void FiffSimulator::doContinousHPI(MatrixXf& matData) { //This only works with babyMEG HPI channels 400 ... 407 if(m_pFiffInfo && m_pHPIWidget && matData.rows() >= 407) { if(m_pHPIWidget->wasLastFitOk()) { // Load device to head transformation matrix from Fiff info QMatrix3x3 rot; for(int ir = 0; ir < 3; ir++) { for(int ic = 0; ic < 3; ic++) { rot(ir,ic) = m_pFiffInfo->dev_head_t.trans(ir,ic); } } QQuaternion quatHPI = QQuaternion::fromRotationMatrix(rot); // Write rotation quaternion to HPI Ch #1~3 matData.row(401) = MatrixXf::Constant(1,matData.cols(), quatHPI.x()); matData.row(402) = MatrixXf::Constant(1,matData.cols(), quatHPI.y()); matData.row(403) = MatrixXf::Constant(1,matData.cols(), quatHPI.z()); // Write translation vector to HPI Ch #4~6 matData.row(404) = MatrixXf::Constant(1,matData.cols(), m_pFiffInfo->dev_head_t.trans(0,3)); matData.row(405) = MatrixXf::Constant(1,matData.cols(), m_pFiffInfo->dev_head_t.trans(1,3)); matData.row(406) = MatrixXf::Constant(1,matData.cols(), m_pFiffInfo->dev_head_t.trans(2,3)); // Write GOF to HPI Ch #7 // Write goodness of fit (GOF)to HPI Ch #7 float dpfitError = 0.0; float GOF = 1 - dpfitError; matData.row(407) = MatrixXf::Constant(1,matData.cols(), GOF); } } }
MatrixXf transformPoints(Matrix3f X, MatrixXf P){ MatrixXf Pfull(3, P.cols()); for(int i=0; i<P.cols(); i++){ Pfull(0, i) = P(0, i); Pfull(1, i) = P(1, i); Pfull(2, i) = 1; } Pfull = X*Pfull; MatrixXf Pt(2, P.cols()); for(int i=0; i<P.cols(); i++){ Pt(0, i) = Pfull(0, i); Pt(1, i) = Pfull(1, i); } return Pt; }
double IntersectionOverUnion::evaluate( MatrixXf & d_mul_Q, const MatrixXf & Q ) const { assert( gt_.rows() == Q.cols() ); const int N = Q.cols(), M = Q.rows(); d_mul_Q = 0*Q; VectorXd in(M), un(M); in.fill(0.f); un.fill(1e-20); for( int i=0; i<N; i++ ) { if( 0 <= gt_[i] && gt_[i] < M ) { in[ gt_[i] ] += Q(gt_[i],i); un[ gt_[i] ] += 1; for( int l=0; l<M; l++ ) if( l!=gt_[i] ) un[ l ] += Q(l,i); } } for( int i=0; i<N; i++ ) if( 0 <= gt_[i] && gt_[i] < M ) { for( int l=0; l<M; l++ ) if( l==gt_[i] ) d_mul_Q(l,i) = Q(l,i) / (un[l]*M); else d_mul_Q(l,i) = - Q(l,i) * in[l] / ( un[l] * un[l] * M); } return (in.array()/un.array()).sum()/M; }
MatrixXf featureGradient( const MatrixXf & a, const MatrixXf & b ) const { if (ntype_ == NO_NORMALIZATION ) return kernelGradient( a, b ); else if (ntype_ == NORMALIZE_SYMMETRIC ) { MatrixXf fa = lattice_.compute( a*norm_.asDiagonal(), true ); MatrixXf fb = lattice_.compute( b*norm_.asDiagonal() ); MatrixXf ones = MatrixXf::Ones( a.rows(), a.cols() ); VectorXf norm3 = norm_.array()*norm_.array()*norm_.array(); MatrixXf r = kernelGradient( 0.5*( a.array()*fb.array() + fa.array()*b.array() ).matrix()*norm3.asDiagonal(), ones ); return - r + kernelGradient( a*norm_.asDiagonal(), b*norm_.asDiagonal() ); } else if (ntype_ == NORMALIZE_AFTER ) { MatrixXf fb = lattice_.compute( b ); MatrixXf ones = MatrixXf::Ones( a.rows(), a.cols() ); VectorXf norm2 = norm_.array()*norm_.array(); MatrixXf r = kernelGradient( ( a.array()*fb.array() ).matrix()*norm2.asDiagonal(), ones ); return - r + kernelGradient( a*norm_.asDiagonal(), b ); } else /*if (ntype_ == NORMALIZE_BEFORE )*/ { MatrixXf fa = lattice_.compute( a, true ); MatrixXf ones = MatrixXf::Ones( a.rows(), a.cols() ); VectorXf norm2 = norm_.array()*norm_.array(); MatrixXf r = kernelGradient( ( fa.array()*b.array() ).matrix()*norm2.asDiagonal(), ones ); return -r+kernelGradient( a, b*norm_.asDiagonal() ); } }
void sumAndNormalize( MatrixXf & out, const MatrixXf & in, const MatrixXf & Q ) { out.resize( in.rows(), in.cols() ); for( int i=0; i<in.cols(); i++ ){ VectorXf b = in.col(i); VectorXf q = Q.col(i); out.col(i) = b.array().sum()*q - b; } }
/////////////////////// ///// Inference ///// /////////////////////// void expAndNormalize ( MatrixXf & out, const MatrixXf & in ) { out.resize( in.rows(), in.cols() ); for( int i=0; i<out.cols(); i++ ){ VectorXf b = in.col(i); b.array() -= b.maxCoeff(); b = b.array().exp(); out.col(i) = b / b.array().sum(); } }
void Permutohedral::compute ( MatrixXf & out, const MatrixXf & in, bool reverse ) const { if( out.cols() != in.cols() || out.rows() != in.rows() ) out = 0*in; if( in.rows() <= 2 ) seqCompute( out.data(), in.data(), in.rows(), reverse ); else sseCompute( out.data(), in.data(), in.rows(), reverse ); }
void blas_gemm(const MatrixXf& a, const MatrixXf& b, MatrixXf& c) { int M = c.rows(); int N = c.cols(); int K = a.cols(); int lda = a.rows(); int ldb = b.rows(); int ldc = c.rows(); sgemm_(¬rans,¬rans,&M,&N,&K,&fone, const_cast<float*>(a.data()),&lda, const_cast<float*>(b.data()),&ldb,&fone, c.data(),&ldc); }
vector<float> applyPCAtoVector(vector<float> &descriptorValues, MatrixXf &eigen_vects) { MatrixXf datapoint(1,descriptorValues.size()); for (int i = 0; i < descriptorValues.size(); ++i) datapoint(0,i) = descriptorValues[i]; MatrixXf reduceddatapnt = pca::transformPointMatrix(datapoint, eigen_vects); vector<float> retfeatvect(reduceddatapnt.cols()); for (int i = 0; i < reduceddatapnt.cols(); ++i) retfeatvect[i] = reduceddatapnt(0,i); return retfeatvect; }
vector<vector<float> > applyPCAtoVector2D(vector<vector<float> > &descriptorValues, MatrixXf &eigen_vects) { MatrixXf datapoints(descriptorValues.size(),descriptorValues[0].size()); for (int i = 0; i < descriptorValues.size(); ++i) for (int j = 0; j < descriptorValues[0].size(); ++j) datapoints(i, j) = descriptorValues[i][j]; MatrixXf reduceddatapnts = pca::transformPointMatrix(datapoints, eigen_vects); vector<vector<float> > retfeatvects(reduceddatapnts.rows(), vector<float>(reduceddatapnts.cols())); for (int i = 0; i < reduceddatapnts.rows(); ++i) for (int j = 0; j < reduceddatapnts.cols(); ++j) retfeatvects[i][j] = reduceddatapnts(i,j); return retfeatvects; }
double LogLikelihood::evaluate( MatrixXf & d_mul_Q, const MatrixXf & Q ) const { assert( gt_.rows() == Q.cols() ); const int N = Q.cols(), M = Q.rows(); double r = 0; d_mul_Q = 0*Q; for( int i=0; i<N; i++ ) if( 0 <= gt_[i] && gt_[i] < M ) { float QQ = std::max( Q(gt_[i],i)+robust_, 1e-20f ); // Make it negative since it's a r += log(QQ) / N; d_mul_Q(gt_[i],i) += Q(gt_[i],i) / QQ / N; } return r; }
double Hamming::evaluate( MatrixXf & d_mul_Q, const MatrixXf & Q ) const { assert( gt_.rows() == Q.cols() ); const int N = Q.cols(), M = Q.rows(); double r = 0; d_mul_Q = 0*Q; for( int i=0; i<N; i++ ) if( 0 <= gt_[i] && gt_[i] < M ) { float QQ = class_weight_[ gt_[i] ] * Q(gt_[i],i); // Make it negative since it's a r += QQ; d_mul_Q(gt_[i],i) += QQ; } return r; }
void Neuromag::run() { MatrixXf matValue; qint32 size = 0; while(m_bIsRunning) { if(m_pRawMatrixBuffer_In) { //pop matrix matValue = m_pRawMatrixBuffer_In->pop(); //Write raw data to fif file if(m_bWriteToFile) { size += matValue.rows()*matValue.cols() * 4; if(size > MAX_DATA_LEN) { size = 0; this->splitRecordingFile(); } m_mutex.lock(); if(m_pOutfid) { m_pOutfid->write_raw_buffer(matValue.cast<double>()); } m_mutex.unlock(); } else { size = 0; } if(m_pRTMSA_Neuromag) { m_pRTMSA_Neuromag->data()->setValue(this->calibrate(matValue)); } } } }
void RealtimeMF_openni::projectDirections(cv::Mat& I, const MatrixXf& dirs, double f_d, const Matrix<uint8_t,Dynamic,Dynamic>& colors) { double scale = 0.1; VectorXf p0(3); p0 << 0.35,0.25,1; double u0 = p0(0)/p0(2)*f_d + 320.; double v0 = p0(1)/p0(2)*f_d + 240.; for(uint32_t k=0; k < dirs.cols(); ++k) { VectorXf p1 = p0 + dirs.col(k)*scale; double u1 = p1(0)/p1(2)*f_d + 320.; double v1 = p1(1)/p1(2)*f_d + 240.; cv::line(I, cv::Point(u0,v0), cv::Point(u1,v1), CV_RGB(colors(k,0),colors(k,1),colors(k,2)), 2, CV_AA); double arrowLen = 10.; double angle = atan2(v1-v0,u1-u0); double ru1 = u1 - arrowLen*cos(angle + M_PI*0.25); double rv1 = v1 - arrowLen*sin(angle + M_PI*0.25); cv::line(I, cv::Point(u1,v1), cv::Point(ru1,rv1), CV_RGB(colors(k,0),colors(k,1),colors(k,2)), 2, CV_AA); ru1 = u1 - arrowLen*cos(angle - M_PI*0.25); rv1 = v1 - arrowLen*sin(angle - M_PI*0.25); cv::line(I, cv::Point(u1,v1), cv::Point(ru1,rv1), CV_RGB(colors(k,0),colors(k,1),colors(k,2)), 2, CV_AA); } cv::circle(I, cv::Point(u0,v0), 2, CV_RGB(0,0,0), 2, CV_AA); }
VectorXf EMclustering::logsumexp(MatrixXf x, int dim) { int r = x.rows(); int c = x.cols(); VectorXf y(r); MatrixXf tmp1(r,c); VectorXf tmp2(r); VectorXf s(r); y = x.rowwise().maxCoeff();//cerr<<"y"<<y<<endl<<endl; x = x.colwise() - y; //cerr<<"x"<<x<<endl<<endl; tmp1 = x.array().exp(); //cerr<<"t"<<tmp1<<endl<<endl; tmp2 = tmp1.rowwise().sum(); //cerr<<"t"<<tmp2<<endl<<endl; s = y.array() + tmp2.array().log(); for(int i=0;i<s.size();i++) { if(!isfinite(s(i))) { s(i) = y(i); } } y.resize(0); tmp1.resize(0,0); tmp2.resize(0); return s; }
void BabyMEG::createDigTrig(MatrixXf& data) { //Look for triggers in all trigger channels //m_qMapDetectedTrigger = DetectTrigger::detectTriggerFlanksMax(data.at(b), m_lTriggerChannelIndices, m_iCurrentSample-nCol, m_dTriggerThreshold, true); QMap<int,QList<QPair<int,double> > > qMapDetectedTrigger = DetectTrigger::detectTriggerFlanksGrad(data.cast<double>(), m_lTriggerChannelIndices, 0, 3.0, false, "Rising"); //Combine and write results into data block's digital trigger channel QMapIterator<int,QList<QPair<int,double> >> i(qMapDetectedTrigger); int counter = 0; int idxDigTrig = m_pFiffInfo->ch_names.indexOf("DTRG01"); while (i.hasNext()) { i.next(); QList<QPair<int,double> > lDetectedTriggers = i.value(); for(int k = 0; k < lDetectedTriggers.size(); ++k) { if(lDetectedTriggers.at(k).first < data.cols() && lDetectedTriggers.at(k).first >= 0) { data(idxDigTrig,lDetectedTriggers.at(k).first) = data(idxDigTrig,lDetectedTriggers.at(k).first) + pow(2,counter); } } counter++; } }
/** * Normalizes each eigenface in a matrix. * * @param eigenfaces A matrix of eigen faces to normalize */ void normalizeEigenFaces(MatrixXf &eigenfaces) { for(int i = 0; i < eigenfaces.cols(); i++) { eigenfaces.col(i).normalize(); } }
void KF_joseph_update(VectorXf &x, MatrixXf &P,float v,float R, MatrixXf H) { VectorXf PHt = P*H.transpose(); MatrixXf S = H*PHt; S(0,0) += R; MatrixXf Si = S.inverse(); Si = make_symmetric(Si); MatrixXf PSD_check = Si.llt().matrixL(); //chol of scalar is sqrt PSD_check.transpose(); PSD_check.conjugate(); VectorXf W = PHt*Si; x = x+W*v; //Joseph-form covariance update MatrixXf eye(P.rows(), P.cols()); eye.setIdentity(); MatrixXf C = eye - W*H; P = C*P*C.transpose() + W*R*W.transpose(); float eps = 2.2204*pow(10.0,-16); //numerical safety P = P+eye*eps; PSD_check = P.llt().matrixL(); PSD_check.transpose(); PSD_check.conjugate(); //for upper tri }
void Util::processGramSchmidt(MatrixXf& mat){ for (int i = 0; i < mat.cols(); ++i){ for (int j = 0; j < i; ++j){ float r = mat.col(i).dot(mat.col(j)); mat.col(i) -= r * mat.col(j); } float norm = mat.col(i).norm(); if (norm < SVD_EPS){ for (int k = i; k < mat.cols(); ++k){ mat.col(k).setZero(); } return; } mat.col(i) *= (1.f / norm); } }
void BabyMEGSQUIDControlDgl::TuneGraphDispProc(MatrixXf tmp) { // std::cout << "first ten elements \n" << tmp.block(0,0,1,10) << std::endl; int cols = tmp.cols(); int chanIndx = ui->m_Qcb_channel->currentIndex();//1;// // plot the real time data here settings.minX = 0.0; settings.maxX = cols; settings.minY = mmin(tmp,chanIndx); settings.maxY = mmax(tmp,chanIndx); settings.xlabel = QString("%1 samples/second").arg(m_pBabyMEG->m_dSfreq) ; settings.ylabel = QString("Amplitude [rel. unit]"); d_timeplot->setPlotSettings(settings); // qDebug()<<"minY"<<settings.minY<<"maxY"<<settings.maxY; QVector <QPointF> F; for(int i=0; i<cols;i++) F.append(QPointF(i,tmp(chanIndx,i))); d_timeplot->setCurveData(0,F); d_timeplot->show(); }
void Util::sampleGaussianMat(MatrixXf& mat){ for (int i = 0; i < mat.rows(); ++i){ int j = 0; for ( ; j+1 < mat.cols(); j += 2){ float f1, f2; sampleTwoGaussian(f1, f2); mat(i,j ) = f1; mat(i,j+1) = f2; } for (; j < mat.cols(); j ++){ float f1, f2; sampleTwoGaussian(f1, f2); mat(i, j) = f1; } } }
void toHomogeneous(MatrixXf &mat) { MatrixXf temp; if (mat.cols() == 2) { temp.resize(mat.rows(), 3); temp.leftCols<2>() = mat.leftCols<2>(); temp.col(2).setConstant(1); mat = temp; } else if (mat.cols() == 4) { temp.resize(mat.rows(), 6); temp.leftCols<2>() = mat.leftCols<2>(); temp.col(2).setConstant(1); temp.block(0, 3, mat.rows(), 2) = temp.block(0, 2, mat.rows(), 2); temp.col(5).setConstant(1); mat = temp; } else cout << "toHomogeneous with wrong dimension" << endl; }
void matrixMultiply(const RealDescriptor& x, const MatrixXf& matrix, RealDescriptor& result) { Q_ASSERT(x.size() == matrix.cols()); int targetDimension = matrix.rows(); result.resize(targetDimension); VectorXf::Map(result.data(), targetDimension) = matrix * VectorXf::Map(x.data(), x.size()); }
VectorXs DenseCRF::currentMap( const MatrixXf & Q ) const{ VectorXs r(Q.cols()); // Find the map for( int i=0; i<N_; i++ ){ int m; Q.col(i).maxCoeff( &m ); r[i] = m; } return r; }
void noHomogeneous(MatrixXf &mat) { MatrixXf temp; if (mat.cols() == 3) { temp.resize(mat.rows(), 2); temp.col(0).array() = mat.col(0).array()/mat.col(2).array(); temp.col(1).array() = mat.col(1).array()/mat.col(2).array(); mat = temp; } else cout << "toHomogeneous with wrong dimension" << endl; }
QPainterPath Layouter::mat2Path( const MatrixXf& pntMat ) { QPainterPath path; if (pntMat.rows() <= 0 || pntMat.cols() != 2) return path; path.moveTo(pntMat(0,0), pntMat(0,1)); for (int i = 1; i < pntMat.rows(); ++i) path.lineTo(pntMat(i,0), pntMat(i,1)); return path; }
VectorXf EMclustering::loggausspdf(MatrixXf x, VectorXf mu, MatrixXf sigma) { //cerr<<x<<endl<<endl; //cerr<<mu<<endl<<endl; //cerr<<sigma<<endl<<endl; int d = x.rows(); int c = x.cols(); int r_sigma = sigma.rows(); int c_sigma = sigma.cols(); MatrixXf tmpx(x.rows(),x.cols()); tmpx = x.colwise() - mu; MatrixXf u1(r_sigma,c_sigma); u1 = sigma.llt().matrixL() ; MatrixXf u2(u1.cols(),u1.rows()); u2 = u1.adjoint();//cerr<<u2<<endl; MatrixXf Q(u2.cols(),tmpx.cols()); Q = u1.jacobiSvd(ComputeThinU | ComputeThinV).solve(tmpx); //cerr<<"q"<<Q<<endl; VectorXf q(Q.cols()); q = Q.cwiseProduct(Q).colwise().sum();//cerr<<"q"<<q<<endl; VectorXf tmp1(u2.rows()); tmp1 = u2.diagonal(); tmp1 = tmp1.array().log(); double c1 = tmp1.sum() * 2; double c2 = d * log(2*PI);//cerr<<c1+c2<<endl; VectorXf y(q.size()); y = -(c1+c2)/2. - q.array()/2.; tmpx.resize(0,0); u1.resize(0,0); u2.resize(0,0); Q.resize(0,0); q.resize(0); tmp1.resize(0); return y; }
virtual VectorXf parameters() const { if (ktype_ == CONST_KERNEL) return VectorXf(); else if (ktype_ == DIAG_KERNEL) return parameters_; else { MatrixXf p = parameters_; p.resize( p.cols()*p.rows(), 1 ); return p; } }
bool singleModelRANSAC(const MatrixXf &data, int M, MatrixXf &inlier) { int maxdegen = 10; int dataSize = data.rows(); int psize = 4; MatrixXf x1 = data.block(0, 0, data.rows(), 3); MatrixXf x2 = data.block(0, 3, data.rows(), 3); vector<int> sample; MatrixXf pts1(4, 3); MatrixXf pts2(4, 3); int maxInlier = -1; MatrixXf bestResidue; for (int m = 0; m < M; m++) { int degencount = 0; int isdegen = 1; while (isdegen==1 && degencount < maxdegen) { degencount ++; RandomSampling(psize, dataSize, sample); for (int i = 0; i < psize; i++) { pts1.row(i) = x1.row(sample[i]); pts2.row(i) = x2.row(sample[i]); } if (sampleValidTest(pts1, pts2)) isdegen = 0; } if (isdegen) { cout << "Cannot find valid p-subset" << endl; return false; } Matrix3f local_H; MatrixXf local_A; fitHomography(pts1, pts2, local_H, local_A); MatrixXf residue; computeHomographyResidue(x1, x2, local_H, residue); int inlierCount = (residue.array() < THRESHOLD).count(); if (inlierCount > maxInlier) { maxInlier = inlierCount; bestResidue = residue; } } inlier.resize(maxInlier, data.cols()); int transferCounter = 0; for (int i = 0; i < dataSize; i++) { if (bestResidue(i) < THRESHOLD) { inlier.row(transferCounter) = data.row(i); transferCounter++; } } if (transferCounter != maxInlier) { cout << "RANSAC result size does not match!!!!" << endl; return false; } return true; }
void filterPointAtInfinity(MatrixXf &pts1, MatrixXf &pts2) { int finiteCount = 0; for (int i = 0; i < pts1.rows(); i++) { if (abs(pts1(i, 2)) > FLT_EPSILON && abs(pts2(i, 2) > FLT_EPSILON)) finiteCount++; } MatrixXf temp_pts1, temp_pts2; temp_pts1.resize(finiteCount, pts1.cols()); temp_pts2.resize(finiteCount, pts2.cols()); int idx = 0; for (int i = 0; i < pts1.rows(); i++) { if (abs(pts1(i, 2)) > FLT_EPSILON && abs(pts2(i, 2) > FLT_EPSILON)) { temp_pts1.row(idx) = pts1.row(i); temp_pts2.row(idx) = pts2.row(i); idx++; } } pts1 = temp_pts1; pts2 = temp_pts2; }