void trymat7() { // cout << "\nSeventh test of Matrix package\n"; Tracer et("Seventh test of Matrix package"); Tracer::PrintTrace(); int i,j; DiagonalMatrix D(6); UpperTriangularMatrix U(6); for (i=1; i<=6; i++) { for (j=i; j<=6; j++) U(i,j)=i*i*j-50; D(i,i)=i*i+i-10; } LowerTriangularMatrix L=(U*3.0).t(); SymmetricMatrix S(6); for (i=1; i<=6; i++) for (j=i; j<=6; j++) S(i,j)=i*i+2.0+j; Matrix MD=D; Matrix ML=L; Matrix MU=U; Matrix MS=S; Matrix M(6,6); for (i=1; i<=6; i++) for (j=1; j<=6; j++) M(i,j)=i*j+i*i-10.0; { Tracer et1("Stage 1"); Print(Matrix((S-M)-(MS-M))); Print(Matrix((-M-S)+(MS+M))); Print(Matrix((U-M)-(MU-M))); } { Tracer et1("Stage 2"); Print(Matrix((L-M)+(M-ML))); Print(Matrix((D-M)+(M-MD))); Print(Matrix((D-S)+(MS-MD))); Print(Matrix((D-L)+(ML-MD))); } { M=MU.t(); } LowerTriangularMatrix LY=D.i()*U.t(); { Tracer et1("Stage 3"); MS=D*LY-M; Clean(MS,0.00000001); Print(MS); L=U.t(); LY=D.i()*L; MS=D*LY-M; Clean(MS,0.00000001); Print(MS); } { Tracer et1("Stage 4"); UpperTriangularMatrix UT(11); int i, j; for (i=1; i<=11; i++) for (j=i; j<=11; j++) UT(i,j)=i*i+j*3; GenericMatrix GM; Matrix X; UpperBandMatrix UB(11,3); UB.Inject(UT); UT = UB; UpperBandMatrix UB2 = UB / 8; GM = UB2-UT/8; X = GM; Print(X); SymmetricBandMatrix SB(11,4); SB << (UB + UB.t()); X = SB - UT - UT.t(); Print(X); BandMatrix B = UB + UB.t()*2; DiagonalMatrix D; D << B; X.ReSize(1,1); X(1,1) = Trace(B)-Sum(D); Print(X); X = SB + 5; Matrix X1=X; X = SP(UB,X); Matrix X2 =UB; X1 = (X1.AsDiagonal() * X2.AsDiagonal()).AsRow()-X.AsColumn().t(); Print(X1); X1=SB.t(); X2 = B.t(); X = SB.i() * B - X1.i() * X2.t(); Clean(X,0.00000001); Print(X); X = SB.i(); X = X * B - X1.i() * X2.t(); Clean(X,0.00000001); Print(X); D = 1; X = SB.i() * SB - D; Clean(X,0.00000001); Print(X); ColumnVector CV(11); CV << 2 << 6 <<3 << 8 << -4 << 17.5 << 2 << 1 << -2 << 5 << 3.75; D << 2 << 6 <<3 << 8 << -4 << 17.5 << 2 << 1 << -2 << 5 << 3.75; X = CV.AsDiagonal(); X = X-D; Print(X); SymmetricBandMatrix SB1(11,7); SB1 = 5; SymmetricBandMatrix SB2 = SB1 + D; X.ReSize(11,11); X=0; for (i=1; i<=11; i++) for (j=1; j<=11; j++) { if (abs(i-j)<=7) X(i,j)=5; if (i==j) X(i,j)+=CV(i); } SymmetricMatrix SM; SM.ReSize(11); SM=SB; SB = SB+SB2; X1 = SM+X-SB; Print(X1); SB2=0; X2=SB2; X1=SB; Print(X2); for (i=1; i<=11; i++) SB2.Column(i)<<SB.Column(i); X1=X1-SB2; Print(X1); X = SB; SB2.ReSize(11,4); SB2 = SB*5; SB2 = SB + SB2; X1 = X*6 - SB2; Print(X1); X1 = SP(SB,SB2/3); X1=X1-SP(X,X*2); Print(X1); X1 = SP(SB2/6,X*2); X1=X1-SP(X*2,X); Print(X1); } { // test the simple integer array class Tracer et("Stage 5"); ColumnVector Test(10); Test = 0.0; int i; SimpleIntArray A(100); for (i = 0; i < 100; i++) A[i] = i*i+1; SimpleIntArray B(100), C(50), D; B = A; A.ReSize(50, true); C = A; A.ReSize(150, true); D = A; for (i = 0; i < 100; i++) if (B[i] != i*i+1) Test(1)=1; for (i = 0; i < 50; i++) if (C[i] != i*i+1) Test(2)=1; for (i = 0; i < 50; i++) if (D[i] != i*i+1) Test(3)=1; for (i = 50; i < 150; i++) if (D[i] != 0) Test(3)=1; A.resize(75); A = A.size(); for (i = 0; i < 75; i++) if (A[i] != 75) Test(4)=1; A.resize(25); A = A.size(); for (i = 0; i < 25; i++) if (A[i] != 25) Test(5)=1; A.ReSize(25); A = 23; for (i = 0; i < 25; i++) if (A[i] != 23) Test(6)=1; A.ReSize(0); A.ReSize(15); A = A.Size(); for (i = 0; i < 15; i++) if (A[i] != 15) Test(7)=1; const SimpleIntArray E = B; for (i = 0; i < 100; i++) if (E[i] != i*i+1) Test(8)=1; SimpleIntArray F; F.resize_keep(5); for (i = 0; i < 5; i++) if (F[i] != 0) Test(9)=1; Print(Test); } { // testing RealStarStar Tracer et("Stage 6"); MultWithCarry MWC; Matrix A(10, 12), B(12, 15), C(10, 15); FillWithValues(MWC, A); FillWithValues(MWC, B); ConstRealStarStar a(A); ConstRealStarStar b(B); RealStarStar c(C); c_matrix_multiply(10,12,15,a,b,c); Matrix X = C - A * B; Clean(X,0.00000001); Print(X); A.ReSize(11, 10); B.ReSize(10,8); C.ReSize(11,8); FillWithValues(MWC, A); FillWithValues(MWC, B); C = -1; c_matrix_multiply(11,10,8, ConstRealStarStar(A),ConstRealStarStar(B),RealStarStar(C)); X = C - A * B; Clean(X,0.00000001); Print(X); } { // testing resize_keep Tracer et("Stage 7"); Matrix X, Y; MultWithCarry MWC; X.resize(20,35); FillWithValues(MWC, X); Matrix M(20,35); M = X; X = M.submatrix(1,15,1,25); M.resize_keep(15,25); Y = X - M; Print(Y); M.resize_keep(15,25); Y = X - M; Print(Y); Y.resize(29,27); Y = 0; Y.submatrix(1,15,1,25) = X; M.resize_keep(29,27); Y -= M; Print(Y); M.resize_keep(0,5); M.resize_keep(10,10); Print(M); M.resize_keep(15,0); M.resize_keep(10,10); Print(M); X.resize(20,35); FillWithValues(MWC, X); M = X; M.resize_keep(38,17); Y.resize(38,17); Y = 0; Y.submatrix(1,20,1,17) = X.submatrix(1,20,1,17); Y -= M; Print(Y); X.resize(40,12); FillWithValues(MWC, X); M = X; M.resize_keep(38,17); Y.resize(38,17); Y = 0; Y.submatrix(1,38,1,12) = X.submatrix(1,38,1,12); Y -= M; Print(Y); #ifndef DONT_DO_NRIC X.resize(20,35); FillWithValues(MWC, X); nricMatrix nM(20,35); nM = X; X = nM.submatrix(1,15,1,25); nM.resize_keep(15,25); Y = X - nM; Print(Y); nM.resize_keep(15,25); Y = X - nM; Print(Y); Y.resize(29,27); Y = 0; Y.submatrix(1,15,1,25) = X; nM.resize_keep(29,27); Y -= nM; Print(Y); nM.resize_keep(0,5); nM.resize_keep(10,10); Print(nM); nM.resize_keep(15,0); nM.resize_keep(10,10); Print(nM); X.resize(20,35); FillWithValues(MWC, X); nM = X; nM.resize_keep(38,17); Y.resize(38,17); Y = 0; Y.submatrix(1,20,1,17) = X.submatrix(1,20,1,17); Y -= nM; Print(Y); X.resize(40,12); FillWithValues(MWC, X); nM = X; nM.resize_keep(38,17); Y.resize(38,17); Y = 0; Y.submatrix(1,38,1,12) = X.submatrix(1,38,1,12); Y -= nM; Print(Y); #endif X.resize(20,20); FillWithValues(MWC, X); SquareMatrix SQM(20); SQM << X; X = SQM.sym_submatrix(1,13); SQM.resize_keep(13); Y = X - SQM; Print(Y); SQM.resize_keep(13); Y = X - SQM; Print(Y); Y.resize(23,23); Y = 0; Y.sym_submatrix(1,13) = X; SQM.resize_keep(23,23); Y -= SQM; Print(Y); SQM.resize_keep(0); SQM.resize_keep(50); Print(SQM); X.resize(20,20); FillWithValues(MWC, X); SymmetricMatrix SM(20); SM << X; X = SM.sym_submatrix(1,13); SM.resize_keep(13); Y = X - SM; Print(Y); SM.resize_keep(13); Y = X - SM; Print(Y); Y.resize(23,23); Y = 0; Y.sym_submatrix(1,13) = X; SM.resize_keep(23); Y -= SM; Print(Y); SM.resize_keep(0); SM.resize_keep(50); Print(SM); X.resize(20,20); FillWithValues(MWC, X); LowerTriangularMatrix LT(20); LT << X; X = LT.sym_submatrix(1,13); LT.resize_keep(13); Y = X - LT; Print(Y); LT.resize_keep(13); Y = X - LT; Print(Y); Y.resize(23,23); Y = 0; Y.sym_submatrix(1,13) = X; LT.resize_keep(23); Y -= LT; Print(Y); LT.resize_keep(0); LT.resize_keep(50); Print(LT); X.resize(20,20); FillWithValues(MWC, X); UpperTriangularMatrix UT(20); UT << X; X = UT.sym_submatrix(1,13); UT.resize_keep(13); Y = X - UT; Print(Y); UT.resize_keep(13); Y = X - UT; Print(Y); Y.resize(23,23); Y = 0; Y.sym_submatrix(1,13) = X; UT.resize_keep(23); Y -= UT; Print(Y); UT.resize_keep(0); UT.resize_keep(50); Print(UT); X.resize(20,20); FillWithValues(MWC, X); DiagonalMatrix DM(20); DM << X; X = DM.sym_submatrix(1,13); DM.resize_keep(13); Y = X - DM; Print(Y); DM.resize_keep(13); Y = X - DM; Print(Y); Y.resize(23,23); Y = 0; Y.sym_submatrix(1,13) = X; DM.resize_keep(23); Y -= DM; Print(Y); DM.resize_keep(0); DM.resize_keep(50); Print(DM); X.resize(1,20); FillWithValues(MWC, X); RowVector RV(20); RV << X; X = RV.columns(1,13); RV.resize_keep(13); Y = X - RV; Print(Y); RV.resize_keep(13); Y = X - RV; Print(Y); Y.resize(1,23); Y = 0; Y.columns(1,13) = X; RV.resize_keep(1,23); Y -= RV; Print(Y); RV.resize_keep(0); RV.resize_keep(50); Print(RV); X.resize(20,1); FillWithValues(MWC, X); ColumnVector CV(20); CV << X; X = CV.rows(1,13); CV.resize_keep(13); Y = X - CV; Print(Y); CV.resize_keep(13); Y = X - CV; Print(Y); Y.resize(23,1); Y = 0; Y.rows(1,13) = X; CV.resize_keep(23,1); Y -= CV; Print(Y); CV.resize_keep(0); CV.resize_keep(50); Print(CV); } // cout << "\nEnd of seventh test\n"; }
//extern "C" SEXP mc_irf_var(SEXP varobj, SEXP nsteps, SEXP draws) { int m, p, dr=INTEGER(draws)[0], ns=INTEGER(nsteps)[0], T, df, i; SEXP AR, Y, Bhat, XR, prior, hstar, meanS, output; // Get # vars/lags/steps/draws/T/df PROTECT(AR = listElt(varobj, "ar.coefs")); PROTECT(Y = listElt(varobj, "Y")); m = INTEGER(getAttrib(AR, R_DimSymbol))[0]; //#vars p = INTEGER(getAttrib(AR, R_DimSymbol))[2]; //#lags T = nrows(Y); df = T - m*p - m - 1; UNPROTECT(2); // Put coefficients from varobj$Bhat in Bcoefs vector (m^2*p, 1) PROTECT(Bhat = coerceVector(listElt(varobj, "Bhat"), REALSXP)); Matrix bcoefs = R2Cmat(Bhat, m*p, m); bcoefs = bcoefs.AsColumn(); UNPROTECT(1); // Define X(T x m*p) subset of varobj$X and XXinv as solve(X'X) PROTECT(XR = coerceVector(listElt(varobj,"X"),REALSXP)); Matrix X = R2Cmat(XR, T, m*p), XXinv; UNPROTECT(1); // Get the correct moment matrix PROTECT(prior = listElt(varobj,"prior")); if(!isNull(prior)){ PROTECT(hstar = coerceVector(listElt(varobj,"hstar"),REALSXP)); XXinv = R2Cmat(hstar, m*p, m*p).i(); UNPROTECT(1); } else { XXinv = (X.t()*X).i(); } UNPROTECT(1); // Get the transpose of the Cholesky decomp of XXinv SymmetricMatrix XXinvSym; XXinvSym << XXinv; XXinv = Cholesky(XXinvSym); // Cholesky of covariance PROTECT(meanS = coerceVector(listElt(varobj,"mean.S"),REALSXP)); SymmetricMatrix meanSSym; meanSSym << R2Cmat(meanS, m, m); Matrix Sigmat = Cholesky(meanSSym); UNPROTECT(1); // Matricies needed for the loop ColumnVector bvec; bvec=0.0; Matrix sqrtwish, impulse(dr,m*m*ns); impulse = 0.0; SymmetricMatrix sigmadraw; sigmadraw = 0.0; IdentityMatrix I(m); GetRNGstate(); // Main Loop for (i=1; i<=dr; i++){ // Wishart/Beta draws sigmadraw << Sigmat*(T*rwish(I,df).i())*Sigmat.t(); sqrtwish = Cholesky(sigmadraw); bvec = bcoefs+KP(sqrtwish, XXinv)*rnorms(m*m*p); // IRF computation impulse.Row(i) = irf_var_from_beta(sqrtwish, bvec, ns).t(); if (!(i%1000)){ Rprintf("Monte Carlo IRF Iteration = %d\n",i); } } // end main loop PutRNGstate(); int dims[]={dr,ns,m*m}; PROTECT(output = C2R3D(impulse,dims)); setclass(output,"mc.irf.VAR"); UNPROTECT(1); return output; }