Holder<GMatrix> hA(pA); int attr1 = args.pop_uint(); int attr2 = args.pop_uint(); // Parse Options bool aboutorigin = false; while(args.size() > 0) { if(args.if_pop("-aboutorigin")) aboutorigin = true; else ThrowError("Invalid option: ", args.peek()); } double m1, m2; if(aboutorigin) { m1 = 0; m2 = 0; } else { m1 = pA->mean(attr1); m2 = pA->mean(attr2); } double corr = pA->linearCorrelationCoefficient(attr1, m1, attr2, m2); cout.precision(14); cout << corr << "\n"; }
void precisionRecall(GArgReader& args) { // Parse options unsigned int seed = getpid() * (unsigned int)time(NULL); bool ideal = false; while(args.next_is_flag()) { if(args.if_pop("-seed")) seed = args.pop_uint(); else if(args.if_pop("-ideal")) ideal = true; else ThrowError("Invalid option: ", args.peek()); } // Load the data if(args.size() < 1) ThrowError("No dataset specified."); GMatrix* pData = loadData(args.pop_string()); Holder<GMatrix> hData(pData); // Instantiate the recommender GRand prng(seed); GCollaborativeFilter* pModel = InstantiateAlgorithm(prng, args); Holder<GCollaborativeFilter> hModel(pModel); if(args.size() > 0) ThrowError("Superfluous argument: ", args.peek()); // Generate precision-recall data GMatrix* pResults = pModel->precisionRecall(*pData, ideal); Holder<GMatrix> hResults(pResults); pResults->deleteColumn(2); // we don't need the false-positive rate column pResults->print(cout); }
void enumerateValues(GArgReader& args) { GMatrix* pData = loadData(args.pop_string()); Holder<GMatrix> hData(pData); size_t col = args.pop_uint(); if(pData->relation()->valueCount(col) > 0) ((GArffRelation*)pData->relation().get())->setAttrValueCount(col, 0); else { size_t n = 0; map<double,size_t> themap; for(size_t i = 0; i < pData->rows(); i++) { double* pRow = pData->row(i); map<double,size_t>::iterator it = themap.find(pRow[col]); if(it == themap.end()) { themap[pRow[col]] = n; pRow[col] = (double)n; n++; } else pRow[col] = (double)it->second; } } pData->print(cout); }
void wilcoxon(GArgReader& args) { size_t n = args.pop_uint(); double w = args.pop_double(); double p = GMath::wilcoxonPValue(n, w); cout << p << "\n"; }
void threshold(GArgReader& args){ GMatrix* pData = loadData(args.pop_string()); Holder<GMatrix> hData(pData); unsigned column=args.pop_uint(); if(column >= hData->cols()){ std::stringstream msg; if(hData->cols() >= 1){ msg << "The column to threshold is too large. It should be in " << "the range [0.." << (hData->cols()-1) << "]."; }else{ msg << "This data has no columns to threshold."; } ThrowError(msg.str()); } if(hData->relation()->valueCount(column) != 0){ ThrowError("Can only use threshold on continuous attributes."); } double value = args.pop_double(); //Do the actual thresholding for(size_t i = 0; i < hData->rows(); ++i){ double& v = hData->row(i)[column]; if(v <= value){ v = 0; }else { v = 1; } } //Print the data hData->print(cout); }
void dropRows(GArgReader& args) { GMatrix* pData = loadData(args.pop_string()); Holder<GMatrix> hData(pData); size_t newSize = args.pop_uint(); while(pData->rows() > newSize) pData->deleteRow(pData->rows() - 1); pData->print(cout); }
void attributeSelector(GArgReader& args) { // Load the data size_t labelDims; std::vector<size_t> originalIndices; GMatrix data; loadDataWithSwitches(data, args, labelDims, originalIndices); // Parse the options unsigned int seed = getpid() * (unsigned int)time(NULL); int targetFeatures = 1; string outFilename = ""; while(args.next_is_flag()) { if(args.if_pop("-seed")) seed = args.pop_uint(); else if(args.if_pop("-out")) { targetFeatures = args.pop_uint(); outFilename = args.pop_string(); } else throw Ex("Invalid neighbor finder option: ", args.peek()); } // Do the attribute selection GRand prng(seed); GAttributeSelector as(labelDims, targetFeatures, &prng); if(outFilename.length() > 0) { as.train(data); GMatrix* pDataOut = as.transformBatch(data); Holder<GMatrix> hDataOut(pDataOut); cout << "Reduced data saved to " << outFilename.c_str() << ".\n"; pDataOut->saveArff(outFilename.c_str()); } else as.train(data); cout << "\nAttribute rankings from most salient to least salient. (Attributes are zero-indexed.)\n"; GArffRelation* pRel = (GArffRelation*)data.relation().get(); for(size_t i = 0; i < as.ranks().size(); i++) cout << originalIndices.at(as.ranks()[i]) << " " << pRel->attrName(as.ranks()[i]) << "\n"; }
void rotate(GArgReader& args) { GMatrix* pA = loadData(args.pop_string()); Holder<GMatrix> hA(pA); sp_relation relation = pA->relation(); unsigned colx = args.pop_uint(); if(colx >= pA->cols()){ ThrowError("Rotation first column index (",to_str(colx),") " "should not be greater " "than the largest index, which is ", to_str(pA->cols()-1), "."); } if(!relation->areContinuous(colx,1)){ ThrowError("Rotation first column index (",to_str(colx),") " "should be continuous and it is not."); } unsigned coly = args.pop_uint(); if(coly >= pA->cols()){ ThrowError("Rotation second column index (",to_str(coly),") " "should not be greater " "than the largest index, which is ", to_str(pA->cols()-1), "."); } if(!relation->areContinuous(coly,1)){ ThrowError("Rotation second column index (",to_str(coly),") " "should be continuous and it is not."); } double angle = args.pop_double(); angle = angle * M_PI / 180; //Convert from degrees to radians double cosAngle = std::cos(angle); double sinAngle = std::sin(angle); for(std::size_t rowIdx = 0; rowIdx < pA->rows(); ++rowIdx){ double* row = (*pA)[rowIdx]; double x = row[colx]; double y = row[coly]; row[colx]=x*cosAngle-y*sinAngle; row[coly]=x*sinAngle+y*cosAngle; } pA->print(cout); }
void Discretize(GArgReader& args) { // Load the file GMatrix* pData = loadData(args.pop_string()); Holder<GMatrix> hData(pData); // Parse Options size_t nFirst = 0; size_t nLast = pData->relation()->size() - 1; size_t nBuckets = std::max(2, (int)floor(sqrt((double)pData->rows() + 0.5))); while(args.size() > 0) { if(args.if_pop("-buckets")) nBuckets = args.pop_uint(); else if(args.if_pop("-colrange")) { nFirst = args.pop_uint(); nLast = args.pop_uint(); } else ThrowError("Invalid option: ", args.peek()); } if(nFirst < 0 || nLast >= pData->relation()->size() || nLast < nFirst) ThrowError("column index out of range"); // Discretize the continuous attributes in the specified range for(size_t i = nFirst; i <= nLast; i++) { if(pData->relation()->valueCount(i) != 0) continue; double min, range; pData->minAndRange(i, &min, &range); for(size_t j = 0; j < pData->rows(); j++) { double* pPat = pData->row(j); pPat[i] = (double)std::max((size_t)0, std::min(nBuckets - 1, (size_t)floor(((pPat[i] - min) * nBuckets) / range))); } ((GArffRelation*)pData->relation().get())->setAttrValueCount(i, nBuckets); } // Print results pData->print(cout); }
void agglomerativeclusterer(GArgReader& args) { // Load the file and params GMatrix data; loadData(data, args.pop_string()); int clusters = args.pop_uint(); // Do the clustering GAgglomerativeClusterer clusterer(clusters); GMatrix* pOut = clusterer.reduce(data); std::unique_ptr<GMatrix> hOut(pOut); pOut->print(cout); }
void splitFold(GArgReader& args) { // Load GMatrix* pData = loadData(args.pop_string()); Holder<GMatrix> hData(pData); size_t fold = args.pop_uint(); size_t folds = args.pop_uint(); if(fold >= folds) ThrowError("fold index out of range. It must be less than the total number of folds."); // Options string filenameTrain = "train.arff"; string filenameTest = "test.arff"; while(args.size() > 0) { if(args.if_pop("-out")) { filenameTrain = args.pop_string(); filenameTest = args.pop_string(); } else ThrowError("Invalid option: ", args.peek()); } // Copy relevant portions of the data GMatrix train(pData->relation()); GMatrix test(pData->relation()); size_t begin = pData->rows() * fold / folds; size_t end = pData->rows() * (fold + 1) / folds; for(size_t i = 0; i < begin; i++) train.copyRow(pData->row(i)); for(size_t i = begin; i < end; i++) test.copyRow(pData->row(i)); for(size_t i = end; i < pData->rows(); i++) train.copyRow(pData->row(i)); train.saveArff(filenameTrain.c_str()); test.saveArff(filenameTest.c_str()); }
///TODO: this command should be documented void center(GArgReader& args) { GMatrix* pData = loadData(args.pop_string()); Holder<GMatrix> hData(pData); unsigned int r = args.pop_uint(); size_t cols = pData->cols(); double* pRow = pData->row(r); for(size_t i = 0; i < r; ++i) GVec::subtract(pData->row(i), pRow, cols); for(size_t i = r + 1; i < pData->rows(); ++i) GVec::subtract(pData->row(i), pRow, cols); GVec::setAll(pRow, 0.0, cols); pData->print(cout); }
void SwapAttributes(GArgReader& args) { GMatrix* pData = loadData(args.pop_string()); Holder<GMatrix> hData(pData); size_t nAttr1 = args.pop_uint(); size_t nAttr2 = args.pop_uint(); size_t attrCount = pData->relation()->size(); if(nAttr1 >= attrCount) ThrowError("Index out of range"); if(nAttr2 >= attrCount) ThrowError("Index out of range"); pData->swapColumns(nAttr1, nAttr2); pData->print(cout); }