bool AArch64CallLowering::lowerReturn(MachineIRBuilder &MIRBuilder, const Value *Val, unsigned VReg) const { MachineInstr *Return = MIRBuilder.buildInstr(AArch64::RET_ReallyLR); assert(Return && "Unable to build a return instruction?!"); assert(((Val && VReg) || (!Val && !VReg)) && "Return value without a vreg"); if (VReg) { assert((Val->getType()->isIntegerTy() || Val->getType()->isPointerTy()) && "Type not supported yet"); const Function &F = *MIRBuilder.getMF().getFunction(); const DataLayout &DL = F.getParent()->getDataLayout(); unsigned Size = DL.getTypeSizeInBits(Val->getType()); assert((Size == 64 || Size == 32) && "Size not supported yet"); unsigned ResReg = (Size == 32) ? AArch64::W0 : AArch64::X0; // Set the insertion point to be right before Return. MIRBuilder.setInstr(*Return, /* Before */ true); MachineInstr *Copy = MIRBuilder.buildInstr(TargetOpcode::COPY, ResReg, VReg); (void)Copy; assert(Copy->getNextNode() == Return && "The insertion did not happen where we expected"); MachineInstrBuilder(MIRBuilder.getMF(), Return) .addReg(ResReg, RegState::Implicit); } return true; }
MachineInstr * ReloadIPPass::addReloadIPInstr(MachineFunction::iterator &MFI, MachineBasicBlock::iterator &MBBI) const { MachineInstr *MI = MBBI; StringRef JTPrefix(JumpInstrTables::jump_func_prefix); switch (MI->getOpcode()) { case X86::MOV32rm: if (MI->getNumOperands() > 4 && MI->getOperand(4).isGlobal() && MI->getOperand(4).getGlobal()->getName().startswith(JTPrefix)) { if ((TM->Options.CFIType == CFIntegrity::Add && MI->getNextNode()->getOpcode() == X86::AND32rr) || (TM->Options.CFIType == CFIntegrity::Sub && MI->getNextNode()->getOpcode() == X86::SUB32rr) || (TM->Options.CFIType == CFIntegrity::Ror && MI->getNextNode()->getOpcode() == X86::SUB32rr) ) { // MI->dump(); // For debugging DEBUG(dbgs() << TM->getSubtargetImpl()->getInstrInfo()->getName(MI->getOpcode()) << ": " << " Op" << ": " << MI->getOperand(4).getGlobal()->getName().str() << "\n";); return MI; } else
/// Returns \p New if it's dominated by \p Old, otherwise return \p Old. /// \p M maintains a map from instruction to its dominating order that satisfies /// M[A] > M[B] guarantees that A is dominated by B. /// If \p New is not in \p M, return \p Old. Otherwise if \p Old is null, return /// \p New. static MachineInstr *FindDominatedInstruction(MachineInstr &New, MachineInstr *Old, const InstOrderMap &M) { auto NewIter = M.find(&New); if (NewIter == M.end()) return Old; if (Old == nullptr) return &New; unsigned OrderOld = M.find(Old)->second; unsigned OrderNew = NewIter->second; if (OrderOld != OrderNew) return OrderOld < OrderNew ? &New : Old; // OrderOld == OrderNew, we need to iterate down from Old to see if it // can reach New, if yes, New is dominated by Old. for (MachineInstr *I = Old->getNextNode(); M.find(I)->second == OrderNew; I = I->getNextNode()) if (I == &New) return &New; return Old; }
MachineInstr *ARCOptAddrMode::tryToCombine(MachineInstr &Ldst) { assert((Ldst.mayLoad() || Ldst.mayStore()) && "LD/ST instruction expected"); unsigned BasePos, OffsetPos; LLVM_DEBUG(dbgs() << "[ABAW] tryToCombine " << Ldst); if (!AII->getBaseAndOffsetPosition(Ldst, BasePos, OffsetPos)) { LLVM_DEBUG(dbgs() << "[ABAW] Not a recognized load/store\n"); return nullptr; } MachineOperand &Base = Ldst.getOperand(BasePos); MachineOperand &Offset = Ldst.getOperand(OffsetPos); assert(Base.isReg() && "Base operand must be register"); if (!Offset.isImm()) { LLVM_DEBUG(dbgs() << "[ABAW] Offset is not immediate\n"); return nullptr; } unsigned B = Base.getReg(); if (TargetRegisterInfo::isStackSlot(B) || !TargetRegisterInfo::isVirtualRegister(B)) { LLVM_DEBUG(dbgs() << "[ABAW] Base is not VReg\n"); return nullptr; } // TODO: try to generate address preincrement if (Offset.getImm() != 0) { LLVM_DEBUG(dbgs() << "[ABAW] Non-zero offset\n"); return nullptr; } for (auto &Add : MRI->use_nodbg_instructions(B)) { int64_t Incr; if (!isAddConstantOp(Add, Incr)) continue; if (!isValidLoadStoreOffset(Incr)) continue; SmallVector<MachineInstr *, 8> Uses; MachineInstr *MoveTo = canJoinInstructions(&Ldst, &Add, &Uses); if (!MoveTo) continue; if (!canFixPastUses(Uses, Add.getOperand(2), B)) continue; LLVM_DEBUG(MachineInstr *First = &Ldst; MachineInstr *Last = &Add; if (MDT->dominates(Last, First)) std::swap(First, Last); dbgs() << "[ABAW] Instructions " << *First << " and " << *Last << " combined\n"; ); MachineInstr *Result = Ldst.getNextNode(); if (MoveTo == &Add) { Ldst.removeFromParent(); Add.getParent()->insertAfter(Add.getIterator(), &Ldst); } if (Result == &Add) Result = Result->getNextNode(); fixPastUses(Uses, B, Incr); int NewOpcode = ARC::getPostIncOpcode(Ldst.getOpcode()); assert(NewOpcode > 0 && "No postincrement form found"); unsigned NewBaseReg = Add.getOperand(0).getReg(); changeToAddrMode(Ldst, NewOpcode, NewBaseReg, Add.getOperand(2)); Add.eraseFromParent(); return Result; }
bool LiveRangeShrink::runOnMachineFunction(MachineFunction &MF) { if (skipFunction(MF.getFunction())) return false; MachineRegisterInfo &MRI = MF.getRegInfo(); LLVM_DEBUG(dbgs() << "**** Analysing " << MF.getName() << '\n'); InstOrderMap IOM; // Map from register to instruction order (value of IOM) where the // register is used last. When moving instructions up, we need to // make sure all its defs (including dead def) will not cross its // last use when moving up. DenseMap<unsigned, std::pair<unsigned, MachineInstr *>> UseMap; for (MachineBasicBlock &MBB : MF) { if (MBB.empty()) continue; bool SawStore = false; BuildInstOrderMap(MBB.begin(), IOM); UseMap.clear(); for (MachineBasicBlock::iterator Next = MBB.begin(); Next != MBB.end();) { MachineInstr &MI = *Next; ++Next; if (MI.isPHI() || MI.isDebugInstr()) continue; if (MI.mayStore()) SawStore = true; unsigned CurrentOrder = IOM[&MI]; unsigned Barrier = 0; MachineInstr *BarrierMI = nullptr; for (const MachineOperand &MO : MI.operands()) { if (!MO.isReg() || MO.isDebug()) continue; if (MO.isUse()) UseMap[MO.getReg()] = std::make_pair(CurrentOrder, &MI); else if (MO.isDead() && UseMap.count(MO.getReg())) // Barrier is the last instruction where MO get used. MI should not // be moved above Barrier. if (Barrier < UseMap[MO.getReg()].first) { Barrier = UseMap[MO.getReg()].first; BarrierMI = UseMap[MO.getReg()].second; } } if (!MI.isSafeToMove(nullptr, SawStore)) { // If MI has side effects, it should become a barrier for code motion. // IOM is rebuild from the next instruction to prevent later // instructions from being moved before this MI. if (MI.hasUnmodeledSideEffects() && Next != MBB.end()) { BuildInstOrderMap(Next, IOM); SawStore = false; } continue; } const MachineOperand *DefMO = nullptr; MachineInstr *Insert = nullptr; // Number of live-ranges that will be shortened. We do not count // live-ranges that are defined by a COPY as it could be coalesced later. unsigned NumEligibleUse = 0; for (const MachineOperand &MO : MI.operands()) { if (!MO.isReg() || MO.isDead() || MO.isDebug()) continue; unsigned Reg = MO.getReg(); // Do not move the instruction if it def/uses a physical register, // unless it is a constant physical register or a noreg. if (!TargetRegisterInfo::isVirtualRegister(Reg)) { if (!Reg || MRI.isConstantPhysReg(Reg)) continue; Insert = nullptr; break; } if (MO.isDef()) { // Do not move if there is more than one def. if (DefMO) { Insert = nullptr; break; } DefMO = &MO; } else if (MRI.hasOneNonDBGUse(Reg) && MRI.hasOneDef(Reg) && DefMO && MRI.getRegClass(DefMO->getReg()) == MRI.getRegClass(MO.getReg())) { // The heuristic does not handle different register classes yet // (registers of different sizes, looser/tighter constraints). This // is because it needs more accurate model to handle register // pressure correctly. MachineInstr &DefInstr = *MRI.def_instr_begin(Reg); if (!DefInstr.isCopy()) NumEligibleUse++; Insert = FindDominatedInstruction(DefInstr, Insert, IOM); } else { Insert = nullptr; break; } } // If Barrier equals IOM[I], traverse forward to find if BarrierMI is // after Insert, if yes, then we should not hoist. for (MachineInstr *I = Insert; I && IOM[I] == Barrier; I = I->getNextNode()) if (I == BarrierMI) { Insert = nullptr; break; } // Move the instruction when # of shrunk live range > 1. if (DefMO && Insert && NumEligibleUse > 1 && Barrier <= IOM[Insert]) { MachineBasicBlock::iterator I = std::next(Insert->getIterator()); // Skip all the PHI and debug instructions. while (I != MBB.end() && (I->isPHI() || I->isDebugInstr())) I = std::next(I); if (I == MI.getIterator()) continue; // Update the dominator order to be the same as the insertion point. // We do this to maintain a non-decreasing order without need to update // all instruction orders after the insertion point. unsigned NewOrder = IOM[&*I]; IOM[&MI] = NewOrder; NumInstrsHoistedToShrinkLiveRange++; // Find MI's debug value following MI. MachineBasicBlock::iterator EndIter = std::next(MI.getIterator()); if (MI.getOperand(0).isReg()) for (; EndIter != MBB.end() && EndIter->isDebugValue() && EndIter->getOperand(0).isReg() && EndIter->getOperand(0).getReg() == MI.getOperand(0).getReg(); ++EndIter, ++Next) IOM[&*EndIter] = NewOrder; MBB.splice(I, &MBB, MI.getIterator(), EndIter); } } } return false; }