Пример #1
0
void addNoise(GArgReader& args)
{
	GMatrix* pData = loadData(args.pop_string());
	Holder<GMatrix> hData(pData);
	double dev = args.pop_double();

	// Parse the options
	unsigned int seed = getpid() * (unsigned int)time(NULL);
	int excludeLast = 0;
	while(args.next_is_flag())
	{
		if(args.if_pop("-seed"))
			seed = args.pop_uint();
		else if(args.if_pop("-excludelast"))
			excludeLast = args.pop_uint();
		else
			ThrowError("Invalid neighbor finder option: ", args.peek());
	}

	GRand prng(seed);
	size_t cols = pData->cols() - excludeLast;
	for(size_t r = 0; r < pData->rows(); r++)
	{
		double* pRow = pData->row(r);
		for(size_t c = 0; c < cols; c++)
			*(pRow++) += dev * prng.normal();
	}
	pData->print(cout);
}
Пример #2
0
void lle(GArgReader& args)
{
	// Load the file and params
	GMatrix* pData = loadData(args.pop_string());
	Holder<GMatrix> hData(pData);
	unsigned int nSeed = getpid() * (unsigned int)time(NULL);
	GRand prng(nSeed);
	GNeighborFinder* pNF = instantiateNeighborFinder(pData, &prng, args);
	Holder<GNeighborFinder> hNF(pNF);
	int targetDims = args.pop_uint();

	// Parse Options
	while(args.size() > 0)
	{
		if(args.if_pop("-seed"))
			prng.setSeed(args.pop_uint());
		else
			throw Ex("Invalid option: ", args.peek());
	}

	// Transform the data
	GLLE transform(pNF->neighborCount(), targetDims, &prng);
	transform.setNeighborFinder(pNF);
	GMatrix* pDataAfter = transform.doit(*pData);
	Holder<GMatrix> hDataAfter(pDataAfter);
	pDataAfter->print(cout);
}
Пример #3
0
void split(GArgReader& args)
{
	// Load
	GMatrix* pData = loadData(args.pop_string());
	Holder<GMatrix> hData(pData);
	int pats = (int)pData->rows() - args.pop_uint();
	if(pats < 0)
		ThrowError("out of range. The data only has ", to_str(pData->rows()), " rows.");
	const char* szFilename1 = args.pop_string();
	const char* szFilename2 = args.pop_string();

	unsigned int nSeed = getpid() * (unsigned int)time(NULL);
	bool shouldShuffle = false;
	while(args.size() > 0){
		if(args.if_pop("-shuffle")){
			shouldShuffle = true;
		}else if(args.if_pop("-seed")){
			nSeed = args.pop_uint();
		}else
			ThrowError("Invalid option: ", args.peek());
	}

	// Shuffle if necessary
	GRand rng(nSeed);
	if(shouldShuffle){
		pData->shuffle(rng);
	}

	// Split
	GMatrix other(pData->relation());
	pData->splitBySize(&other, pats);
	pData->saveArff(szFilename1);
	other.saveArff(szFilename2);
}
Пример #4
0
void crossValidate(GArgReader& args)
{
	// Parse options
	unsigned int seed = getpid() * (unsigned int)time(NULL);
	size_t folds = 2;
	while(args.next_is_flag())
	{
		if(args.if_pop("-seed"))
			seed = args.pop_uint();
		else if(args.if_pop("-folds"))
			folds = args.pop_uint();
		else
			ThrowError("Invalid crossvalidate option: ", args.peek());
	}
	if(folds < 2)
		ThrowError("There must be at least 2 folds.");

	// Load the data
	if(args.size() < 1)
		ThrowError("No dataset specified.");
	GMatrix* pData = loadData(args.pop_string());
	Holder<GMatrix> hData(pData);

	// Instantiate the recommender
	GRand prng(seed);
	GCollaborativeFilter* pModel = InstantiateAlgorithm(prng, args);
	Holder<GCollaborativeFilter> hModel(pModel);
	if(args.size() > 0)
		ThrowError("Superfluous argument: ", args.peek());

	// Do cross-validation
	double mae;
	double mse = pModel->crossValidate(*pData, folds, &mae);
	cout << "RMSE=" << sqrt(mse) << ", MSE=" << mse << ", MAE=" << mae << "\n";
}
Пример #5
0
void kmeans(GArgReader& args)
{
	// Load the file and params
	GMatrix data;
	loadData(data, args.pop_string());
	int clusters = args.pop_uint();

	// Parse Options
	unsigned int nSeed = getpid() * (unsigned int)time(NULL);
	size_t reps = 1;
	while(args.size() > 0)
	{
		if(args.if_pop("-seed"))
			nSeed = args.pop_uint();
		else if(args.if_pop("-reps"))
			reps = args.pop_uint();
		else
			throw Ex("Invalid option: ", args.peek());
	}

	// Do the clustering
	GRand prng(nSeed);
	GKMeans clusterer(clusters, &prng);
	clusterer.setReps(reps);
	GMatrix* pOut = clusterer.reduce(data);
	std::unique_ptr<GMatrix> hOut(pOut);
	pOut->print(cout);
}
Пример #6
0
void isomap(GArgReader& args)
{
	// Load the file and params
	GMatrix* pData = loadData(args.pop_string());
	Holder<GMatrix> hData(pData);
	unsigned int nSeed = getpid() * (unsigned int)time(NULL);
	GRand prng(nSeed);
	GNeighborFinder* pNF = instantiateNeighborFinder(pData, &prng, args);
	Holder<GNeighborFinder> hNF(pNF);
	int targetDims = args.pop_uint();

	// Parse Options
	bool tolerant = false;
	while(args.size() > 0)
	{
		if(args.if_pop("-seed"))
			prng.setSeed(args.pop_uint());
		else if(args.if_pop("-tolerant"))
			tolerant = true;
		else
			throw Ex("Invalid option: ", args.peek());
	}

	// Transform the data
	GIsomap transform(pNF->neighborCount(), targetDims, &prng);
	transform.setNeighborFinder(pNF);
	if(tolerant)
		transform.dropDisconnectedPoints();
	GMatrix* pDataAfter = transform.reduce(*pData);
	Holder<GMatrix> hDataAfter(pDataAfter);
	pDataAfter->print(cout);
}
Пример #7
0
void breadthFirstUnfolding(GArgReader& args)
{
	// Load the file and params
	GMatrix* pData = loadData(args.pop_string());
	Holder<GMatrix> hData(pData);
	size_t nSeed = getpid() * (unsigned int)time(NULL);
	GRand prng(nSeed);
	GNeighborFinder* pNF = instantiateNeighborFinder(pData, &prng, args);
	Holder<GNeighborFinder> hNF(pNF);
	int targetDims = args.pop_uint();

	// Parse Options
	size_t reps = 1;
	Holder<GMatrix> hControlData(NULL);
	while(args.size() > 0)
	{
		if(args.if_pop("-seed"))
			nSeed = args.pop_uint();
		else if(args.if_pop("-reps"))
			reps = args.pop_uint();
		else
			throw Ex("Invalid option: ", args.peek());
	}

	// Transform the data
	GBreadthFirstUnfolding transform(reps, pNF->neighborCount(), targetDims);
	transform.rand().setSeed(nSeed);
	transform.setNeighborFinder(pNF);
	GMatrix* pDataAfter = transform.reduce(*pData);
	Holder<GMatrix> hDataAfter(pDataAfter);
	pDataAfter->print(cout);
}
Пример #8
0
void curviness2(GArgReader& args)
{
	GMatrix* pData = loadData(args.pop_string());
	Holder<GMatrix> hData(pData);
	GNormalize norm;
	GMatrix* pDataNormalized = norm.doit(*pData);
	Holder<GMatrix> hDataNormalized(pDataNormalized);
	hData.reset();
	pData = NULL;

	// Parse Options
	size_t maxEigs = 10;
	unsigned int seed = getpid() * (unsigned int)time(NULL);
	Holder<GMatrix> hControlData(NULL);
	while(args.size() > 0)
	{
		if(args.if_pop("-seed"))
			seed = args.pop_uint();
		else if(args.if_pop("-maxeigs"))
			maxEigs = args.pop_uint();
		else
			throw Ex("Invalid option: ", args.peek());
	}

	GRand rand(seed);
	size_t targetDims = std::min(maxEigs, pDataNormalized->cols());

	// Do linear PCA
	GNeuroPCA np1(targetDims, &rand);
	np1.setActivation(new GActivationIdentity());
	np1.computeEigVals();
	GMatrix* pResults1 = np1.doit(*pDataNormalized);
	Holder<GMatrix> hResults1(pResults1);
	double* pEigVals1 = np1.eigVals();
	for(size_t i = 0; i + 1 < targetDims; i++)
		pEigVals1[i] = sqrt(pEigVals1[i]) - sqrt(pEigVals1[i + 1]);
	size_t max1 = GVec::indexOfMax(pEigVals1, targetDims - 1, &rand);
	double v1 = (double)max1;
	if(max1 > 0 && max1 + 2 < targetDims)
		v1 += (pEigVals1[max1 - 1] - pEigVals1[max1 + 1]) / (2.0 * (pEigVals1[max1 - 1] + pEigVals1[max1 + 1] - 2.0 * pEigVals1[max1]));

	// Do non-linear PCA
	GNeuroPCA np2(targetDims, &rand);
	np1.setActivation(new GActivationLogistic());
	np2.computeEigVals();
	GMatrix* pResults2 = np2.doit(*pDataNormalized);
	Holder<GMatrix> hResults2(pResults2);
	double* pEigVals2 = np2.eigVals();
	for(size_t i = 0; i + 1 < targetDims; i++)
		pEigVals2[i] = sqrt(pEigVals2[i]) - sqrt(pEigVals2[i + 1]);
	size_t max2 = GVec::indexOfMax(pEigVals2, targetDims - 1, &rand);
	double v2 = (double)max2;
	if(max2 > 0 && max2 + 2 < targetDims)
		v2 += (pEigVals2[max2 - 1] - pEigVals2[max2 + 1]) / (2.0 * (pEigVals2[max2 - 1] + pEigVals2[max2 + 1] - 2.0 * pEigVals2[max2]));

	// Compute the difference in where the eigenvalues fall
	cout.precision(14);
	cout << (v1 - v2) << "\n";
}
Пример #9
0
void ManifoldSculpting(GArgReader& args)
{
	// Load the file and params
	GMatrix* pData = loadData(args.pop_string());
	Holder<GMatrix> hData(pData);
	unsigned int nSeed = getpid() * (unsigned int)time(NULL);
	GRand prng(nSeed);
	GNeighborFinder* pNF = instantiateNeighborFinder(pData, &prng, args);
	Holder<GNeighborFinder> hNF(pNF);
	size_t targetDims = args.pop_uint();

	// Parse Options
	const char* szPreprocessedData = NULL;
	double scaleRate = 0.999;
	while(args.size() > 0)
	{
		if(args.if_pop("-seed"))
			prng.setSeed(args.pop_uint());
		else if(args.if_pop("-continue"))
			szPreprocessedData = args.pop_string();
		else if(args.if_pop("-scalerate"))
			scaleRate = args.pop_double();
		else
			throw Ex("Invalid option: ", args.peek());
	}

	// Load the hint data
	GMatrix* pDataHint = NULL;
	Holder<GMatrix> hDataHint(NULL);
	if(szPreprocessedData)
	{
		pDataHint = loadData(szPreprocessedData);
		hDataHint.reset(pDataHint);
		if(pDataHint->relation()->size() != targetDims)
			throw Ex("Wrong number of dims in the hint data");
		if(pDataHint->rows() != pData->rows())
			throw Ex("Wrong number of patterns in the hint data");
	}

	// Transform the data
	GManifoldSculpting transform(pNF->neighborCount(), targetDims, &prng);
	transform.setSquishingRate(scaleRate);
	if(pDataHint)
		transform.setPreprocessedData(hDataHint.release());
	transform.setNeighborFinder(pNF);
	GMatrix* pDataAfter = transform.doit(*pData);
	Holder<GMatrix> hDataAfter(pDataAfter);
	pDataAfter->print(cout);
}
Пример #10
0
void splitClass(GArgReader& args)
{
	const char* filename = args.pop_string();
	GMatrix* pData = loadData(filename);
	Holder<GMatrix> hData(pData);
	size_t classAttr = args.pop_uint();
	
	bool dropClass = false;
	while(args.size() > 0)
	{
		if(args.if_pop("-dropclass"))
			dropClass = true;
		else
			ThrowError("Invalid option: ", args.peek());
	}

	for(size_t i = 0; i < pData->relation()->valueCount(classAttr); i++)
	{
		GMatrix tmp(pData->relation(), pData->heap());
		pData->splitByNominalValue(&tmp, classAttr, i);
		std::ostringstream oss;
		PathData pd;
		GFile::parsePath(filename, &pd);
		string fn;
		fn.assign(filename + pd.fileStart, pd.extStart - pd.fileStart);
		oss << fn << "_";
		pData->relation()->printAttrValue(oss, classAttr, (double)i);
		oss << ".arff";
		string s = oss.str();
		if(dropClass)
			tmp.deleteColumn(classAttr);
		tmp.saveArff(s.c_str());
	}
}
Пример #11
0
void aggregateCols(GArgReader& args)
{
	size_t c = args.pop_uint();
	vector<string> files;
	GFile::fileList(files);
	GMatrix* pResults = NULL;
	Holder<GMatrix> hResults;
	size_t i = 0;
	for(vector<string>::iterator it = files.begin(); it != files.end(); it++)
	{
		PathData pd;
		GFile::parsePath(it->c_str(), &pd);
		if(strcmp(it->c_str() + pd.extStart, ".arff") != 0)
			continue;
		GMatrix* pData = loadData(it->c_str());
		Holder<GMatrix> hData(pData);
		if(!pResults)
		{
			pResults = new GMatrix(pData->rows(), files.size());
			hResults.reset(pResults);
		}
		pResults->copyColumns(i, pData, c, 1);
		i++;
	}
	pResults->print(cout);
}
Пример #12
0
void nominalToCat(GArgReader& args)
{
	// Load the file
	GMatrix* pData = loadData(args.pop_string());
	Holder<GMatrix> hData(pData);

	// Parse Options
	int maxValues = 12;
	while(args.size() > 0)
	{
		if(args.if_pop("-maxvalues"))
			maxValues = args.pop_uint();
		else
			ThrowError("Invalid option: ", args.peek());
	}

	// Transform the data
	GNominalToCat transform(maxValues);
	transform.train(*pData);
	GMatrix* pDataNew = transform.transformBatch(*pData);
	Holder<GMatrix> hDataNew(pDataNew);

	// Print results
	pDataNew->print(cout);
}
Пример #13
0
void neighbors(GArgReader& args)
{
	// Load the data
	GMatrix* pData = loadData(args.pop_string());
	Holder<GMatrix> hData(pData);
	int neighborCount = args.pop_uint();

	// Find the neighbors
	GKdTree neighborFinder(pData, neighborCount, NULL, true);
	GTEMPBUF(size_t, neighbors, neighborCount);
	GTEMPBUF(double, distances, neighborCount);
	double sumClosest = 0;
	double sumAll = 0;
	for(size_t i = 0; i < pData->rows(); i++)
	{
		neighborFinder.neighbors(neighbors, distances, i);
		neighborFinder.sortNeighbors(neighbors, distances);
		sumClosest += sqrt(distances[0]);
		for(int j = 0; j < neighborCount; j++)
			sumAll += sqrt(distances[j]);
	}
	cout.precision(14);
	cout << "average closest neighbor distance = " << (sumClosest / pData->rows()) << "\n";
	cout << "average neighbor distance = " << (sumAll / (pData->rows() * neighborCount)) << "\n";
}
Пример #14
0
void GRecommenderLib::transacc(GArgReader& args)
{
	// Parse options
	unsigned int seed = getpid() * (unsigned int)time(NULL);
	while(args.next_is_flag())
	{
		if(args.if_pop("-seed"))
			seed = args.pop_uint();
		else
			throw Ex("Invalid crossvalidate option: ", args.peek());
	}

	// Load the data
	if(args.size() < 1)
		throw Ex("No training set specified.");
	GMatrix train;
	loadData(train, args.pop_string());
	if(args.size() < 1)
		throw Ex("No test set specified.");
	GMatrix test;
	loadData(test, args.pop_string());

	// Instantiate the recommender
	GCollaborativeFilter* pModel = InstantiateAlgorithm(args);
	std::unique_ptr<GCollaborativeFilter> hModel(pModel);
	if(args.size() > 0)
		throw Ex("Superfluous argument: ", args.peek());
	pModel->rand().setSeed(seed);

	// Do cross-validation
	double mae;
	double mse = pModel->trainAndTest(train, test, &mae);
	cout << "MSE=" << mse << ", MAE=" << mae << "\n";
}
Пример #15
0
void GRecommenderLib::precisionRecall(GArgReader& args)
{
	// Parse options
	unsigned int seed = getpid() * (unsigned int)time(NULL);
	bool ideal = false;
	while(args.next_is_flag())
	{
		if(args.if_pop("-seed"))
			seed = args.pop_uint();
		else if(args.if_pop("-ideal"))
			ideal = true;
		else
			throw Ex("Invalid option: ", args.peek());
	}

	// Load the data
	if(args.size() < 1)
		throw Ex("No dataset specified.");
	GMatrix data;
	loadData(data, args.pop_string());

	// Instantiate the recommender
	GCollaborativeFilter* pModel = InstantiateAlgorithm(args);
	std::unique_ptr<GCollaborativeFilter> hModel(pModel);
	if(args.size() > 0)
		throw Ex("Superfluous argument: ", args.peek());
	pModel->rand().setSeed(seed);

	// Generate precision-recall data
	GMatrix* pResults = pModel->precisionRecall(data, ideal);
	std::unique_ptr<GMatrix> hResults(pResults);
	pResults->deleteColumns(2, 1); // we don't need the false-positive rate column
	pResults->print(cout);
}
Пример #16
0
void fillMissingValues(GArgReader& args)
{
	// Load
	GMatrix* pData = loadData(args.pop_string());
	Holder<GMatrix> hData(pData);

	// Parse options
	unsigned int nSeed = getpid() * (unsigned int)time(NULL);
	bool random = false;
	while(args.size() > 0)
	{
		if(args.if_pop("-seed"))
			nSeed = args.pop_uint();
		else if(args.if_pop("-random"))
			random = true;
		else
			ThrowError("Invalid option: ", args.peek());
	}

	// Replace missing values and print
	GRand prng(nSeed);
	if(random)
	{
		for(size_t i = 0; i < pData->relation()->size(); i++)
			pData->replaceMissingValuesRandomly(i, &prng);
	}
	else
	{
		for(size_t i = 0; i < pData->relation()->size(); i++)
			pData->replaceMissingValuesWithBaseline(i);
	}
	pData->print(cout);
}
Пример #17
0
void transacc(GArgReader& args)
{
	// Parse options
	unsigned int seed = getpid() * (unsigned int)time(NULL);
	while(args.next_is_flag())
	{
		if(args.if_pop("-seed"))
			seed = args.pop_uint();
		else
			ThrowError("Invalid crossvalidate option: ", args.peek());
	}

	// Load the data
	if(args.size() < 1)
		ThrowError("No training set specified.");
	GMatrix* pTrain = loadData(args.pop_string());
	Holder<GMatrix> hTrain(pTrain);
	if(args.size() < 1)
		ThrowError("No test set specified.");
	GMatrix* pTest = loadData(args.pop_string());
	Holder<GMatrix> hTest(pTest);

	// Instantiate the recommender
	GRand prng(seed);
	GCollaborativeFilter* pModel = InstantiateAlgorithm(prng, args);
	Holder<GCollaborativeFilter> hModel(pModel);
	if(args.size() > 0)
		ThrowError("Superfluous argument: ", args.peek());

	// Do cross-validation
	double mae;
	double mse = pModel->trainAndTest(*pTrain, *pTest, &mae);
	cout << "MSE=" << mse << ", MAE=" << mae << "\n";
}
Пример #18
0
void correlation(GArgReader& args)
{
	GMatrix* pA = loadData(args.pop_string());
	Holder<GMatrix> hA(pA);
	int attr1 = args.pop_uint();
	int attr2 = args.pop_uint();

	// Parse Options
	bool aboutorigin = false;
	while(args.size() > 0)
	{
		if(args.if_pop("-aboutorigin"))
			aboutorigin = true;
		else
			ThrowError("Invalid option: ", args.peek());
	}

	double m1, m2;
	if(aboutorigin)
	{
		m1 = 0;
		m2 = 0;
	}
	else
	{
		m1 = pA->mean(attr1);
		m2 = pA->mean(attr2);
	}
	double corr = pA->linearCorrelationCoefficient(attr1, m1, attr2, m2);
	cout.precision(14);
	cout << corr << "\n";
}
Пример #19
0
void precisionRecall(GArgReader& args)
{
	// Parse options
	unsigned int seed = getpid() * (unsigned int)time(NULL);
	bool ideal = false;
	while(args.next_is_flag())
	{
		if(args.if_pop("-seed"))
			seed = args.pop_uint();
		else if(args.if_pop("-ideal"))
			ideal = true;
		else
			ThrowError("Invalid option: ", args.peek());
	}

	// Load the data
	if(args.size() < 1)
		ThrowError("No dataset specified.");
	GMatrix* pData = loadData(args.pop_string());
	Holder<GMatrix> hData(pData);

	// Instantiate the recommender
	GRand prng(seed);
	GCollaborativeFilter* pModel = InstantiateAlgorithm(prng, args);
	Holder<GCollaborativeFilter> hModel(pModel);
	if(args.size() > 0)
		ThrowError("Superfluous argument: ", args.peek());

	// Generate precision-recall data
	GMatrix* pResults = pModel->precisionRecall(*pData, ideal);
	Holder<GMatrix> hResults(pResults);
	pResults->deleteColumn(2); // we don't need the false-positive rate column
	pResults->print(cout);
}
Пример #20
0
void enumerateValues(GArgReader& args)
{
	GMatrix* pData = loadData(args.pop_string());
	Holder<GMatrix> hData(pData);
	size_t col = args.pop_uint();
	if(pData->relation()->valueCount(col) > 0)
		((GArffRelation*)pData->relation().get())->setAttrValueCount(col, 0);
	else
	{
		size_t n = 0;
		map<double,size_t> themap;
		for(size_t i = 0; i < pData->rows(); i++)
		{
			double* pRow = pData->row(i);
			map<double,size_t>::iterator it = themap.find(pRow[col]);
			if(it == themap.end())
			{
				themap[pRow[col]] = n;
				pRow[col] = (double)n;
				n++;
			}
			else
				pRow[col] = (double)it->second;
		}
	}
	pData->print(cout);
}
Пример #21
0
void wilcoxon(GArgReader& args)
{
	size_t n = args.pop_uint();
	double w = args.pop_double();
	double p = GMath::wilcoxonPValue(n, w);
	cout << p << "\n";
}
Пример #22
0
void threshold(GArgReader& args){
  GMatrix* pData = loadData(args.pop_string());
  Holder<GMatrix> hData(pData);
  unsigned column=args.pop_uint();
  if(column >= hData->cols()){
    std::stringstream msg;
    if(hData->cols() >= 1){
      msg << "The column to threshold is too large.   It should be in "
	  << "the range [0.." << (hData->cols()-1) << "].";
    }else{
      msg << "This data has no columns to threshold.";
    }
    ThrowError(msg.str());
  }
  if(hData->relation()->valueCount(column) != 0){
    ThrowError("Can only use threshold on continuous attributes.");
  }
  double value = args.pop_double();

  //Do the actual thresholding
  for(size_t i = 0; i < hData->rows(); ++i){
    double& v = hData->row(i)[column];
    if(v <= value){ v = 0;
    }else { v = 1; }
  }

  //Print the data
  hData->print(cout);
}
Пример #23
0
void dropRows(GArgReader& args)
{
	GMatrix* pData = loadData(args.pop_string());
	Holder<GMatrix> hData(pData);
	size_t newSize = args.pop_uint();
	while(pData->rows() > newSize)
		pData->deleteRow(pData->rows() - 1);
	pData->print(cout);
}
Пример #24
0
void attributeSelector(GArgReader& args)
{
	// Load the data
	size_t labelDims;
	std::vector<size_t> originalIndices;
	GMatrix data;
	loadDataWithSwitches(data, args, labelDims, originalIndices);

	// Parse the options
	unsigned int seed = getpid() * (unsigned int)time(NULL);
	int targetFeatures = 1;
	string outFilename = "";
	while(args.next_is_flag())
	{
		if(args.if_pop("-seed"))
			seed = args.pop_uint();
		else if(args.if_pop("-out"))
		{
			targetFeatures = args.pop_uint();
			outFilename = args.pop_string();
		}
		else
			throw Ex("Invalid neighbor finder option: ", args.peek());
	}

	// Do the attribute selection
	GRand prng(seed);
	GAttributeSelector as(labelDims, targetFeatures, &prng);
	if(outFilename.length() > 0)
	{
		as.train(data);
		GMatrix* pDataOut = as.transformBatch(data);
		Holder<GMatrix> hDataOut(pDataOut);
		cout << "Reduced data saved to " << outFilename.c_str() << ".\n";
		pDataOut->saveArff(outFilename.c_str());
	}
	else
		as.train(data);
	cout << "\nAttribute rankings from most salient to least salient. (Attributes are zero-indexed.)\n";
	GArffRelation* pRel = (GArffRelation*)data.relation().get();
	for(size_t i = 0; i < as.ranks().size(); i++)
	  cout << originalIndices.at(as.ranks()[i]) << " " << pRel->attrName(as.ranks()[i]) << "\n";
}
Пример #25
0
void rotate(GArgReader& args)
{
	GMatrix* pA = loadData(args.pop_string());
	Holder<GMatrix> hA(pA);
	sp_relation relation = pA->relation();
	unsigned colx = args.pop_uint();
	if(colx >= pA->cols()){
	  ThrowError("Rotation first column index (",to_str(colx),") "
		     "should not be greater "
		     "than the largest index, which is ", to_str(pA->cols()-1),
		     ".");
	}
	if(!relation->areContinuous(colx,1)){
	  ThrowError("Rotation first column index (",to_str(colx),") "
		     "should be continuous and it is not.");
		     
	}
	unsigned coly = args.pop_uint();
	if(coly >= pA->cols()){
	  ThrowError("Rotation second column index (",to_str(coly),") "
		     "should not be greater "
		     "than the largest index, which is ", to_str(pA->cols()-1),
		     ".");
	}
	if(!relation->areContinuous(coly,1)){
	  ThrowError("Rotation second column index (",to_str(coly),") "
		     "should be continuous and it is not.");
	}
	
	double angle = args.pop_double();

	angle = angle * M_PI / 180; //Convert from degrees to radians
	double cosAngle = std::cos(angle);
	double sinAngle = std::sin(angle);
	for(std::size_t rowIdx = 0; rowIdx < pA->rows(); ++rowIdx){
	  double* row = (*pA)[rowIdx];
	  double x = row[colx];
	  double y = row[coly];
	  row[colx]=x*cosAngle-y*sinAngle;
	  row[coly]=x*sinAngle+y*cosAngle;
	}
	pA->print(cout);
}
Пример #26
0
void Discretize(GArgReader& args)
{
	// Load the file
	GMatrix* pData = loadData(args.pop_string());
	Holder<GMatrix> hData(pData);

	// Parse Options
	size_t nFirst = 0;
	size_t nLast = pData->relation()->size() - 1;
	size_t nBuckets = std::max(2, (int)floor(sqrt((double)pData->rows() + 0.5)));
	while(args.size() > 0)
	{
		if(args.if_pop("-buckets"))
			nBuckets = args.pop_uint();
		else if(args.if_pop("-colrange"))
		{
			nFirst = args.pop_uint();
			nLast = args.pop_uint();
		}
		else
			ThrowError("Invalid option: ", args.peek());
	}
	if(nFirst < 0 || nLast >= pData->relation()->size() || nLast < nFirst)
		ThrowError("column index out of range");

	// Discretize the continuous attributes in the specified range
	for(size_t i = nFirst; i <= nLast; i++)
	{
		if(pData->relation()->valueCount(i) != 0)
			continue;
		double min, range;
		pData->minAndRange(i, &min, &range);
		for(size_t j = 0; j < pData->rows(); j++)
		{
			double* pPat = pData->row(j);
			pPat[i] = (double)std::max((size_t)0, std::min(nBuckets - 1, (size_t)floor(((pPat[i] - min) * nBuckets) / range)));
		}
		((GArffRelation*)pData->relation().get())->setAttrValueCount(i, nBuckets);
	}

	// Print results
	pData->print(cout);
}
Пример #27
0
void agglomerativeclusterer(GArgReader& args)
{
	// Load the file and params
	GMatrix data;
	loadData(data, args.pop_string());
	int clusters = args.pop_uint();

	// Do the clustering
	GAgglomerativeClusterer clusterer(clusters);
	GMatrix* pOut = clusterer.reduce(data);
	std::unique_ptr<GMatrix> hOut(pOut);
	pOut->print(cout);
}
Пример #28
0
void splitFold(GArgReader& args)
{
	// Load
	GMatrix* pData = loadData(args.pop_string());
	Holder<GMatrix> hData(pData);
	size_t fold = args.pop_uint();
	size_t folds = args.pop_uint();
	if(fold >= folds)
		ThrowError("fold index out of range. It must be less than the total number of folds.");

	// Options
	string filenameTrain = "train.arff";
	string filenameTest = "test.arff";
	while(args.size() > 0)
	{
		if(args.if_pop("-out"))
		{
			filenameTrain = args.pop_string();
			filenameTest = args.pop_string();
		}
		else
			ThrowError("Invalid option: ", args.peek());
	}

	// Copy relevant portions of the data
	GMatrix train(pData->relation());
	GMatrix test(pData->relation());
	size_t begin = pData->rows() * fold / folds;
	size_t end = pData->rows() * (fold + 1) / folds;
	for(size_t i = 0; i < begin; i++)
		train.copyRow(pData->row(i));
	for(size_t i = begin; i < end; i++)
		test.copyRow(pData->row(i));
	for(size_t i = end; i < pData->rows(); i++)
		train.copyRow(pData->row(i));
	train.saveArff(filenameTrain.c_str());
	test.saveArff(filenameTest.c_str());
}
Пример #29
0
///TODO: this command should be documented
void center(GArgReader& args)
{
	GMatrix* pData = loadData(args.pop_string());
	Holder<GMatrix> hData(pData);
	unsigned int r = args.pop_uint();
	size_t cols = pData->cols();
	double* pRow = pData->row(r);
	for(size_t i = 0; i < r; ++i)
		GVec::subtract(pData->row(i), pRow, cols);
	for(size_t i = r + 1; i < pData->rows(); ++i)
		GVec::subtract(pData->row(i), pRow, cols);
	GVec::setAll(pRow, 0.0, cols);
	pData->print(cout);
}
Пример #30
0
void SwapAttributes(GArgReader& args)
{
	GMatrix* pData = loadData(args.pop_string());
	Holder<GMatrix> hData(pData);
	size_t nAttr1 = args.pop_uint();
	size_t nAttr2 = args.pop_uint();
	size_t attrCount = pData->relation()->size();
	if(nAttr1 >= attrCount)
		ThrowError("Index out of range");
	if(nAttr2 >= attrCount)
		ThrowError("Index out of range");
	pData->swapColumns(nAttr1, nAttr2);
	pData->print(cout);
}