ContinuityMassElemSuppAlg<AlgTraits>::ContinuityMassElemSuppAlg( Realm &realm, ElemDataRequests& dataPreReqs, const bool lumpedMass) : SupplementalAlgorithm(realm), densityNm1_(NULL), densityN_(NULL), densityNp1_(NULL), coordinates_(NULL), dt_(0.0), gamma1_(0.0), gamma2_(0.0), gamma3_(0.0), lumpedMass_(lumpedMass), ipNodeMap_(realm.get_volume_master_element(AlgTraits::topo_)->ipNodeMap()) { // save off fields; shove state N into Nm1 if this is BE stk::mesh::MetaData & meta_data = realm_.meta_data(); ScalarFieldType *density = meta_data.get_field<ScalarFieldType>(stk::topology::NODE_RANK, "density"); densityNm1_ = realm_.number_of_states() == 2 ? &(density->field_of_state(stk::mesh::StateN)) : &(density->field_of_state(stk::mesh::StateNM1)); densityN_ = &(density->field_of_state(stk::mesh::StateN)); densityNp1_ = &(density->field_of_state(stk::mesh::StateNP1)); coordinates_ = meta_data.get_field<VectorFieldType>(stk::topology::NODE_RANK, realm_.get_coordinates_name()); MasterElement *meSCV = realm.get_volume_master_element(AlgTraits::topo_); // compute shape function if ( lumpedMass_ ) meSCV->shifted_shape_fcn(&v_shape_function_(0,0)); else meSCV->shape_fcn(&v_shape_function_(0,0)); // add master elements dataPreReqs.add_cvfem_volume_me(meSCV); // fields and data dataPreReqs.add_gathered_nodal_field(*coordinates_, AlgTraits::nDim_); dataPreReqs.add_gathered_nodal_field(*densityNm1_, 1); dataPreReqs.add_gathered_nodal_field(*densityN_, 1); dataPreReqs.add_gathered_nodal_field(*densityNp1_, 1); dataPreReqs.add_master_element_call(SCV_VOLUME); }
ScalarAdvDiffElemKernel<AlgTraits>::ScalarAdvDiffElemKernel( const stk::mesh::BulkData& bulkData, const SolutionOptions& solnOpts, ScalarFieldType* scalarQ, ScalarFieldType* diffFluxCoeff, ElemDataRequests& dataPreReqs) : Kernel(), scalarQ_(scalarQ), diffFluxCoeff_(diffFluxCoeff), lrscv_(sierra::nalu::MasterElementRepo::get_surface_master_element(AlgTraits::topo_)->adjacentNodes()), shiftedGradOp_(solnOpts.get_shifted_grad_op(scalarQ->name())) { // Save of required fields const stk::mesh::MetaData& metaData = bulkData.mesh_meta_data(); coordinates_ = metaData.get_field<VectorFieldType>( stk::topology::NODE_RANK, solnOpts.get_coordinates_name()); massFlowRate_ = metaData.get_field<GenericFieldType>( stk::topology::ELEMENT_RANK, "mass_flow_rate_scs"); MasterElement *meSCS = sierra::nalu::MasterElementRepo::get_surface_master_element(AlgTraits::topo_); get_scs_shape_fn_data<AlgTraits>([&](double* ptr){meSCS->shape_fcn(ptr);}, v_shape_function_); const bool skewSymmetric = solnOpts.get_skew_symmetric(scalarQ->name()); get_scs_shape_fn_data<AlgTraits>([&](double* ptr){skewSymmetric ? meSCS->shifted_shape_fcn(ptr) : meSCS->shape_fcn(ptr);}, v_adv_shape_function_); dataPreReqs.add_cvfem_surface_me(meSCS); // fields and data dataPreReqs.add_coordinates_field(*coordinates_, AlgTraits::nDim_, CURRENT_COORDINATES); dataPreReqs.add_gathered_nodal_field(*scalarQ_, 1); dataPreReqs.add_gathered_nodal_field(*diffFluxCoeff_, 1); dataPreReqs.add_element_field(*massFlowRate_, AlgTraits::numScsIp_); dataPreReqs.add_master_element_call(SCS_AREAV, CURRENT_COORDINATES); if ( shiftedGradOp_ ) dataPreReqs.add_master_element_call(SCS_SHIFTED_GRAD_OP, CURRENT_COORDINATES); else dataPreReqs.add_master_element_call(SCS_GRAD_OP, CURRENT_COORDINATES); }
//-------------------------------------------------------------------------- //-------- execute --------------------------------------------------------- //-------------------------------------------------------------------------- void AssembleContinuityElemSolverAlgorithm::execute() { stk::mesh::MetaData & meta_data = realm_.meta_data(); const int nDim = meta_data.spatial_dimension(); // time step const double dt = realm_.get_time_step(); const double gamma1 = realm_.get_gamma1(); const double projTimeScale = dt/gamma1; // deal with interpolation procedure const double interpTogether = realm_.get_mdot_interp(); const double om_interpTogether = 1.0-interpTogether; // space for LHS/RHS; nodesPerElem*nodesPerElem and nodesPerElem std::vector<double> lhs; std::vector<double> rhs; std::vector<stk::mesh::Entity> connected_nodes; // supplemental algorithm setup const size_t supplementalAlgSize = supplementalAlg_.size(); for ( size_t i = 0; i < supplementalAlgSize; ++i ) supplementalAlg_[i]->setup(); // nodal fields to gather std::vector<double> ws_vrtm; std::vector<double> ws_Gpdx; std::vector<double> ws_coordinates; std::vector<double> ws_pressure; std::vector<double> ws_density; // geometry related to populate std::vector<double> ws_scs_areav; std::vector<double> ws_dndx; std::vector<double> ws_dndx_lhs; std::vector<double> ws_deriv; std::vector<double> ws_det_j; std::vector<double> ws_shape_function; // integration point data that depends on size std::vector<double> uIp(nDim); std::vector<double> rho_uIp(nDim); std::vector<double> GpdxIp(nDim); std::vector<double> dpdxIp(nDim); // pointers to everyone... double *p_uIp = &uIp[0]; double *p_rho_uIp = &rho_uIp[0]; double *p_GpdxIp = &GpdxIp[0]; double *p_dpdxIp = &dpdxIp[0]; // deal with state ScalarFieldType &densityNp1 = density_->field_of_state(stk::mesh::StateNP1); // define some common selectors stk::mesh::Selector s_locally_owned_union = meta_data.locally_owned_part() & stk::mesh::selectUnion(partVec_) & !(realm_.get_inactive_selector()); stk::mesh::BucketVector const& elem_buckets = realm_.get_buckets( stk::topology::ELEMENT_RANK, s_locally_owned_union ); for ( stk::mesh::BucketVector::const_iterator ib = elem_buckets.begin(); ib != elem_buckets.end() ; ++ib ) { stk::mesh::Bucket & b = **ib ; const stk::mesh::Bucket::size_type length = b.size(); // extract master element MasterElement *meSCS = realm_.get_surface_master_element(b.topology()); MasterElement *meSCV = realm_.get_volume_master_element(b.topology()); // extract master element specifics const int nodesPerElement = meSCS->nodesPerElement_; const int numScsIp = meSCS->numIntPoints_; const int *lrscv = meSCS->adjacentNodes(); // resize some things; matrix related const int lhsSize = nodesPerElement*nodesPerElement; const int rhsSize = nodesPerElement; lhs.resize(lhsSize); rhs.resize(rhsSize); connected_nodes.resize(nodesPerElement); // algorithm related ws_vrtm.resize(nodesPerElement*nDim); ws_Gpdx.resize(nodesPerElement*nDim); ws_coordinates.resize(nodesPerElement*nDim); ws_pressure.resize(nodesPerElement); ws_density.resize(nodesPerElement); ws_scs_areav.resize(numScsIp*nDim); ws_dndx.resize(nDim*numScsIp*nodesPerElement); ws_dndx_lhs.resize(nDim*numScsIp*nodesPerElement); ws_deriv.resize(nDim*numScsIp*nodesPerElement); ws_det_j.resize(numScsIp); ws_shape_function.resize(numScsIp*nodesPerElement); // pointers double *p_lhs = &lhs[0]; double *p_rhs = &rhs[0]; double *p_vrtm = &ws_vrtm[0]; double *p_Gpdx = &ws_Gpdx[0]; double *p_coordinates = &ws_coordinates[0]; double *p_pressure = &ws_pressure[0]; double *p_density = &ws_density[0]; double *p_scs_areav = &ws_scs_areav[0]; double *p_dndx = &ws_dndx[0]; double *p_dndx_lhs = reducedSensitivities_ ? &ws_dndx_lhs[0] : &ws_dndx[0]; double *p_shape_function = &ws_shape_function[0]; if ( shiftMdot_) meSCS->shifted_shape_fcn(&p_shape_function[0]); else meSCS->shape_fcn(&p_shape_function[0]); // resize possible supplemental element alg for ( size_t i = 0; i < supplementalAlgSize; ++i ) supplementalAlg_[i]->elem_resize(meSCS, meSCV); for ( stk::mesh::Bucket::size_type k = 0 ; k < length ; ++k ) { // get elem stk::mesh::Entity elem = b[k]; // zero lhs/rhs for ( int p = 0; p < lhsSize; ++p ) p_lhs[p] = 0.0; for ( int p = 0; p < rhsSize; ++p ) p_rhs[p] = 0.0; //=============================================== // gather nodal data; this is how we do it now.. //=============================================== stk::mesh::Entity const * node_rels = b.begin_nodes(k); int num_nodes = b.num_nodes(k); // sanity check on num nodes ThrowAssert( num_nodes == nodesPerElement ); for ( int ni = 0; ni < num_nodes; ++ni ) { stk::mesh::Entity node = node_rels[ni]; // set connected nodes connected_nodes[ni] = node; // pointers to real data const double * Gjp = stk::mesh::field_data(*Gpdx_, node ); const double * coords = stk::mesh::field_data(*coordinates_, node ); const double * vrtm = stk::mesh::field_data(*velocityRTM_, node ); // gather scalars p_pressure[ni] = *stk::mesh::field_data(*pressure_, node ); p_density[ni] = *stk::mesh::field_data(densityNp1, node ); // gather vectors const int niNdim = ni*nDim; for ( int j=0; j < nDim; ++j ) { p_vrtm[niNdim+j] = vrtm[j]; p_Gpdx[niNdim+j] = Gjp[j]; p_coordinates[niNdim+j] = coords[j]; } } // compute geometry double scs_error = 0.0; meSCS->determinant(1, &p_coordinates[0], &p_scs_areav[0], &scs_error); // compute dndx for residual if ( shiftPoisson_ ) meSCS->shifted_grad_op(1, &p_coordinates[0], &ws_dndx[0], &ws_deriv[0], &ws_det_j[0], &scs_error); else meSCS->grad_op(1, &p_coordinates[0], &ws_dndx[0], &ws_deriv[0], &ws_det_j[0], &scs_error); // compute dndx for LHS if ( reducedSensitivities_ ) meSCS->shifted_grad_op(1, &p_coordinates[0], &ws_dndx_lhs[0], &ws_deriv[0], &ws_det_j[0], &scs_error); for ( int ip = 0; ip < numScsIp; ++ip ) { // left and right nodes for this ip const int il = lrscv[2*ip]; const int ir = lrscv[2*ip+1]; // corresponding matrix rows int rowL = il*nodesPerElement; int rowR = ir*nodesPerElement; // setup for ip values; sneak in geometry for possible reduced sens for ( int j = 0; j < nDim; ++j ) { p_uIp[j] = 0.0; p_rho_uIp[j] = 0.0; p_GpdxIp[j] = 0.0; p_dpdxIp[j] = 0.0; } double rhoIp = 0.0; const int offSet = ip*nodesPerElement; for ( int ic = 0; ic < nodesPerElement; ++ic ) { const double r = p_shape_function[offSet+ic]; const double nodalPressure = p_pressure[ic]; const double nodalRho = p_density[ic]; rhoIp += r*nodalRho; double lhsfac = 0.0; const int offSetDnDx = nDim*nodesPerElement*ip + ic*nDim; for ( int j = 0; j < nDim; ++j ) { p_GpdxIp[j] += r*p_Gpdx[nDim*ic+j]; p_uIp[j] += r*p_vrtm[nDim*ic+j]; p_rho_uIp[j] += r*nodalRho*p_vrtm[nDim*ic+j]; p_dpdxIp[j] += p_dndx[offSetDnDx+j]*nodalPressure; lhsfac += -p_dndx_lhs[offSetDnDx+j]*p_scs_areav[ip*nDim+j]; } // assemble to lhs; left p_lhs[rowL+ic] += lhsfac; // assemble to lhs; right p_lhs[rowR+ic] -= lhsfac; } // assemble mdot double mdot = 0.0; for ( int j = 0; j < nDim; ++j ) { mdot += (interpTogether*p_rho_uIp[j] + om_interpTogether*rhoIp*p_uIp[j] - projTimeScale*(p_dpdxIp[j] - p_GpdxIp[j]))*p_scs_areav[ip*nDim+j]; } // residual; left and right p_rhs[il] -= mdot/projTimeScale; p_rhs[ir] += mdot/projTimeScale; } // call supplemental for ( size_t i = 0; i < supplementalAlgSize; ++i ) supplementalAlg_[i]->elem_execute( &lhs[0], &rhs[0], elem, meSCS, meSCV); apply_coeff(connected_nodes, rhs, lhs, __FILE__); } } }
//-------------------------------------------------------------------------- //-------- execute --------------------------------------------------------- //-------------------------------------------------------------------------- void AssembleHeatCondIrradWallSolverAlgorithm::execute() { stk::mesh::MetaData & meta_data = realm_.meta_data(); const int nDim = meta_data.spatial_dimension(); const double sigma = realm_.get_stefan_boltzmann(); // space for LHS/RHS; nodesPerFace*nodesPerFace and nodesPerFace std::vector<double> lhs; std::vector<double> rhs; std::vector<stk::mesh::Entity> connected_nodes; // nodal fields to gather std::vector<double> ws_irradiation; std::vector<double> ws_emissivity; std::vector<double> ws_temperature; // geometry related to populate std::vector<double> ws_shape_function; // setup for buckets; union parts and ask for locally owned stk::mesh::Selector s_locally_owned_union = meta_data.locally_owned_part() &stk::mesh::selectUnion(partVec_); stk::mesh::BucketVector const& face_buckets = realm_.get_buckets( meta_data.side_rank(), s_locally_owned_union ); for ( stk::mesh::BucketVector::const_iterator ib = face_buckets.begin(); ib != face_buckets.end() ; ++ib ) { stk::mesh::Bucket & b = **ib ; // extract master element specifics MasterElement *meFC = realm_.get_surface_master_element(b.topology()); const int nodesPerFace = meFC->nodesPerElement_; const int numScsIp = meFC->numIntPoints_; // resize some things; matrix related const int lhsSize = nodesPerFace*nodesPerFace; const int rhsSize = nodesPerFace; lhs.resize(lhsSize); rhs.resize(rhsSize); connected_nodes.resize(nodesPerFace); // algorithm related ws_irradiation.resize(nodesPerFace); ws_emissivity.resize(nodesPerFace); ws_temperature.resize(nodesPerFace); ws_shape_function.resize(numScsIp*nodesPerFace); // pointers double *p_lhs = &lhs[0]; double *p_rhs = &rhs[0]; double *p_irradiation = &ws_irradiation[0]; double *p_emissivity = &ws_emissivity[0]; double *p_temperature = &ws_temperature[0]; double *p_shape_function = &ws_shape_function[0]; if ( useShifted_ ) meFC->shifted_shape_fcn(&p_shape_function[0]); else meFC->shape_fcn(&p_shape_function[0]); const stk::mesh::Bucket::size_type length = b.size(); for ( stk::mesh::Bucket::size_type k = 0 ; k < length ; ++k ) { // zero lhs/rhs for ( int p = 0; p < lhsSize; ++p ) p_lhs[p] = 0.0; for ( int p = 0; p < rhsSize; ++p ) p_rhs[p] = 0.0; // face data double * areaVec = stk::mesh::field_data(*exposedAreaVec_, b, k); // face node relations for nodal gather stk::mesh::Entity const * face_node_rels = b.begin_nodes(k); int num_nodes = b.num_nodes(k); for ( int ni = 0; ni < num_nodes; ++ni ) { // get the node and form connected_node stk::mesh::Entity node = face_node_rels[ni]; connected_nodes[ni] = node; // gather scalar p_irradiation[ni] = *stk::mesh::field_data(*irradiation_, node); p_emissivity[ni] = *stk::mesh::field_data(*emissivity_, node); p_temperature[ni] = *stk::mesh::field_data(*temperature_, node); } // start the assembly for ( int ip = 0; ip < numScsIp; ++ip ) { double magA = 0.0; for ( int j=0; j < nDim; ++j ) { magA += areaVec[ip*nDim+j]*areaVec[ip*nDim+j]; } magA = std::sqrt(magA); const int nn = ip; const int offSet = ip*nodesPerFace; // form boundary ip values double irradiationBip = 0.0; double emissivityBip = 0.0; double tBip = 0.0; for ( int ic = 0; ic < nodesPerFace; ++ic ) { const double r = p_shape_function[offSet+ic]; irradiationBip += r*p_irradiation[ic]; emissivityBip += r*p_emissivity[ic]; tBip += r*p_temperature[ic]; } // form rhs contribution const double radiation = emissivityBip*(irradiationBip - sigma*std::pow(tBip,4))*magA; p_rhs[nn] += radiation; // sensitivities const int rowR = nn*nodesPerFace; const double lhsFac = 4.0*sigma*emissivityBip*magA*std::pow(tBip,3); for ( int ic = 0; ic < nodesPerFace; ++ic ) { const double r = p_shape_function[offSet+ic]; p_lhs[rowR+ic] += r*lhsFac; } } apply_coeff(connected_nodes, rhs, lhs, __FILE__); } } }
//-------------------------------------------------------------------------- //-------- execute --------------------------------------------------------- //-------------------------------------------------------------------------- void AssemblePressureForceBCSolverAlgorithm::execute() { stk::mesh::BulkData & bulk_data = realm_.bulk_data(); stk::mesh::MetaData & meta_data = realm_.meta_data(); const int nDim = meta_data.spatial_dimension(); // space for LHS/RHS; nodesPerElem*nDim*nodesPerElem*nDim and nodesPerElem*nDim std::vector<double> lhs; std::vector<double> rhs; std::vector<stk::mesh::Entity> connected_nodes; // nodal fields to gather std::vector<double> ws_face_coordinates; std::vector<double> ws_bcScalarQ; // master element std::vector<double> ws_face_shape_function; // define vector of parent topos; should always be UNITY in size std::vector<stk::topology> parentTopo; // define some common selectors stk::mesh::Selector s_locally_owned_union = meta_data.locally_owned_part() &stk::mesh::selectUnion(partVec_); stk::mesh::BucketVector const& face_buckets = realm_.get_buckets( meta_data.side_rank(), s_locally_owned_union ); for ( stk::mesh::BucketVector::const_iterator ib = face_buckets.begin(); ib != face_buckets.end() ; ++ib ) { stk::mesh::Bucket & b = **ib ; // extract connected element topology b.parent_topology(stk::topology::ELEMENT_RANK, parentTopo); ThrowAssert ( parentTopo.size() == 1 ); stk::topology theElemTopo = parentTopo[0]; // volume master element MasterElement *meSCS = realm_.get_surface_master_element(theElemTopo); const int nodesPerElement = meSCS->nodesPerElement_; // face master element MasterElement *meFC = realm_.get_surface_master_element(b.topology()); const int nodesPerFace = meFC->nodesPerElement_; std::vector<int> face_node_ordinal_vec(nodesPerFace); // resize some things; matrix related const int lhsSize = nodesPerElement*nDim*nodesPerElement*nDim; const int rhsSize = nodesPerElement*nDim; lhs.resize(lhsSize); rhs.resize(rhsSize); connected_nodes.resize(nodesPerElement); // algorithm related; element ws_face_coordinates.resize(nodesPerFace*nDim); ws_bcScalarQ.resize(nodesPerFace); ws_face_shape_function.resize(nodesPerFace*nodesPerFace); // pointers double *p_lhs = &lhs[0]; double *p_rhs = &rhs[0]; double *p_face_coordinates = &ws_face_coordinates[0]; double *p_bcScalarQ = &ws_bcScalarQ[0]; double *p_face_shape_function = &ws_face_shape_function[0]; // shape functions if (use_shifted_integration_) { meFC->shifted_shape_fcn(&p_face_shape_function[0]); } else{ meFC->shape_fcn(&p_face_shape_function[0]); } const size_t length = b.size(); for ( size_t k = 0 ; k < length ; ++k ) { // zero lhs/rhs for ( int p = 0; p < lhsSize; ++p ) p_lhs[p] = 0.0; for ( int p = 0; p < rhsSize; ++p ) p_rhs[p] = 0.0; // get face stk::mesh::Entity face = b[k]; //====================================== // gather nodal data off of face //====================================== stk::mesh::Entity const * face_node_rels = bulk_data .begin_nodes(face); int num_face_nodes = bulk_data.num_nodes(face); // sanity check on num nodes ThrowAssert( num_face_nodes == nodesPerFace ); for ( int ni = 0; ni < num_face_nodes; ++ni ) { stk::mesh::Entity node = face_node_rels[ni]; p_bcScalarQ[ni] = *stk::mesh::field_data(*bcScalarQ_, node); // gather vectors double * coords = stk::mesh::field_data(*coordinates_, node); const int offSet = ni*nDim; for ( int i=0; i < nDim; ++i ) { p_face_coordinates[offSet+i] = coords[i]; } } // extract the connected element to this exposed face; should be single in size! const stk::mesh::Entity* face_elem_rels = bulk_data.begin_elements(face); ThrowAssert( bulk_data.num_elements(face) == 1 ); // get element; its face ordinal number and populate face_node_ordinal_vec stk::mesh::Entity element = face_elem_rels[0]; const int face_ordinal = bulk_data.begin_element_ordinals(face)[0]; theElemTopo.side_node_ordinals(face_ordinal, face_node_ordinal_vec.begin()); //========================================== // gather nodal data off of element; n/a //========================================== stk::mesh::Entity const * elem_node_rels = bulk_data.begin_nodes(element); int num_nodes = bulk_data.num_nodes(element); // sanity check on num nodes ThrowAssert( num_nodes == nodesPerElement ); for ( int ni = 0; ni < num_nodes; ++ni ) { stk::mesh::Entity node = elem_node_rels[ni]; // set connected nodes connected_nodes[ni] = node; } // pointer to face data double * areaVec = stk::mesh::field_data(*exposedAreaVec_, face); // loop over face nodes for ( int ip = 0; ip < num_face_nodes; ++ip ) { const int nearestNode = face_node_ordinal_vec[ip]; const int offSetSF_face = ip*nodesPerFace; // interpolate to bip double fluxBip = 0.0; for ( int ic = 0; ic < nodesPerFace; ++ic ) { const double r = p_face_shape_function[offSetSF_face+ic]; fluxBip += r*p_bcScalarQ[ic]; } // assemble for each of the ith component for ( int i = 0; i < nDim; ++i ) { const int indexR = nearestNode*nDim + i; p_rhs[indexR] -= fluxBip*areaVec[ip*nDim+i]; // RHS only, no need to populate LHS (is zeroed out) } } apply_coeff(connected_nodes, rhs, lhs, __FILE__); } } }
//-------------------------------------------------------------------------- //-------- execute --------------------------------------------------------- //-------------------------------------------------------------------------- void SurfaceForceAndMomentWallFunctionAlgorithm::execute() { // check to see if this is a valid step to process output file const int timeStepCount = realm_.get_time_step_count(); const bool processMe = (timeStepCount % frequency_) == 0 ? true : false; // do not waste time here if ( !processMe ) return; stk::mesh::BulkData & bulk_data = realm_.bulk_data(); stk::mesh::MetaData & meta_data = realm_.meta_data(); const int nDim = meta_data.spatial_dimension(); // set min and max values double yplusMin = 1.0e8; double yplusMax = -1.0e8; // bip values std::vector<double> uBip(nDim); std::vector<double> uBcBip(nDim); std::vector<double> unitNormal(nDim); // tangential work array std::vector<double> uiTangential(nDim); std::vector<double> uiBcTangential(nDim); // pointers to fixed values double *p_uBip = &uBip[0]; double *p_uBcBip = &uBcBip[0]; double *p_unitNormal= &unitNormal[0]; double *p_uiTangential = &uiTangential[0]; double *p_uiBcTangential = &uiBcTangential[0]; // nodal fields to gather std::vector<double> ws_velocityNp1; std::vector<double> ws_bcVelocity; std::vector<double> ws_pressure; std::vector<double> ws_density; std::vector<double> ws_viscosity; // master element std::vector<double> ws_face_shape_function; // deal with state VectorFieldType &velocityNp1 = velocity_->field_of_state(stk::mesh::StateNP1); ScalarFieldType &densityNp1 = density_->field_of_state(stk::mesh::StateNP1); const double currentTime = realm_.get_current_time(); // local force and MomentWallFunction; i.e., to be assembled double l_force_moment[9] = {}; // work force, MomentWallFunction and radius; i.e., to be pused to cross_product() double ws_p_force[3] = {}; double ws_v_force[3] = {}; double ws_t_force[3] = {}; double ws_moment[3] = {}; double ws_radius[3] = {}; // centroid double centroid[3] = {}; for ( size_t k = 0; k < parameters_.size(); ++k) centroid[k] = parameters_[k]; // define some common selectors stk::mesh::Selector s_locally_owned_union = meta_data.locally_owned_part() &stk::mesh::selectUnion(partVec_); stk::mesh::BucketVector const& face_buckets = realm_.get_buckets( meta_data.side_rank(), s_locally_owned_union ); for ( stk::mesh::BucketVector::const_iterator ib = face_buckets.begin(); ib != face_buckets.end() ; ++ib ) { stk::mesh::Bucket & b = **ib ; // face master element MasterElement *meFC = realm_.get_surface_master_element(b.topology()); const int nodesPerFace = meFC->nodesPerElement_; // algorithm related; element ws_velocityNp1.resize(nodesPerFace*nDim); ws_bcVelocity.resize(nodesPerFace*nDim); ws_pressure.resize(nodesPerFace); ws_density.resize(nodesPerFace); ws_viscosity.resize(nodesPerFace); ws_face_shape_function.resize(nodesPerFace*nodesPerFace); // pointers double *p_velocityNp1 = &ws_velocityNp1[0]; double *p_bcVelocity = &ws_bcVelocity[0]; double *p_pressure = &ws_pressure[0]; double *p_density = &ws_density[0]; double *p_viscosity = &ws_viscosity[0]; double *p_face_shape_function = &ws_face_shape_function[0]; // shape functions if ( useShifted_ ) meFC->shifted_shape_fcn(&p_face_shape_function[0]); else meFC->shape_fcn(&p_face_shape_function[0]); const stk::mesh::Bucket::size_type length = b.size(); for ( stk::mesh::Bucket::size_type k = 0 ; k < length ; ++k ) { // get face stk::mesh::Entity face = b[k]; // face node relations stk::mesh::Entity const * face_node_rels = bulk_data.begin_nodes(face); //====================================== // gather nodal data off of face //====================================== for ( int ni = 0; ni < nodesPerFace; ++ni ) { stk::mesh::Entity node = face_node_rels[ni]; // gather scalars p_pressure[ni] = *stk::mesh::field_data(*pressure_, node); p_density[ni] = *stk::mesh::field_data(densityNp1, node); p_viscosity[ni] = *stk::mesh::field_data(*viscosity_, node); // gather vectors double * uNp1 = stk::mesh::field_data(velocityNp1, node); double * uBc = stk::mesh::field_data(*bcVelocity_, node); const int offSet = ni*nDim; for ( int j=0; j < nDim; ++j ) { p_velocityNp1[offSet+j] = uNp1[j]; p_bcVelocity[offSet+j] = uBc[j]; } } // pointer to face data const double * areaVec = stk::mesh::field_data(*exposedAreaVec_, face); const double *wallNormalDistanceBip = stk::mesh::field_data(*wallNormalDistanceBip_, face); const double *wallFrictionVelocityBip = stk::mesh::field_data(*wallFrictionVelocityBip_, face); for ( int ip = 0; ip < nodesPerFace; ++ip ) { // offsets const int offSetAveraVec = ip*nDim; const int offSetSF_face = ip*nodesPerFace; // zero out vector quantities; squeeze in aMag double aMag = 0.0; for ( int j = 0; j < nDim; ++j ) { p_uBip[j] = 0.0; p_uBcBip[j] = 0.0; const double axj = areaVec[offSetAveraVec+j]; aMag += axj*axj; } aMag = std::sqrt(aMag); // interpolate to bip double pBip = 0.0; double rhoBip = 0.0; double muBip = 0.0; for ( int ic = 0; ic < nodesPerFace; ++ic ) { const double r = p_face_shape_function[offSetSF_face+ic]; pBip += r*p_pressure[ic]; rhoBip += r*p_density[ic]; muBip += r*p_viscosity[ic]; const int offSetFN = ic*nDim; for ( int j = 0; j < nDim; ++j ) { p_uBip[j] += r*p_velocityNp1[offSetFN+j]; p_uBcBip[j] += r*p_bcVelocity[offSetFN+j]; } } // form unit normal for ( int j = 0; j < nDim; ++j ) { p_unitNormal[j] = areaVec[offSetAveraVec+j]/aMag; } // determine tangential velocity double uTangential = 0.0; for ( int i = 0; i < nDim; ++i ) { double uiTan = 0.0; double uiBcTan = 0.0; for ( int j = 0; j < nDim; ++j ) { const double ninj = p_unitNormal[i]*p_unitNormal[j]; if ( i==j ) { const double om_nini = 1.0 - ninj; uiTan += om_nini*p_uBip[j]; uiBcTan += om_nini*p_uBcBip[j]; } else { uiTan -= ninj*p_uBip[j]; uiBcTan -= ninj*p_uBcBip[j]; } } // save off tangential components and augment magnitude p_uiTangential[i] = uiTan; p_uiBcTangential[i] = uiBcTan; uTangential += (uiTan-uiBcTan)*(uiTan-uiBcTan); } uTangential = std::sqrt(uTangential); // extract bip data const double yp = wallNormalDistanceBip[ip]; const double utau= wallFrictionVelocityBip[ip]; // determine yplus const double yplusBip = rhoBip*yp*utau/muBip; // min and max yplusMin = std::min(yplusMin, yplusBip); yplusMax = std::max(yplusMax, yplusBip); double lambda = muBip/yp*aMag; if ( yplusBip > yplusCrit_) lambda = rhoBip*kappa_*utau/std::log(elog_*yplusBip)*aMag; // extract nodal fields stk::mesh::Entity node = face_node_rels[ip]; const double * coord = stk::mesh::field_data(*coordinates_, node ); double *pressureForce = stk::mesh::field_data(*pressureForce_, node ); double *tauWall = stk::mesh::field_data(*tauWall_, node ); double *yplus = stk::mesh::field_data(*yplus_, node ); const double assembledArea = *stk::mesh::field_data(*assembledArea_, node ); // load radius; assemble force -sigma_ij*njdS double uParallel = 0.0; for ( int i = 0; i < nDim; ++i ) { const double ai = areaVec[offSetAveraVec+i]; ws_radius[i] = coord[i] - centroid[i]; const double uDiff = p_uiTangential[i] - p_uiBcTangential[i]; ws_p_force[i] = pBip*ai; ws_v_force[i] = lambda*uDiff; ws_t_force[i] = ws_p_force[i] + ws_v_force[i]; pressureForce[i] += ws_p_force[i];; uParallel += uDiff*uDiff; } cross_product(&ws_t_force[0], &ws_moment[0], &ws_radius[0]); // assemble for and moment for ( int j = 0; j < 3; ++j ) { l_force_moment[j] += ws_p_force[j]; l_force_moment[j+3] += ws_v_force[j]; l_force_moment[j+6] += ws_moment[j]; } // assemble tauWall; area weighting is hiding in lambda/assembledArea *tauWall += lambda*std::sqrt(uParallel)/assembledArea; // deal with yplus *yplus += yplusBip*aMag/assembledArea; } } } if ( processMe ) { // parallel assemble and output double g_force_moment[9] = {}; stk::ParallelMachine comm = NaluEnv::self().parallel_comm(); // Parallel assembly of L2 stk::all_reduce_sum(comm, &l_force_moment[0], &g_force_moment[0], 9); // min/max double g_yplusMin = 0.0, g_yplusMax = 0.0; stk::all_reduce_min(comm, &yplusMin, &g_yplusMin, 1); stk::all_reduce_max(comm, &yplusMax, &g_yplusMax, 1); // deal with file name and banner if ( NaluEnv::self().parallel_rank() == 0 ) { std::ofstream myfile; myfile.open(outputFileName_.c_str(), std::ios_base::app); myfile << std::setprecision(6) << std::setw(w_) << currentTime << std::setw(w_) << g_force_moment[0] << std::setw(w_) << g_force_moment[1] << std::setw(w_) << g_force_moment[2] << std::setw(w_) << g_force_moment[3] << std::setw(w_) << g_force_moment[4] << std::setw(w_) << g_force_moment[5] << std::setw(w_) << g_force_moment[6] << std::setw(w_) << g_force_moment[7] << std::setw(w_) << g_force_moment[8] << std::setw(w_) << g_yplusMin << std::setw(w_) << g_yplusMax << std::endl; myfile.close(); } } }
//-------------------------------------------------------------------------- //-------- execute --------------------------------------------------------- //-------------------------------------------------------------------------- void SurfaceForceAndMomentAlgorithm::execute() { // check to see if this is a valid step to process output file const int timeStepCount = realm_.get_time_step_count(); const bool processMe = (timeStepCount % frequency_) == 0 ? true : false; // do not waste time here if ( !processMe ) return; // common stk::mesh::BulkData & bulk_data = realm_.bulk_data(); stk::mesh::MetaData & meta_data = realm_.meta_data(); const int nDim = meta_data.spatial_dimension(); // set min and max values double yplusMin = 1.0e8; double yplusMax = -1.0e8; // nodal fields to gather std::vector<double> ws_pressure; std::vector<double> ws_density; std::vector<double> ws_viscosity; // master element std::vector<double> ws_face_shape_function; // deal with state ScalarFieldType &densityNp1 = density_->field_of_state(stk::mesh::StateNP1); // define vector of parent topos; should always be UNITY in size std::vector<stk::topology> parentTopo; const double currentTime = realm_.get_current_time(); // local force and moment; i.e., to be assembled double l_force_moment[9] = {}; // work force, moment and radius; i.e., to be pushed to cross_product() double ws_p_force[3] = {}; double ws_v_force[3] = {}; double ws_t_force[3] = {}; double ws_tau[3] = {}; double ws_moment[3] = {}; double ws_radius[3] = {}; // will need surface normal double ws_normal[3] = {}; // centroid double centroid[3] = {}; for ( size_t k = 0; k < parameters_.size(); ++k) centroid[k] = parameters_[k]; // define some common selectors stk::mesh::Selector s_locally_owned_union = meta_data.locally_owned_part() &stk::mesh::selectUnion(partVec_); stk::mesh::BucketVector const& face_buckets = realm_.get_buckets( meta_data.side_rank(), s_locally_owned_union ); for ( stk::mesh::BucketVector::const_iterator ib = face_buckets.begin(); ib != face_buckets.end() ; ++ib ) { stk::mesh::Bucket & b = **ib ; // face master element MasterElement *meFC = realm_.get_surface_master_element(b.topology()); const int nodesPerFace = meFC->nodesPerElement_; std::vector<int> face_node_ordinal_vec(nodesPerFace); // extract connected element topology b.parent_topology(stk::topology::ELEMENT_RANK, parentTopo); ThrowAssert ( parentTopo.size() == 1 ); stk::topology theElemTopo = parentTopo[0]; // extract master element for this element topo MasterElement *meSCS = realm_.get_surface_master_element(theElemTopo); // algorithm related; element ws_pressure.resize(nodesPerFace); ws_density.resize(nodesPerFace); ws_viscosity.resize(nodesPerFace); ws_face_shape_function.resize(nodesPerFace*nodesPerFace); // pointers double *p_pressure = &ws_pressure[0]; double *p_density = &ws_density[0]; double *p_viscosity = &ws_viscosity[0]; double *p_face_shape_function = &ws_face_shape_function[0]; // shape functions if ( useShifted_ ) meFC->shifted_shape_fcn(&p_face_shape_function[0]); else meFC->shape_fcn(&p_face_shape_function[0]); const stk::mesh::Bucket::size_type length = b.size(); for ( stk::mesh::Bucket::size_type k = 0 ; k < length ; ++k ) { // get face stk::mesh::Entity face = b[k]; // face node relations stk::mesh::Entity const * face_node_rels = bulk_data.begin_nodes(face); //====================================== // gather nodal data off of face //====================================== for ( int ni = 0; ni < nodesPerFace; ++ni ) { stk::mesh::Entity node = face_node_rels[ni]; // gather scalars p_pressure[ni] = *stk::mesh::field_data(*pressure_, node); p_density[ni] = *stk::mesh::field_data(densityNp1, node); p_viscosity[ni] = *stk::mesh::field_data(*viscosity_, node); } // pointer to face data const double * areaVec = stk::mesh::field_data(*exposedAreaVec_, face); // extract the connected element to this exposed face; should be single in size! const stk::mesh::Entity* face_elem_rels = bulk_data.begin_elements(face); ThrowAssert( bulk_data.num_elements(face) == 1 ); // get element; its face ordinal number and populate face_node_ordinal_vec stk::mesh::Entity element = face_elem_rels[0]; const int face_ordinal = bulk_data.begin_element_ordinals(face)[0]; theElemTopo.side_node_ordinals(face_ordinal, face_node_ordinal_vec.begin()); // get the relations off of element stk::mesh::Entity const * elem_node_rels = bulk_data.begin_nodes(element); for ( int ip = 0; ip < nodesPerFace; ++ip ) { // offsets const int offSetAveraVec = ip*nDim; const int offSetSF_face = ip*nodesPerFace; // interpolate to bip double pBip = 0.0; double rhoBip = 0.0; double muBip = 0.0; for ( int ic = 0; ic < nodesPerFace; ++ic ) { const double r = p_face_shape_function[offSetSF_face+ic]; pBip += r*p_pressure[ic]; rhoBip += r*p_density[ic]; muBip += r*p_viscosity[ic]; } // extract nodal fields stk::mesh::Entity node = face_node_rels[ip]; const double * coord = stk::mesh::field_data(*coordinates_, node ); const double *duidxj = stk::mesh::field_data(*dudx_, node ); double *pressureForce = stk::mesh::field_data(*pressureForce_, node ); double *tauWall = stk::mesh::field_data(*tauWall_, node ); double *yplus = stk::mesh::field_data(*yplus_, node ); const double assembledArea = *stk::mesh::field_data(*assembledArea_, node ); // divU and aMag double divU = 0.0; double aMag = 0.0; for ( int j = 0; j < nDim; ++j) { divU += duidxj[j*nDim+j]; aMag += areaVec[offSetAveraVec+j]*areaVec[offSetAveraVec+j]; } aMag = std::sqrt(aMag); // normal for ( int i = 0; i < nDim; ++i ) { const double ai = areaVec[offSetAveraVec+i]; ws_normal[i] = ai/aMag; } // load radius; assemble force -sigma_ij*njdS and compute tau_ij njDs for ( int i = 0; i < nDim; ++i ) { const double ai = areaVec[offSetAveraVec+i]; ws_radius[i] = coord[i] - centroid[i]; // set forces ws_v_force[i] = 2.0/3.0*muBip*divU*includeDivU_*ai; ws_p_force[i] = pBip*ai; pressureForce[i] += pBip*ai; double dflux = 0.0; double tauijNj = 0.0; const int offSetI = nDim*i; for ( int j = 0; j < nDim; ++j ) { const int offSetTrans = nDim*j+i; dflux += -muBip*(duidxj[offSetI+j] + duidxj[offSetTrans])*areaVec[offSetAveraVec+j]; tauijNj += -muBip*(duidxj[offSetI+j] + duidxj[offSetTrans])*ws_normal[j]; } // accumulate viscous force and set tau for component i ws_v_force[i] += dflux; ws_tau[i] = tauijNj; } // compute total force and tangential tau double tauTangential = 0.0; for ( int i = 0; i < nDim; ++i ) { ws_t_force[i] = ws_p_force[i] + ws_v_force[i]; double tauiTangential = (1.0-ws_normal[i]*ws_normal[i])*ws_tau[i]; for ( int j = 0; j < nDim; ++j ) { if ( i != j ) tauiTangential -= ws_normal[i]*ws_normal[j]*ws_tau[j]; } tauTangential += tauiTangential*tauiTangential; } // assemble nodal quantities; scaled by area for L2 lumped nodal projection const double areaFac = aMag/assembledArea; *tauWall += std::sqrt(tauTangential)*areaFac; cross_product(&ws_t_force[0], &ws_moment[0], &ws_radius[0]); // assemble force and moment for ( int j = 0; j < 3; ++j ) { l_force_moment[j] += ws_p_force[j]; l_force_moment[j+3] += ws_v_force[j]; l_force_moment[j+6] += ws_moment[j]; } // deal with yplus const int opposingNode = meSCS->opposingNodes(face_ordinal,ip); const int nearestNode = face_node_ordinal_vec[ip]; // left and right nodes; right is on the face; left is the opposing node stk::mesh::Entity nodeL = elem_node_rels[opposingNode]; stk::mesh::Entity nodeR = elem_node_rels[nearestNode]; // extract nodal fields const double * coordL = stk::mesh::field_data(*coordinates_, nodeL ); const double * coordR = stk::mesh::field_data(*coordinates_, nodeR ); // determine yp (approximated by 1/4 distance along edge) double ypBip = 0.0; for ( int j = 0; j < nDim; ++j ) { const double nj = ws_normal[j]; const double ej = 0.25*(coordR[j] - coordL[j]); ypBip += nj*ej*nj*ej; } ypBip = std::sqrt(ypBip); const double tauW = std::sqrt(tauTangential); const double uTau = std::sqrt(tauW/rhoBip); const double yplusBip = rhoBip*ypBip/muBip*uTau; // nodal field *yplus += yplusBip*areaFac; // min and max yplusMin = std::min(yplusMin, yplusBip); yplusMax = std::max(yplusMax, yplusBip); } } } if ( processMe ) { // parallel assemble and output double g_force_moment[9] = {}; stk::ParallelMachine comm = NaluEnv::self().parallel_comm(); // Parallel assembly of L2 stk::all_reduce_sum(comm, &l_force_moment[0], &g_force_moment[0], 9); // min/max double g_yplusMin = 0.0, g_yplusMax = 0.0; stk::all_reduce_min(comm, &yplusMin, &g_yplusMin, 1); stk::all_reduce_max(comm, &yplusMax, &g_yplusMax, 1); // deal with file name and banner if ( NaluEnv::self().parallel_rank() == 0 ) { std::ofstream myfile; myfile.open(outputFileName_.c_str(), std::ios_base::app); myfile << std::setprecision(6) << std::setw(w_) << currentTime << std::setw(w_) << g_force_moment[0] << std::setw(w_) << g_force_moment[1] << std::setw(w_) << g_force_moment[2] << std::setw(w_) << g_force_moment[3] << std::setw(w_) << g_force_moment[4] << std::setw(w_) << g_force_moment[5] << std::setw(w_) << g_force_moment[6] << std::setw(w_) << g_force_moment[7] << std::setw(w_) << g_force_moment[8] << std::setw(w_) << g_yplusMin << std::setw(w_) << g_yplusMax << std::endl; myfile.close(); } } }
//-------------------------------------------------------------------------- //-------- execute --------------------------------------------------------- //-------------------------------------------------------------------------- void AssembleNodalGradUBoundaryAlgorithm::execute() { stk::mesh::MetaData & meta_data = realm_.meta_data(); const int nDim = meta_data.spatial_dimension(); // extract fields GenericFieldType *exposedAreaVec = meta_data.get_field<GenericFieldType>(meta_data.side_rank(), "exposed_area_vector"); ScalarFieldType *dualNodalVolume = meta_data.get_field<ScalarFieldType>(stk::topology::NODE_RANK, "dual_nodal_volume"); // nodal fields to gather; gather everything other than what we are assembling std::vector<double> ws_vectorQ; // geometry related to populate std::vector<double> ws_shape_function; // ip data std::vector<double>qIp(nDim); // define some common selectors stk::mesh::Selector s_locally_owned_union = meta_data.locally_owned_part() &stk::mesh::selectUnion(partVec_); stk::mesh::BucketVector const& face_buckets = realm_.get_buckets( meta_data.side_rank(), s_locally_owned_union ); for ( stk::mesh::BucketVector::const_iterator ib = face_buckets.begin(); ib != face_buckets.end() ; ++ib ) { stk::mesh::Bucket & b = **ib ; const stk::mesh::Bucket::size_type length = b.size(); // extract master element MasterElement *meFC = realm_.get_surface_master_element(b.topology()); // extract master element specifics const int nodesPerFace = meFC->nodesPerElement_; const int numScsIp = meFC->numIntPoints_; // algorithm related ws_vectorQ.resize(nodesPerFace*nDim); ws_shape_function.resize(numScsIp*nodesPerFace); // pointers double *p_vectorQ = &ws_vectorQ[0]; double *p_shape_function = &ws_shape_function[0]; if ( useShifted_ ) meFC->shifted_shape_fcn(&p_shape_function[0]); else meFC->shape_fcn(&p_shape_function[0]); for ( stk::mesh::Bucket::size_type k = 0 ; k < length ; ++k ) { // face data double * areaVec = stk::mesh::field_data(*exposedAreaVec, b, k); //=============================================== // gather nodal data; this is how we do it now.. //=============================================== stk::mesh::Entity const * face_node_rels = b.begin_nodes(k); int num_nodes = b.num_nodes(k); // sanity check on num nodes ThrowAssert( num_nodes == nodesPerFace ); for ( int ni = 0; ni < num_nodes; ++ni ) { stk::mesh::Entity node = face_node_rels[ni]; // pointers to real data double * vectorQ = stk::mesh::field_data(*vectorQ_, node ); // gather vectors const int offSet = ni*nDim; for ( int j=0; j < nDim; ++j ) { p_vectorQ[offSet+j] = vectorQ[j]; } } // start assembly for ( int ip = 0; ip < numScsIp; ++ip ) { // nearest node const int nn = ip; stk::mesh::Entity nodeNN = face_node_rels[nn]; // pointer to fields to assemble double *gradQNN = stk::mesh::field_data(*dqdx_, nodeNN ); // suplemental double volNN = *stk::mesh::field_data(*dualNodalVolume, nodeNN); // interpolate to scs point; operate on saved off ws_field for (int j =0; j < nDim; ++j ) qIp[j] = 0.0; const int offSet = ip*nodesPerFace; for ( int ic = 0; ic < nodesPerFace; ++ic ) { const double r = p_shape_function[offSet+ic]; for ( int j = 0; j < nDim; ++j ) { qIp[j] += r*p_vectorQ[ic*nDim+j]; } } // nearest node volume double inv_volNN = 1.0/volNN; // assemble to nearest node for ( int i = 0; i < nDim; ++i ) { const int row_gradQ = i*nDim; double qip = qIp[i]; for ( int j = 0; j < nDim; ++j ) { double fac = qip*areaVec[ip*nDim+j]; gradQNN[row_gradQ+j] += fac*inv_volNN; } } } } } }
//-------------------------------------------------------------------------- //-------- execute --------------------------------------------------------- //-------------------------------------------------------------------------- void AssembleNodalGradUElemAlgorithm::execute() { stk::mesh::MetaData & meta_data = realm_.meta_data(); const int nDim = meta_data.spatial_dimension(); // extract fields ScalarFieldType *dualNodalVolume = meta_data.get_field<ScalarFieldType>(stk::topology::NODE_RANK, "dual_nodal_volume"); VectorFieldType *coordinates = meta_data.get_field<VectorFieldType>(stk::topology::NODE_RANK, realm_.get_coordinates_name()); // nodal fields to gather; gather everything other than what we are assembling std::vector<double> ws_vectorQ; std::vector<double> ws_dualVolume; std::vector<double> ws_coordinates; // geometry related to populate std::vector<double> ws_scs_areav; std::vector<double> ws_shape_function; // ip data std::vector<double>qIp(nDim); // define some common selectors stk::mesh::Selector s_locally_owned_union = meta_data.locally_owned_part() &stk::mesh::selectUnion(partVec_); stk::mesh::BucketVector const& elem_buckets = realm_.get_buckets( stk::topology::ELEMENT_RANK, s_locally_owned_union ); for ( stk::mesh::BucketVector::const_iterator ib = elem_buckets.begin(); ib != elem_buckets.end() ; ++ib ) { stk::mesh::Bucket & b = **ib ; const stk::mesh::Bucket::size_type length = b.size(); // extract master element MasterElement *meSCS = realm_.get_surface_master_element(b.topology()); // extract master element specifics const int nodesPerElement = meSCS->nodesPerElement_; const int numScsIp = meSCS->numIntPoints_; const int *lrscv = meSCS->adjacentNodes(); // algorithm related ws_vectorQ.resize(nodesPerElement*nDim); ws_dualVolume.resize(nodesPerElement); ws_coordinates.resize(nodesPerElement*nDim); ws_scs_areav.resize(numScsIp*nDim); ws_shape_function.resize(numScsIp*nodesPerElement); // pointers. double *p_vectorQ = &ws_vectorQ[0]; double *p_dualVolume = &ws_dualVolume[0]; double *p_coordinates = &ws_coordinates[0]; double *p_scs_areav = &ws_scs_areav[0]; double *p_shape_function = &ws_shape_function[0]; if ( useShifted_ ) meSCS->shifted_shape_fcn(&p_shape_function[0]); else meSCS->shape_fcn(&p_shape_function[0]); for ( stk::mesh::Bucket::size_type k = 0 ; k < length ; ++k ) { //=============================================== // gather nodal data; this is how we do it now.. //=============================================== stk::mesh::Entity const * node_rels = b.begin_nodes(k); int num_nodes = b.num_nodes(k); // sanity check on num nodes ThrowAssert( num_nodes == nodesPerElement ); // note: we absolutely need to gather coords since it // is required to compute the area vector. however, // ws_scalarQ and ws_dualVolume are choices to avoid // field data call for interpolation for ( int ni = 0; ni < num_nodes; ++ni ) { stk::mesh::Entity node = node_rels[ni]; // pointers to real data double * coords = stk::mesh::field_data(*coordinates, node); double * vectorQ = stk::mesh::field_data(*vectorQ_, node); // gather scalars p_dualVolume[ni] = *stk::mesh::field_data(*dualNodalVolume, node); // gather vectors const int offSet = ni*nDim; for ( int j=0; j < nDim; ++j ) { p_coordinates[offSet+j] = coords[j]; p_vectorQ[offSet+j] = vectorQ[j]; } } // compute geometry double scs_error = 0.0; meSCS->determinant(1, &p_coordinates[0], &p_scs_areav[0], &scs_error); // start assembly for ( int ip = 0; ip < numScsIp; ++ip ) { // left and right nodes for this ip const int il = lrscv[2*ip]; const int ir = lrscv[2*ip+1]; stk::mesh::Entity nodeL = node_rels[il]; stk::mesh::Entity nodeR = node_rels[ir]; // pointer to fields to assemble double *gradQL = stk::mesh::field_data(*dqdx_, nodeL); double *gradQR = stk::mesh::field_data(*dqdx_, nodeR); // interpolate to scs point; operate on saved off ws_field for (int j=0; j < nDim; ++j ) qIp[j] = 0.0; const int offSet = ip*nodesPerElement; for ( int ic = 0; ic < nodesPerElement; ++ic ) { const double r = p_shape_function[offSet+ic]; for ( int j = 0; j < nDim; ++j ) { qIp[j] += r*p_vectorQ[ic*nDim+j]; } } // left and right volume double inv_volL = 1.0/p_dualVolume[il]; double inv_volR = 1.0/p_dualVolume[ir]; // assemble to il/ir for ( int i = 0; i < nDim; ++i ) { const int row_gradQ = i*nDim; const double qip = qIp[i]; for ( int j = 0; j < nDim; ++j ) { double fac = qip*p_scs_areav[ip*nDim+j]; gradQL[row_gradQ+j] += fac*inv_volL; gradQR[row_gradQ+j] -= fac*inv_volR; } } } } } }
//-------------------------------------------------------------------------- //-------- execute --------------------------------------------------------- //-------------------------------------------------------------------------- void AssembleContinuityElemOpenSolverAlgorithm::execute() { stk::mesh::BulkData & bulk_data = realm_.bulk_data(); stk::mesh::MetaData & meta_data = realm_.meta_data(); const int nDim = meta_data.spatial_dimension(); // extract noc const std::string dofName = "pressure"; const double includeNOC = (realm_.get_noc_usage(dofName) == true) ? 1.0 : 0.0; // space for LHS/RHS; nodesPerElem*nodesPerElem and nodesPerElem std::vector<double> lhs; std::vector<double> rhs; std::vector<stk::mesh::Entity> connected_nodes; // ip values; both boundary and opposing surface std::vector<double> uBip(nDim); std::vector<double> rho_uBip(nDim); std::vector<double> GpdxBip(nDim); std::vector<double> coordBip(nDim); std::vector<double> coordScs(nDim); // pointers to fixed values double *p_uBip = &uBip[0]; double *p_rho_uBip = &rho_uBip[0]; double *p_GpdxBip = &GpdxBip[0]; double *p_coordBip = &coordBip[0]; double *p_coordScs = &coordScs[0]; // nodal fields to gather std::vector<double> ws_coordinates; std::vector<double> ws_pressure; std::vector<double> ws_vrtm; std::vector<double> ws_Gpdx; std::vector<double> ws_density; std::vector<double> ws_bcPressure; // master element std::vector<double> ws_shape_function; std::vector<double> ws_shape_function_lhs; std::vector<double> ws_face_shape_function; // time step const double dt = realm_.get_time_step(); const double gamma1 = realm_.get_gamma1(); const double projTimeScale = dt/gamma1; // deal with interpolation procedure const double interpTogether = realm_.get_mdot_interp(); const double om_interpTogether = 1.0-interpTogether; // deal with state ScalarFieldType &densityNp1 = density_->field_of_state(stk::mesh::StateNP1); // define vector of parent topos; should always be UNITY in size std::vector<stk::topology> parentTopo; // define some common selectors stk::mesh::Selector s_locally_owned_union = meta_data.locally_owned_part() &stk::mesh::selectUnion(partVec_); stk::mesh::BucketVector const& face_buckets = realm_.get_buckets( meta_data.side_rank(), s_locally_owned_union ); for ( stk::mesh::BucketVector::const_iterator ib = face_buckets.begin(); ib != face_buckets.end() ; ++ib ) { stk::mesh::Bucket & b = **ib ; // extract connected element topology b.parent_topology(stk::topology::ELEMENT_RANK, parentTopo); ThrowAssert ( parentTopo.size() == 1 ); stk::topology theElemTopo = parentTopo[0]; // volume master element MasterElement *meSCS = realm_.get_surface_master_element(theElemTopo); const int nodesPerElement = meSCS->nodesPerElement_; const int numScsIp = meSCS->numIntPoints_; // face master element MasterElement *meFC = realm_.get_surface_master_element(b.topology()); const int nodesPerFace = b.topology().num_nodes(); const int numScsBip = meFC->numIntPoints_; std::vector<int> face_node_ordinal_vec(nodesPerFace); // resize some things; matrix related const int lhsSize = nodesPerElement*nodesPerElement; const int rhsSize = nodesPerElement; lhs.resize(lhsSize); rhs.resize(rhsSize); connected_nodes.resize(nodesPerElement); // algorithm related; element ws_coordinates.resize(nodesPerElement*nDim); ws_pressure.resize(nodesPerElement); ws_vrtm.resize(nodesPerFace*nDim); ws_Gpdx.resize(nodesPerFace*nDim); ws_density.resize(nodesPerFace); ws_bcPressure.resize(nodesPerFace); ws_shape_function.resize(numScsIp*nodesPerElement); ws_shape_function_lhs.resize(numScsIp*nodesPerElement); ws_face_shape_function.resize(numScsBip*nodesPerFace); // pointers double *p_lhs = &lhs[0]; double *p_rhs = &rhs[0]; double *p_coordinates = &ws_coordinates[0]; double *p_pressure = &ws_pressure[0]; double *p_vrtm = &ws_vrtm[0]; double *p_Gpdx = &ws_Gpdx[0]; double *p_density = &ws_density[0]; double *p_bcPressure = &ws_bcPressure[0]; double *p_shape_function = &ws_shape_function[0]; double *p_shape_function_lhs = shiftPoisson_ ? &ws_shape_function[0] : reducedSensitivities_ ? &ws_shape_function_lhs[0] : &ws_shape_function[0]; double *p_face_shape_function = &ws_face_shape_function[0]; // shape functions; interior if ( shiftPoisson_ ) meSCS->shifted_shape_fcn(&p_shape_function[0]); else meSCS->shape_fcn(&p_shape_function[0]); if ( !shiftPoisson_ && reducedSensitivities_ ) meSCS->shifted_shape_fcn(&p_shape_function_lhs[0]); // shape functions; boundary if ( shiftMdot_ ) meFC->shifted_shape_fcn(&p_face_shape_function[0]); else meFC->shape_fcn(&p_face_shape_function[0]); const stk::mesh::Bucket::size_type length = b.size(); for ( stk::mesh::Bucket::size_type k = 0 ; k < length ; ++k ) { // zero lhs/rhs for ( int p = 0; p < lhsSize; ++p ) p_lhs[p] = 0.0; for ( int p = 0; p < rhsSize; ++p ) p_rhs[p] = 0.0; // get face stk::mesh::Entity face = b[k]; //====================================== // gather nodal data off of face //====================================== stk::mesh::Entity const * face_node_rels = bulk_data.begin_nodes(face); int num_face_nodes = bulk_data.num_nodes(face); // sanity check on num nodes ThrowAssert( num_face_nodes == nodesPerFace ); for ( int ni = 0; ni < num_face_nodes; ++ni ) { stk::mesh::Entity node = face_node_rels[ni]; // gather scalars p_density[ni] = *stk::mesh::field_data(densityNp1, node); p_bcPressure[ni] = *stk::mesh::field_data(*pressureBc_, node); // gather vectors const double * vrtm = stk::mesh::field_data(*velocityRTM_, node); const double * Gjp = stk::mesh::field_data(*Gpdx_, node); const int offSet = ni*nDim; for ( int j=0; j < nDim; ++j ) { p_vrtm[offSet+j] = vrtm[j]; p_Gpdx[offSet+j] = Gjp[j]; } } // pointer to face data const double * areaVec = stk::mesh::field_data(*exposedAreaVec_, face); // extract the connected element to this exposed face; should be single in size! const stk::mesh::Entity* face_elem_rels = bulk_data.begin_elements(face); ThrowAssert( bulk_data.num_elements(face) == 1 ); // get element; its face ordinal number and populate face_node_ordinal_vec stk::mesh::Entity element = face_elem_rels[0]; const stk::mesh::ConnectivityOrdinal* face_elem_ords = bulk_data.begin_element_ordinals(face); const int face_ordinal = face_elem_ords[0]; theElemTopo.side_node_ordinals(face_ordinal, face_node_ordinal_vec.begin()); // mapping from ip to nodes for this ordinal const int *ipNodeMap = meSCS->ipNodeMap(face_ordinal); //====================================== // gather nodal data off of element //====================================== stk::mesh::Entity const * elem_node_rels = bulk_data.begin_nodes(element); int num_nodes = bulk_data.num_nodes(element); // sanity check on num nodes ThrowAssert( num_nodes == nodesPerElement ); for ( int ni = 0; ni < num_nodes; ++ni ) { stk::mesh::Entity node = elem_node_rels[ni]; // set connected nodes connected_nodes[ni] = node; // gather scalars p_pressure[ni] = *stk::mesh::field_data(*pressure_, node); // gather vectors const double * coords = stk::mesh::field_data(*coordinates_, node); const int offSet = ni*nDim; for ( int j=0; j < nDim; ++j ) { p_coordinates[offSet+j] = coords[j]; } } // loop over boundary ips for ( int ip = 0; ip < numScsBip; ++ip ) { const int nearestNode = ipNodeMap[ip]; const int opposingScsIp = meSCS->opposingFace(face_ordinal,ip); // zero out vector quantities for ( int j = 0; j < nDim; ++j ) { p_uBip[j] = 0.0; p_rho_uBip[j] = 0.0; p_GpdxBip[j] = 0.0; p_coordBip[j] = 0.0; p_coordScs[j] = 0.0; } double rhoBip = 0.0; // interpolate to bip double pBip = 0.0; const int offSetSF_face = ip*nodesPerFace; for ( int ic = 0; ic < nodesPerFace; ++ic ) { const int fn = face_node_ordinal_vec[ic]; const double r = p_face_shape_function[offSetSF_face+ic]; const double rhoIC = p_density[ic]; rhoBip += r*rhoIC; pBip += r*p_bcPressure[ic]; const int offSetFN = ic*nDim; const int offSetEN = fn*nDim; for ( int j = 0; j < nDim; ++j ) { p_uBip[j] += r*p_vrtm[offSetFN+j]; p_rho_uBip[j] += r*rhoIC*p_vrtm[offSetFN+j]; p_GpdxBip[j] += r*p_Gpdx[offSetFN+j]; p_coordBip[j] += r*p_coordinates[offSetEN+j]; } } // data at interior opposing face double pScs = 0.0; const int offSetSF_elem = opposingScsIp*nodesPerElement; for ( int ic = 0; ic < nodesPerElement; ++ic ) { const double r = p_shape_function[offSetSF_elem+ic]; pScs += r*p_pressure[ic]; const int offSet = ic*nDim; for ( int j = 0; j < nDim; ++j ) { p_coordScs[j] += r*p_coordinates[offSet+j]; } } // form axdx, asq and mdot (without dp/dn or noc) double asq = 0.0; double axdx = 0.0; double mdot = 0.0; for ( int j = 0; j < nDim; ++j ) { const double dxj = p_coordBip[j] - p_coordScs[j]; const double axj = areaVec[ip*nDim+j]; asq += axj*axj; axdx += axj*dxj; mdot += (interpTogether*p_rho_uBip[j] + om_interpTogether*rhoBip*p_uBip[j] + projTimeScale*p_GpdxBip[j])*axj; } const double inv_axdx = 1.0/axdx; // deal with noc double noc = 0.0; for ( int j = 0; j < nDim; ++j ) { const double dxj = p_coordBip[j] - p_coordScs[j]; const double axj = areaVec[ip*nDim+j]; const double kxj = axj - asq*inv_axdx*dxj; // NOC noc += kxj*p_GpdxBip[j]; } // lhs for pressure system int rowR = nearestNode*nodesPerElement; for ( int ic = 0; ic < nodesPerElement; ++ic ) { const double r = p_shape_function_lhs[offSetSF_elem+ic]; p_lhs[rowR+ic] += r*asq*inv_axdx; } // final mdot mdot += -projTimeScale*((pBip-pScs)*asq*inv_axdx + noc*includeNOC); // residual p_rhs[nearestNode] -= mdot/projTimeScale; } apply_coeff(connected_nodes, rhs, lhs, __FILE__); } } }
//-------------------------------------------------------------------------- //-------- execute --------------------------------------------------------- //-------------------------------------------------------------------------- void ComputeMdotElemAlgorithm::execute() { stk::mesh::MetaData & meta_data = realm_.meta_data(); const int nDim = meta_data.spatial_dimension(); // time step const double dt = realm_.get_time_step(); const double gamma1 = realm_.get_gamma1(); const double projTimeScale = dt/gamma1; // deal with interpolation procedure const double interpTogether = realm_.get_mdot_interp(); const double om_interpTogether = 1.0-interpTogether; // nodal fields to gather std::vector<double> ws_vrtm; std::vector<double> ws_Gpdx; std::vector<double> ws_coordinates; std::vector<double> ws_pressure; std::vector<double> ws_density; // geometry related to populate std::vector<double> ws_scs_areav; std::vector<double> ws_dndx; std::vector<double> ws_deriv; std::vector<double> ws_det_j; std::vector<double> ws_shape_function; // integration point data that depends on size std::vector<double> uIp(nDim); std::vector<double> rho_uIp(nDim); std::vector<double> GpdxIp(nDim); std::vector<double> dpdxIp(nDim); // pointers to everyone... double *p_uIp = &uIp[0]; double *p_rho_uIp = &rho_uIp[0]; double *p_GpdxIp = &GpdxIp[0]; double *p_dpdxIp = &dpdxIp[0]; // deal with state ScalarFieldType &densityNp1 = density_->field_of_state(stk::mesh::StateNP1); // define some common selectors stk::mesh::Selector s_locally_owned_union = meta_data.locally_owned_part() &stk::mesh::selectUnion(partVec_); stk::mesh::BucketVector const& elem_buckets = realm_.get_buckets( stk::topology::ELEMENT_RANK, s_locally_owned_union ); for ( stk::mesh::BucketVector::const_iterator ib = elem_buckets.begin(); ib != elem_buckets.end() ; ++ib ) { stk::mesh::Bucket & b = **ib ; const stk::mesh::Bucket::size_type length = b.size(); // extract master element MasterElement *meSCS = realm_.get_surface_master_element(b.topology()); // extract master element specifics const int nodesPerElement = meSCS->nodesPerElement_; const int numScsIp = meSCS->numIntPoints_; // algorithm related ws_vrtm.resize(nodesPerElement*nDim); ws_Gpdx.resize(nodesPerElement*nDim); ws_coordinates.resize(nodesPerElement*nDim); ws_pressure.resize(nodesPerElement); ws_density.resize(nodesPerElement); ws_scs_areav.resize(numScsIp*nDim); ws_dndx.resize(nDim*numScsIp*nodesPerElement); ws_deriv.resize(nDim*numScsIp*nodesPerElement); ws_det_j.resize(numScsIp); ws_shape_function.resize(numScsIp*nodesPerElement); // pointers double *p_vrtm = &ws_vrtm[0]; double *p_Gpdx = &ws_Gpdx[0]; double *p_coordinates = &ws_coordinates[0]; double *p_pressure = &ws_pressure[0]; double *p_density = &ws_density[0]; double *p_scs_areav = &ws_scs_areav[0]; double *p_dndx = &ws_dndx[0]; double *p_shape_function = &ws_shape_function[0]; if ( shiftMdot_) meSCS->shifted_shape_fcn(&p_shape_function[0]); else meSCS->shape_fcn(&p_shape_function[0]); for ( stk::mesh::Bucket::size_type k = 0 ; k < length ; ++k ) { // pointers to elem data double * mdot = stk::mesh::field_data(*massFlowRate_, b, k ); //=============================================== // gather nodal data; this is how we do it now.. //=============================================== stk::mesh::Entity const * node_rels = b.begin_nodes(k); int num_nodes = b.num_nodes(k); // sanity check on num nodes ThrowAssert( num_nodes == nodesPerElement ); for ( int ni = 0; ni < num_nodes; ++ni ) { stk::mesh::Entity node = node_rels[ni]; // pointers to real data const double * vrtm = stk::mesh::field_data(*velocityRTM_, node); const double * Gjp = stk::mesh::field_data(*Gpdx_, node); const double * coords = stk::mesh::field_data(*coordinates_, node); // gather scalars p_pressure[ni] = *stk::mesh::field_data(*pressure_, node); p_density[ni] = *stk::mesh::field_data(densityNp1, node); // gather vectors const int offSet = ni*nDim; for ( int j=0; j < nDim; ++j ) { p_vrtm[offSet+j] = vrtm[j]; p_Gpdx[offSet+j] = Gjp[j]; p_coordinates[offSet+j] = coords[j]; } } // compute geometry double scs_error = 0.0; meSCS->determinant(1, &p_coordinates[0], &p_scs_areav[0], &scs_error); // compute dndx if (shiftPoisson_) meSCS->shifted_grad_op(1, &p_coordinates[0], &p_dndx[0], &ws_deriv[0], &ws_det_j[0], &scs_error); else meSCS->grad_op(1, &p_coordinates[0], &p_dndx[0], &ws_deriv[0], &ws_det_j[0], &scs_error); for ( int ip = 0; ip < numScsIp; ++ip ) { // setup for ip values for ( int j = 0; j < nDim; ++j ) { p_uIp[j] = 0.0; p_rho_uIp[j] = 0.0; p_GpdxIp[j] = 0.0; p_dpdxIp[j] = 0.0; } double rhoIp = 0.0; const int offSet = ip*nodesPerElement; for ( int ic = 0; ic < nodesPerElement; ++ic ) { const double r = p_shape_function[offSet+ic]; const double nodalPressure = p_pressure[ic]; const double nodalRho = p_density[ic]; rhoIp += r*nodalRho; const int offSetDnDx = nDim*nodesPerElement*ip + ic*nDim; for ( int j = 0; j < nDim; ++j ) { p_GpdxIp[j] += r*p_Gpdx[nDim*ic+j]; p_uIp[j] += r*p_vrtm[nDim*ic+j]; p_rho_uIp[j] += r*nodalRho*p_vrtm[nDim*ic+j]; p_dpdxIp[j] += p_dndx[offSetDnDx+j]*nodalPressure; } } // assemble mdot double tmdot = 0.0; for ( int j = 0; j < nDim; ++j ) { tmdot += (interpTogether*p_rho_uIp[j] + om_interpTogether*rhoIp*p_uIp[j] - projTimeScale*(p_dpdxIp[j] - p_GpdxIp[j]))*p_scs_areav[ip*nDim+j]; } mdot[ip] = tmdot; } } } // check for edge-mdot assembly if ( assembleMdotToEdge_ ) assemble_edge_mdot(); }
//-------------------------------------------------------------------------- //-------- execute --------------------------------------------------------- //-------------------------------------------------------------------------- void ComputeLowReynoldsSDRWallAlgorithm::execute() { stk::mesh::BulkData & bulk_data = realm_.bulk_data(); stk::mesh::MetaData & meta_data = realm_.meta_data(); const int nDim = meta_data.spatial_dimension(); // nodal fields to gather std::vector<double> ws_density; std::vector<double> ws_viscosity; // master element std::vector<double> ws_face_shape_function; // deal with state ScalarFieldType &densityNp1 = density_->field_of_state(stk::mesh::StateNP1); // define vector of parent topos; should always be UNITY in size std::vector<stk::topology> parentTopo; // define some common selectors stk::mesh::Selector s_locally_owned_union = meta_data.locally_owned_part() &stk::mesh::selectUnion(partVec_); stk::mesh::BucketVector const& face_buckets = realm_.get_buckets( meta_data.side_rank(), s_locally_owned_union ); for ( stk::mesh::BucketVector::const_iterator ib = face_buckets.begin(); ib != face_buckets.end() ; ++ib ) { stk::mesh::Bucket & b = **ib ; // extract connected element topology b.parent_topology(stk::topology::ELEMENT_RANK, parentTopo); ThrowAssert ( parentTopo.size() == 1 ); stk::topology theElemTopo = parentTopo[0]; // extract master element MasterElement *meSCS = realm_.get_surface_master_element(theElemTopo); // face master element MasterElement *meFC = realm_.get_surface_master_element(b.topology()); const int nodesPerFace = b.topology().num_nodes(); std::vector<int> face_node_ordinal_vec(nodesPerFace); // algorithm related; element ws_density.resize(nodesPerFace); ws_viscosity.resize(nodesPerFace); ws_face_shape_function.resize(nodesPerFace*nodesPerFace); // pointers double *p_density = &ws_density[0]; double *p_viscosity = &ws_viscosity[0]; double *p_face_shape_function = &ws_face_shape_function[0]; // shape functions if ( useShifted_ ) meFC->shifted_shape_fcn(&p_face_shape_function[0]); else meFC->shape_fcn(&p_face_shape_function[0]); const stk::mesh::Bucket::size_type length = b.size(); for ( stk::mesh::Bucket::size_type k = 0 ; k < length ; ++k ) { // get face stk::mesh::Entity face = b[k]; //====================================== // gather nodal data off of face //====================================== stk::mesh::Entity const * face_node_rels = bulk_data.begin_nodes(face); int num_face_nodes = bulk_data.num_nodes(face); // sanity check on num nodes ThrowAssert( num_face_nodes == nodesPerFace ); for ( int ni = 0; ni < num_face_nodes; ++ni ) { stk::mesh::Entity node = face_node_rels[ni]; // gather scalars p_density[ni] = *stk::mesh::field_data(densityNp1, node); p_viscosity[ni] = *stk::mesh::field_data(*viscosity_, node); } // pointer to face data const double * areaVec = stk::mesh::field_data(*exposedAreaVec_, face); // extract the connected element to this exposed face; should be single in size! const stk::mesh::Entity* face_elem_rels = bulk_data.begin_elements(face); ThrowAssert( bulk_data.num_elements(face) == 1 ); // get element; its face ordinal number and populate face_node_ordinal_vec stk::mesh::Entity element = face_elem_rels[0]; const int face_ordinal = bulk_data.begin_element_ordinals(face)[0]; theElemTopo.side_node_ordinals(face_ordinal, face_node_ordinal_vec.begin()); // get the relations off of element stk::mesh::Entity const * elem_node_rels = bulk_data.begin_nodes(element); // loop over face nodes for ( int ip = 0; ip < num_face_nodes; ++ip ) { const int offSetAveraVec = ip*nDim; const int opposingNode = meSCS->opposingNodes(face_ordinal,ip); const int nearestNode = face_node_ordinal_vec[ip]; // left and right nodes; right is on the face; left is the opposing node stk::mesh::Entity nodeL = elem_node_rels[opposingNode]; stk::mesh::Entity nodeR = elem_node_rels[nearestNode]; // extract nodal fields const double * coordL = stk::mesh::field_data(*coordinates_, nodeL ); const double * coordR = stk::mesh::field_data(*coordinates_, nodeR ); // aMag double aMag = 0.0; for ( int j = 0; j < nDim; ++j ) { const double axj = areaVec[offSetAveraVec+j]; aMag += axj*axj; } aMag = std::sqrt(aMag); // interpolate to bip double rhoBip = 0.0; double muBip = 0.0; const int offSetSF_face = ip*nodesPerFace; for ( int ic = 0; ic < nodesPerFace; ++ic ) { const double r = p_face_shape_function[offSetSF_face+ic]; rhoBip += r*p_density[ic]; muBip += r*p_viscosity[ic]; } const double nuBip = muBip/rhoBip; // determine yp (approximated by 1/4 distance along edge) double ypbip = 0.0; for ( int j = 0; j < nDim; ++j ) { const double nj = areaVec[offSetAveraVec+j]/aMag; const double ej = 0.25*(coordR[j] - coordL[j]); ypbip += nj*ej*nj*ej; } ypbip = std::sqrt(ypbip); // compute low Re wall sdr const double lowReSdr = wallFactor_*6.0*nuBip/betaOne_/ypbip/ypbip; // assemble to nodal quantities; will normalize and assemble in driver double * assembledWallArea = stk::mesh::field_data(*assembledWallArea_, nodeR ); double * sdrBc = stk::mesh::field_data(*sdrBc_, nodeR ); *assembledWallArea += aMag; *sdrBc += lowReSdr*aMag; } } } }