void SContext::SetNodeAndTime(INode* n, TimeValue tv) { node = n; t = tv; tmAfterWSM = node->GetObjTMAfterWSM(t,NULL); }
int ExportQuake3Model(const TCHAR *filename, ExpInterface *ei, Interface *gi, int start_time, std::list<ExportNode> lTags, std::list<ExportNode> lMeshes) { FILE *file; int i, j, totalTags, totalMeshes, current_time = 0; long pos_current, totalTris = 0, totalVerts = 0; std::list<FrameRange>::iterator range_i; std::vector<Point3> lFrameBBoxMin; std::vector<Point3> lFrameBBoxMax; long pos_tagstart; long pos_tagend; long pos_filesize; long pos_framestart; int lazynamesfixed = 0; const Point3 x_axis(1, 0, 0); const Point3 z_axis(0, 0, 1); SceneEnumProc checkScene(ei->theScene, start_time, gi); totalTags = (int)lTags.size(); if (g_tag_for_pivot) totalTags++; totalMeshes = (int)lMeshes.size(); // open file file = _tfopen(filename, _T("wb")); if (!file) { ExportError("Cannot open file '%s'.", filename); return FALSE; } ExportDebug("%s:", filename); // sync pattern and version putChars("IDP3", 4, file); put32(15, file); putChars("Darkplaces MD3 Exporter", 64, file); put32(0, file); // flags // MD3 header ExportState("Writing MD3 header"); put32(g_total_frames, file); // how many frames put32(totalTags, file); // tagsnum put32(totalMeshes, file); // meshnum put32(1, file); // maxskinnum put32(108, file); // headersize pos_tagstart = ftell(file); put32(0, file); // tagstart pos_tagend = ftell(file); put32(256, file); // tagend pos_filesize = ftell(file); put32(512, file); // filesize ExportDebug(" %i frames, %i tags, %i meshes", g_total_frames, totalTags, totalMeshes); // frame info // bbox arrays get filled while exported mesh and written back then ExportState("Writing frame info"); pos_framestart = ftell(file); lFrameBBoxMin.resize(g_total_frames); lFrameBBoxMax.resize(g_total_frames); for (i = 0; i < g_total_frames; i++) { // init frame data lFrameBBoxMin[i].Set(0, 0, 0); lFrameBBoxMax[i].Set(0, 0, 0); // put data putFloat(-1.0f, file); // bbox min vector putFloat(-1.0f, file); putFloat(-1.0f, file); putFloat( 1.0f, file); // bbox max vector putFloat(1.0f, file); putFloat(1.0f, file); putFloat(0.0f, file); // local origin (usually 0 0 0) putFloat(0.0f, file); putFloat(0.0f, file); putFloat(1.0f, file); // radius of bounding sphere putChars("", 16, file); } // tags pos_current = ftell(file); fseek(file, pos_tagstart, SEEK_SET); put32(pos_current, file); fseek(file, pos_current, SEEK_SET); // for each frame range cycle all frames and write out each tag long pos_tags = pos_current; if (totalTags) { long current_frame = 0; ExportState("Writing %i tags", totalTags); for (range_i = g_frame_ranges.begin(); range_i != g_frame_ranges.end(); range_i++) { for (i = (*range_i).first; i <= (int)(*range_i).last; i++, current_frame++) { SceneEnumProc current_scene(ei->theScene, i * g_ticks_per_frame, gi); current_time = current_scene.time; // write out tags if (lTags.size()) { for (std::list<ExportNode>::iterator tag_i = lTags.begin(); tag_i != lTags.end(); tag_i++) { INode *node = current_scene[tag_i->i]->node; Matrix3 tm = node->GetObjTMAfterWSM(current_time); ExportState("Writing '%s' frame %i of %i", tag_i->name, i, g_total_frames); // tagname putChars(tag_i->name, 64, file); // origin, rotation matrix Point3 row = tm.GetRow(3); putFloat(row.x, file); putFloat(row.y, file); putFloat(row.z, file); row = tm.GetRow(0); putFloat(row.x, file); putFloat(row.y, file); putFloat(row.z, file); row = tm.GetRow(1); putFloat(row.x, file); putFloat(row.y, file); putFloat(row.z, file); row = tm.GetRow(2); putFloat(row.x, file); putFloat(row.y, file); putFloat(row.z, file); } } // write the center of mass tag_pivot which is avg of all objects's pivots if (g_tag_for_pivot) { ExportState("Writing 'tag_pivot' frame %i of %i", i, g_total_frames); // write the null data as tag_pivot need to be written after actual geometry // (it needs information on frame bound boxes to get proper blendings) putChars("tag_pivot", 64, file); putFloat(0, file); putFloat(0, file); putFloat(0, file); putFloat(1, file); putFloat(0, file); putFloat(0, file); putFloat(0, file); putFloat(1, file); putFloat(0, file); putFloat(0, file); putFloat(0, file); putFloat(1, file); } } } } // write the tag object offsets pos_current = ftell(file); fseek(file, pos_tagend, SEEK_SET); put32(pos_current, file); fseek(file, pos_current, SEEK_SET); // allocate the structs used to calculate tag_pivot std::vector<Point3> tag_pivot_origin; std::vector<double> tag_pivot_volume; if (g_tag_for_pivot) { tag_pivot_origin.resize(g_total_frames); tag_pivot_volume.resize(g_total_frames); } // mesh objects // for each mesh object write uv and frames SceneEnumProc scratch(ei->theScene, start_time, gi); ExportState("Writing %i meshes", (int)lMeshes.size()); for (std::list<ExportNode>::iterator mesh_i = lMeshes.begin(); mesh_i != lMeshes.end(); mesh_i++) { bool needsDel; ExportState("Start mesh #%i", mesh_i); INode *node = checkScene[mesh_i->i]->node; Matrix3 tm = node->GetObjTMAfterWSM(start_time); TriObject *tri = GetTriObjectFromNode(node, start_time, needsDel); if (!tri) continue; // get mesh, compute normals Mesh &mesh = tri->GetMesh(); MeshNormalSpec *meshNormalSpec = mesh.GetSpecifiedNormals(); if (meshNormalSpec) { if (!meshNormalSpec->GetNumFaces()) meshNormalSpec = NULL; else { meshNormalSpec->SetParent(&mesh); meshNormalSpec->CheckNormals(); } } mesh.checkNormals(TRUE); // fix lazy object names ExportState("Attempt to fix mesh name '%s'", mesh_i->name); char meshname[64]; size_t meshnamelen = min(63, strlen(mesh_i->name)); memset(meshname, 0, 64); strncpy(meshname, mesh_i->name, meshnamelen); meshname[meshnamelen] = 0; if (!strncmp("Box", meshname, 3) || !strncmp("Sphere", meshname, 6) || !strncmp("Cylinder", meshname, 8) || !strncmp("Torus", meshname, 5) || !strncmp("Cone", meshname, 4) || !strncmp("GeoSphere", meshname, 9) || !strncmp("Tube", meshname, 4) || !strncmp("Pyramid", meshname, 7) || !strncmp("Plane", meshname, 5) || !strncmp("Teapot", meshname, 6) || !strncmp("Object", meshname, 6)) { name_conflict: lazynamesfixed++; if (lazynamesfixed == 1) strcpy(meshname, "base"); else sprintf(meshname, "base%i", lazynamesfixed); // check if it's not used by another mesh for (std::list<ExportNode>::iterator m_i = lMeshes.begin(); m_i != lMeshes.end(); m_i++) if (!strncmp(m_i->name, meshname, strlen(meshname))) goto name_conflict; // approve name ExportWarning("Lazy object name '%s' (mesh renamed to '%s').", node->GetName(), meshname); } // special mesh check bool shadow_or_collision = false; if (g_mesh_special) if (!strncmp("collision", meshname, 9) || !strncmp("shadow", meshname, 6)) shadow_or_collision = true; // get material const char *shadername = NULL; Texmap *tex = 0; Mtl *mtl = 0; if (!shadow_or_collision) { mtl = node->GetMtl(); if (mtl) { // check for multi-material if (mtl->IsMultiMtl()) { // check if it's truly multi material // we do support multi-material with only one texture (some importers set it) bool multi_material = false; MtlID matId = mesh.faces[0].getMatID(); for (i = 1; i < mesh.getNumFaces(); i++) if (mesh.faces[i].getMatID() != matId) multi_material = true; if (multi_material) if (g_mesh_multimaterials == MULTIMATERIALS_NONE) ExportWarning("Object '%s' is multimaterial and using multiple materials on its faces, that case is not yet supported (truncating to first submaterial).", node->GetName()); // switch to submaterial mtl = mtl->GetSubMtl(matId); } // get shader from material if supplied char *materialname = GetChar(mtl->GetName()); if (g_mesh_materialasshader && (strstr(materialname, "/") != NULL || strstr(materialname, "\\") != NULL)) shadername = GetChar(mtl->GetName()); else { // get texture tex = mtl->GetSubTexmap(ID_DI); if (tex) { if (tex->ClassID() == Class_ID(BMTEX_CLASS_ID, 0x00)) { shadername = GetChar(((BitmapTex *)tex)->GetMapName()); if (shadername == NULL || !shadername[0]) ExportWarning("Object '%s' material '%s' has no bitmap.", tex->GetName(), node->GetName()); } else { tex = NULL; ExportWarning("Object '%s' has material with wrong texture type (only Bitmap are supported).", node->GetName()); } } else ExportWarning("Object '%s' has material but no texture.", node->GetName()); } } else ExportWarning("Object '%s' has no material.", node->GetName()); } long pos_meshstart = ftell(file); // surface object ExportState("Writing mesh '%s' header", meshname); putChars("IDP3", 4, file); putChars(meshname, 64, file); put32(0, file); // flags put32(g_total_frames, file); // framecount put32(1, file); // skincount long pos_vertexnum = ftell(file); put32(0, file); // vertexcount put32(mesh.getNumFaces(), file); // trianglecount long pos_trianglestart = ftell(file); put32(0, file); // start triangles put32(108, file); // header size long pos_texvecstart = ftell(file); put32(0, file); // texvecstart long pos_vertexstart = ftell(file); put32(16, file); // vertexstart long pos_meshsize = ftell(file); put32(32, file); // meshsize // write out a single 'skin' ExportState("Writing mesh %s texture", meshname); if (shadow_or_collision) putChars(meshname, 64, file); else if (shadername) putMaterial(shadername, mtl, tex, file); else putChars("noshader", 64, file); put32(0, file); // flags // build geometry ExportState("Building vertexes/triangles"); std::vector<ExportVertex>vVertexes; std::vector<ExportTriangle>vTriangles; vVertexes.resize(mesh.getNumVerts()); int vExtraVerts = mesh.getNumVerts(); for (i = 0; i < mesh.getNumVerts(); i++) { vVertexes[i].vert = i; vVertexes[i].normalfilled = false; // todo: check for coincident verts } int vNumExtraVerts = 0; // check normals if (!mesh.normalsBuilt && !shadow_or_collision) ExportWarning("Object '%s' does not have normals contructed.", node->GetName()); // get info for triangles const float normal_epsilon = 0.01f; vTriangles.resize(mesh.getNumFaces()); for (i = 0; i < mesh.getNumFaces(); i++) { DWORD smGroup = mesh.faces[i].getSmGroup(); ExportState("Mesh %s: checking normals for face %i of %i", meshname, i, mesh.getNumFaces()); for (j = 0; j < 3; j++) { int vert = mesh.faces[i].getVert(j); vTriangles[i].e[j] = vert; // find a right normal for this vertex and save its 'address' int vni; Point3 vn; if (!mesh.normalsBuilt || shadow_or_collision) { vn.Set(0, 0, 0); vni = 0; } else { int numNormals; RVertex *rv = mesh.getRVertPtr(vert); if (meshNormalSpec) { ExportState("face %i vert %i have normal specified", i, j); // mesh have explicit normals (i.e. Edit Normals modifier) vn = meshNormalSpec->GetNormal(i, j); vni = meshNormalSpec->GetNormalIndex(i, j); } else if (rv && rv->rFlags & SPECIFIED_NORMAL) { ExportState("face %i vert %i have SPECIFIED_NORMAL flag", i, j); // SPECIFIED_NORMAL flag vn = rv->rn.getNormal(); vni = 0; } else if (rv && (numNormals = rv->rFlags & NORCT_MASK) && smGroup) { // If there is only one vertex is found in the rn member. if (numNormals == 1) { ExportState("face %i vert %i have solid smooth group", i, j); vn = rv->rn.getNormal(); vni = 0; } else { ExportState("face %i vert %i have mixed smoothing groups", i, j); // If two or more vertices are there you need to step through them // and find the vertex with the same smoothing group as the current face. // You will find multiple normals in the ern member. for (int k = 0; k < numNormals; k++) { if (rv->ern[k].getSmGroup() & smGroup) { vn = rv->ern[k].getNormal(); vni = 1 + k; } } } } else { ExportState("face %i vert %i flat shaded", i, j); // Get the normal from the Face if no smoothing groups are there vn = mesh.getFaceNormal(i); vni = 0 - (i + 1); } } // subdivide to get all normals right if (!vVertexes[vert].normalfilled) { vVertexes[vert].normal = vn; vVertexes[vert].normalindex = vni; vVertexes[vert].normalfilled = true; } else if ((vVertexes[vert].normal - vn).Length() >= normal_epsilon) { // current vertex not matching normal - it was already filled by different smoothing group // find a vert in extra verts in case it was already created bool vert_found = false; for (int ev = vExtraVerts; ev < (int)vVertexes.size(); ev++) { if (vVertexes[ev].vert == vert && (vVertexes[ev].normal - vn).Length() < normal_epsilon) { vert_found = true; vTriangles[i].e[j] = ev; break; } } // we havent found a vertex, create new if (!vert_found) { ExportVertex NewVert; NewVert.vert = vVertexes[vert].vert; NewVert.normal = vn; NewVert.normalindex = vni; NewVert.normalfilled = true; vTriangles[i].e[j] = (int)vVertexes.size(); vVertexes.push_back(NewVert); vNumExtraVerts++; } } } } int vNumExtraVertsForSmoothGroups = vNumExtraVerts; // generate UV map // VorteX: use direct maps reading since getNumTVerts()/getTVert is deprecated // max sets two default mesh maps: 0 - vertex color, 1 : UVW, 2 & up are custom ones ExportState("Building UV map"); std::vector<ExportUV>vUVMap; vUVMap.resize(vVertexes.size()); int meshMap = 1; if (!mesh.mapSupport(meshMap) || !mesh.getNumMapVerts(meshMap) || shadow_or_collision) { for (i = 0; i < mesh.getNumVerts(); i++) { vUVMap[i].u = 0.5; vUVMap[i].v = 0.5; } if (!shadow_or_collision) ExportWarning("No UV mapping was found on object '%s'.", node->GetName()); } else { UVVert *meshUV = mesh.mapVerts(meshMap); for (i = 0; i < (int)vTriangles.size(); i++) { ExportState("Mesh %s: converting tvert for face %i of %i", meshname, i, (int)vTriangles.size()); // for 3 face vertexes for (j = 0; j < 3; j++) { int vert = vTriangles[i].e[j]; int tv = mesh.tvFace[i].t[j]; UVVert &UV = meshUV[tv]; if (!vUVMap[vert].filled) { // fill uvMap vertex vUVMap[vert].u = UV.x; vUVMap[vert].v = UV.y; vUVMap[vert].filled = true; vUVMap[vert].tvert = tv; } else if (tv != vUVMap[vert].tvert) { // uvMap slot for this vertex has been filled // we should arrange triangle to other vertex, which not filled and having same shading and uv // check if any of the extra vertices can fit bool vert_found = false; for (int ev = vExtraVerts; ev < (int)vVertexes.size(); ev++) { if (vVertexes[ev].vert == vert && vUVMap[vert].u == UV.x &&vUVMap[vert].v == UV.y && (vVertexes[ev].normal - vVertexes[vert].normal).Length() < normal_epsilon) { vert_found = true; vTriangles[i].e[j] = vVertexes[ev].vert; break; } } if (!vert_found) { // create new vert ExportVertex NewVert; NewVert.vert = vVertexes[vert].vert; NewVert.normal = vVertexes[vert].normal; NewVert.normalindex = vVertexes[vert].normalindex; NewVert.normalfilled = vVertexes[vert].normalfilled; vTriangles[i].e[j] = (int)vVertexes.size(); vVertexes.push_back(NewVert); vNumExtraVerts++; // create new TVert ExportUV newUV; newUV.filled = true; newUV.u = UV.x; newUV.v = UV.y; newUV.tvert = tv; vUVMap.push_back(newUV); } } } } } int vNumExtraVertsForUV = (vNumExtraVerts - vNumExtraVertsForSmoothGroups); // print some debug stats ExportDebug(" mesh %s: %i vertexes +%i %s +%i UV, %i triangles", meshname, ((int)vVertexes.size() - vNumExtraVerts), vNumExtraVertsForSmoothGroups, meshNormalSpec ? "EditNormals" : "SmoothGroups", vNumExtraVertsForUV, (int)vTriangles.size()); // fill in triangle start pos_current = ftell(file); fseek(file, pos_trianglestart, SEEK_SET); put32(pos_current - pos_meshstart, file); fseek(file, pos_current, SEEK_SET); // detect if object have negative scale (mirrored) // in this canse we should rearrange triangles counterclockwise // so stuff will not be inverted ExportState("Mesh %s: writing %i triangles", meshname, (int)vTriangles.size()); if (DotProd(CrossProd(tm.GetRow(0), tm.GetRow(1)), tm.GetRow(2)) < 0.0) { ExportWarning("Object '%s' is mirrored (having negative scale on it's transformation)", node->GetName()); for (i = 0; i < (int)vTriangles.size(); i++) { put32(vTriangles[i].b, file); // vertex index put32(vTriangles[i].c, file); // for 3 vertices put32(vTriangles[i].a, file); // of triangle } } else { for (i = 0; i < (int)vTriangles.size(); i++) { put32(vTriangles[i].a, file); // vertex index put32(vTriangles[i].c, file); // for 3 vertices put32(vTriangles[i].b, file); // of triangle } } // fill in texvecstart // write out UV mapping coords. ExportState("Mesh %s: writing %i UV vertexes", meshname, (int)vUVMap.size()); pos_current = ftell(file); fseek(file, pos_texvecstart, SEEK_SET); put32(pos_current - pos_meshstart, file); fseek(file, pos_current, SEEK_SET); for (i = 0; i < (int)vUVMap.size(); i++) { putFloat(vUVMap[i].u, file); // texture coord u,v putFloat(1.0f - vUVMap[i].v, file); // for vertex } vUVMap.clear(); // fill in vertexstart pos_current = ftell(file); fseek(file, pos_vertexstart, SEEK_SET); put32(pos_current - pos_meshstart, file); fseek(file, pos_current, SEEK_SET); // fill in vertexnum pos_current = ftell(file); fseek(file, pos_vertexnum, SEEK_SET); put32((int)vVertexes.size(), file); fseek(file, pos_current, SEEK_SET); // write out for each frame the position of each vertex long current_frame = 0; ExportState("Mesh %s: writing %i frames", meshname, g_total_frames); for (range_i = g_frame_ranges.begin(); range_i != g_frame_ranges.end(); range_i++) { for (i = (*range_i).first; i <= (int)(*range_i).last; i++, current_frame++) { bool _needsDel; // get triobject for current frame SceneEnumProc current_scene(ei->theScene, i * g_ticks_per_frame, gi); current_time = current_scene.time; INode *_node = current_scene[mesh_i->i]->node; TriObject *_tri = GetTriObjectFromNode(_node, current_time, _needsDel); if (!_tri) continue; // get mesh, compute normals Mesh &_mesh = _tri->GetMesh(); MeshNormalSpec *_meshNormalSpec = _mesh.GetSpecifiedNormals(); if (_meshNormalSpec) { if (!_meshNormalSpec->GetNumFaces()) _meshNormalSpec = NULL; else { _meshNormalSpec->SetParent(&_mesh); _meshNormalSpec->CheckNormals(); } } _mesh.checkNormals(TRUE); // get transformations for current frame Matrix3 _tm = _node->GetObjTMAfterWSM(current_time); ExportState("Mesh %s: writing frame %i of %i", meshname, current_frame, g_total_frames); Point3 BoxMin(0, 0, 0); Point3 BoxMax(0, 0, 0); for (j = 0; j < (int)vVertexes.size(); j++) // number of vertices { ExportState("Mesh %s: transform vertex %i of %i", meshname, j, (int)vVertexes.size()); int vert = vVertexes[j].vert; Point3 &v = _tm.PointTransform(_mesh.getVert(vert)); // populate bbox data if (!shadow_or_collision) { BoxMin.x = min(BoxMin.x, v.x); BoxMin.y = min(BoxMin.y, v.y); BoxMin.z = min(BoxMin.z, v.z); BoxMax.x = max(BoxMax.x, v.x); BoxMax.y = max(BoxMax.y, v.y); BoxMax.z = max(BoxMax.z, v.z); } // write vertex double f; f = v.x * 64.0f; if (f < -32768.0) f = -32768.0; if (f > 32767.0) f = 32767.0; put16((short)f, file); f = v.y * 64.0f; if (f < -32768.0) f = -32768.0; if (f > 32767.0) f = 32767.0; put16((short)f, file); f = v.z * 64.0f; if (f < -32768.0) f = -32768.0; if (f > 32767.0) f = 32767.0; put16((short)f, file); // get normal ExportState("Mesh %s: transform vertex normal %i of %i", meshname, j, (int)vVertexes.size()); Point3 n; if (_meshNormalSpec) // mesh have explicit normals (i.e. Edit Normals modifier) n = _meshNormalSpec->Normal(vVertexes[j].normalindex); else if (!vVertexes[j].normalfilled || !_mesh.normalsBuilt) n = _mesh.getNormal(vert); else { RVertex *rv = _mesh.getRVertPtr(vert); if (vVertexes[j].normalindex < 0) n = _mesh.getFaceNormal((0 - vVertexes[j].normalindex) - 1); else if (vVertexes[j].normalindex == 0) n = rv->rn.getNormal(); else n = rv->ern[vVertexes[j].normalindex - 1].getNormal(); } // transform normal Point3 &nt = _tm.VectorTransform(n).Normalize(); // encode a normal vector into a 16-bit latitude-longitude value double lng = acos(nt.z) * 255 / (2 * pi); double lat = atan2(nt.y, nt.x) * 255 / (2 * pi); put16((((int)lat & 0xFF) << 8) | ((int)lng & 0xFF), file); } // blend the pivot positions for tag_pivot using mesh's volumes for blending power if (g_tag_for_pivot && !shadow_or_collision) { ExportState("Mesh %s: writing tag_pivot", meshname); Point3 Size = BoxMax - BoxMin; double BoxVolume = pow(Size.x * Size.y * Size.z, 0.333f); // blend matrices float blend = (float)(BoxVolume / (BoxVolume + tag_pivot_volume[current_frame])); float iblend = 1 - blend; tag_pivot_volume[current_frame] = tag_pivot_volume[current_frame] + BoxVolume; Point3 row = _tm.GetRow(3) - _node->GetObjOffsetPos(); tag_pivot_origin[current_frame].x = tag_pivot_origin[current_frame].x * iblend + row.x * blend; tag_pivot_origin[current_frame].y = tag_pivot_origin[current_frame].y * iblend + row.y * blend; tag_pivot_origin[current_frame].z = tag_pivot_origin[current_frame].z * iblend + row.z * blend; } // populate bbox data for frames lFrameBBoxMin[current_frame].x = min(lFrameBBoxMin[current_frame].x, BoxMin.x); lFrameBBoxMin[current_frame].y = min(lFrameBBoxMin[current_frame].y, BoxMin.y); lFrameBBoxMin[current_frame].z = min(lFrameBBoxMin[current_frame].z, BoxMin.z); lFrameBBoxMax[current_frame].x = max(lFrameBBoxMax[current_frame].x, BoxMax.x); lFrameBBoxMax[current_frame].y = max(lFrameBBoxMax[current_frame].y, BoxMax.y); lFrameBBoxMax[current_frame].z = max(lFrameBBoxMax[current_frame].z, BoxMax.z); // delete the working object, if necessary. if (_needsDel) delete _tri; } } // delete if necessary if (needsDel) delete tri; // fill in meshsize pos_current = ftell(file); fseek(file, pos_meshsize, SEEK_SET); put32(pos_current - pos_meshstart, file); fseek(file, pos_current, SEEK_SET); // reset back to first frame SceneEnumProc scratch(ei->theScene, start_time, gi); totalTris += (long)vTriangles.size(); totalVerts += (long)vVertexes.size(); vTriangles.clear(); vVertexes.clear(); } // write tag_pivot ExportState("Writing tag_pivot positions"); if (g_tag_for_pivot) { pos_current = ftell(file); long current_frame = 0; for (range_i = g_frame_ranges.begin(); range_i != g_frame_ranges.end(); range_i++) { for (i = (*range_i).first; i <= (int)(*range_i).last; i++, current_frame++) { fseek(file, pos_tags + totalTags*112*current_frame + (int)lTags.size()*112 + 64, SEEK_SET); // origin putFloat(tag_pivot_origin[current_frame].x, file); putFloat(tag_pivot_origin[current_frame].y, file); putFloat(tag_pivot_origin[current_frame].z, file); } } fseek(file, pos_current, SEEK_SET); } tag_pivot_volume.clear(); tag_pivot_origin.clear(); // write frame data ExportState("Writing culling info"); long current_frame = 0; pos_current = ftell(file); for (range_i = g_frame_ranges.begin(); range_i != g_frame_ranges.end(); range_i++) { for (i = (*range_i).first; i <= (int)(*range_i).last; i++, current_frame++) { fseek(file, pos_framestart + current_frame*56, SEEK_SET); putFloat(lFrameBBoxMin[current_frame].x, file); // bbox min vector putFloat(lFrameBBoxMin[current_frame].y, file); putFloat(lFrameBBoxMin[current_frame].z, file); putFloat(lFrameBBoxMax[current_frame].x, file); // bbox max vector putFloat(lFrameBBoxMax[current_frame].y, file); putFloat(lFrameBBoxMax[current_frame].z, file); putFloat(0, file); // local origin (usually 0 0 0) putFloat(0, file); putFloat(0, file); putFloat(max(lFrameBBoxMin[current_frame].Length(), lFrameBBoxMax[current_frame].Length()) , file); // radius of bounding sphere } } fseek(file, pos_current, SEEK_SET); lFrameBBoxMin.clear(); lFrameBBoxMax.clear(); // fill in filesize pos_current = ftell(file); fseek(file, pos_filesize, SEEK_SET); put32(pos_current, file); fseek(file, pos_current, SEEK_SET); fclose(file); ExportDebug(" total: %i vertexes, %i triangles", totalVerts, totalTris); return TRUE; }
/** * @brief * Constructor */ PLSceneNode::PLSceneNode(PLSceneContainer *pContainer, IGameNode *pIGameNode, const String &sName, EType nType, const String &sClassName) : m_pContainer(pContainer), m_pIGameNode(pIGameNode), m_sName(sName), m_nType(nType), m_sClassName(sClassName), m_sFlags(""), m_vPos(0.0f, 0.0f, 0.0f), m_vRot(0.0f, 0.0f, 0.0f), m_vScale(1.0f, 1.0f, 1.0f), m_nIsRotationFlipped(-1) { // Check some universal flags INode *pMaxNode = GetMaxNode(); if (pMaxNode) { // If this is not a container... TSTR sString; // Check whether the default PixelLight class is changed if (pMaxNode->GetUserPropString(_T("Class"), sString)) { m_sClassName = sString; // Erase all '"' int i = m_sClassName.IndexOf("\""); while (i >= 0) { m_sClassName.Delete(i, 1); i = m_sClassName.IndexOf("\""); } } // Is this 3ds Max node frozen? if (pMaxNode->IsFrozen()) AddFlag("Frozen"); // Is this 3ds Max node invisible? if (pMaxNode->IsHidden() || !pMaxNode->Renderable()) AddFlag("Invisible"); // Is this 3ds Max node excluded from lighting? INodeGIProperties *pINodeGIProperties = static_cast<INodeGIProperties*>(pMaxNode->GetInterface(NODEGIPROPERTIES_INTERFACE)); if (pINodeGIProperties && pINodeGIProperties->GIGetIsExcluded()) AddFlag("NoLighting"); { // Get the world space bounding box of the scene node. Because this is not 'trival' we're using // the sample code from "3dsMaxSDK.chm" (3ds Max SDK) -> "The Pipeline and the INode TM Methods" // to get it working correctly. ::Object *pMaxObject = pMaxNode->GetObjectRef(); if (pMaxObject) { TimeValue t = 0; Matrix3 mat; // The Object TM // Determine if the object is in world space or object space // so we can get the correct TM. We can check this by getting // the Object TM after the world space modifiers have been // applied. It the matrix returned is the identity matrix the // points of the object have been transformed into world space. if (pMaxNode->GetObjTMAfterWSM(t).IsIdentity()) { // It's in world space, so put it back into object // space. We can do this by computing the inverse // of the matrix returned before any world space // modifiers were applied. mat = Inverse(pMaxNode->GetObjTMBeforeWSM(t)); } else { // It's in object space, get the Object TM mat = pMaxNode->GetObjectTM(t); } // Get the bound box, and affect it by just the scaling portion pMaxObject->GetDeformBBox(t, m_cBoundingBox, &mat); } } // We really need to flip the coordinates to OpenGL style m_cBoundingBox.pmin = PLTools::Convert3dsMaxVectorToOpenGLVector(m_cBoundingBox.pmin); m_cBoundingBox.pmax = PLTools::Convert3dsMaxVectorToOpenGLVector(m_cBoundingBox.pmax); // Validate minimum/maximum - I already had situations with incorrect values causing problems! PLTools::ValidateMinimumMaximum(m_cBoundingBox); } // Get the position, rotation and scale GetPosRotScale(m_vPos, m_vRot, m_vScale); }