// Routine to create initial mesh for test. // o Marks vertices at a greater topological depth than the specified // value as slaved. // o Perturbs higher-order vertices on skin towards element center // o Marks skin vertices as fixed int main( int argc, char* argv[] ) { if (argc != 4) usage(argv[0]); char* endptr = 0; const long n = strtol( argv[1], &endptr, 0 ); if (*endptr || n < 0) usage(argv[0]); // read input mesh MeshImpl mesh; MsqPrintError err(std::cerr); mesh.read_vtk( argv[2], err ); if (err) return 1; // get skin vertices mesh.mark_skin_fixed( err, true ); if (err) return 1; std::vector<Mesh::VertexHandle> verts; mesh.get_all_vertices( verts, err ); if (err) return 1; std::vector<bool> fixed; mesh.vertices_get_fixed_flag( arrptr(verts), fixed, verts.size(), err ); if (err) return 1; std::vector<Mesh::VertexHandle> skin; for (size_t i = 0; i < verts.size(); ++i) if (fixed[i]) skin.push_back( verts[i] ); // create map for vertex depth, and initialize to 0 for skin vertices std::map<Mesh::VertexHandle,int> depth; std::map<Mesh::VertexHandle,int>::iterator d_iter; for (size_t i = 0; i < skin.size(); ++i) depth[skin[i]] = 0; // get all elements std::vector<Mesh::ElementHandle> curr, next; std::vector<Mesh::ElementHandle> conn; std::vector<size_t> off; mesh.get_all_elements( next, err ); // build sorted list of higher-order vertices std::vector<Mesh::VertexHandle> higher_order; for (size_t i = 0; i < next.size(); ++i) { Mesh::ElementHandle elem = next[i]; conn.clear(); mesh.elements_get_attached_vertices( &elem, 1, conn, off, err ); if (err) return 1; EntityTopology type; mesh.elements_get_topologies( &elem, &type, 1, err ); std::copy( conn.begin() + TopologyInfo::corners(type), conn.end(), std::back_inserter( higher_order ) ); } std::sort( higher_order.begin(), higher_order.end() ); higher_order.erase( std::unique( higher_order.begin(), higher_order.end() ), higher_order.end() ); // build depth map for all vertices while (!next.empty()) { curr.swap( next ); next.clear(); while (!curr.empty()) { Mesh::ElementHandle elem = curr.back(); curr.pop_back(); conn.clear(); mesh.elements_get_attached_vertices( &elem, 1, conn, off, err ); if (err) return 1; int min = std::numeric_limits<int>::max(); for (size_t i = 0; i < conn.size(); ++i) { d_iter = depth.find( conn[i] ); if (d_iter != depth.end() && d_iter->second < min) min = d_iter->second; } if (min == std::numeric_limits<int>::max()) { next.push_back( elem ); continue; } for (size_t i = 0; i < conn.size(); ++i) { d_iter = depth.find( conn[i] ); if (d_iter == depth.end() || d_iter->second > min+1) depth[conn[i]] = min+1; } } } // write depth map to tag for debugging purposes std::vector<int> depth_vals(verts.size()); for (size_t i = 0; i < verts.size(); ++i) depth_vals[i] = depth[verts[i]]; TagHandle tag = mesh.tag_create( "depth", Mesh::INT, 1, 0, err ); if (err) return 1; mesh.tag_set_vertex_data( tag, verts.size(), arrptr(verts), arrptr(depth_vals), err ); if (err) return 1; // set tag specifying slaved vertices for (size_t i = 0; i < verts.size(); ++i) if (std::binary_search( higher_order.begin(), higher_order.end(), verts[i] )) depth_vals[i] = depth[verts[i]] > n; else depth_vals[i] = 0; tag = mesh.tag_create( "slaved", Mesh::INT, 1, 0, err ); if (err) return 1; mesh.tag_set_vertex_data( tag, verts.size(), arrptr(verts), arrptr(depth_vals), err ); if (err) return 1; // perturb mid-edge nodes along boundary std::vector<MsqVertex> coords; for (size_t i = 0; i < skin.size(); ++i) { if (!std::binary_search( higher_order.begin(), higher_order.end(), skin[i])) continue; curr.clear(); mesh.vertices_get_attached_elements( &skin[i], 1, curr, off, err ); if (err) return 1; assert(curr.size() == 1); conn.clear(); mesh.elements_get_attached_vertices( arrptr(curr), 1, conn, off, err ); if (err) return 1; // estimate element center coords.resize( conn.size() ); mesh.vertices_get_coordinates( arrptr(conn), arrptr(coords), conn.size(), err ); if (err) return 1; Vector3D mean(0.0); for (size_t j = 0; j < coords.size(); ++j) mean += coords[j]; mean /= coords.size(); size_t idx = std::find( conn.begin(), conn.end(), skin[i] ) - conn.begin(); assert(idx < conn.size()); Vector3D init = coords[idx]; Vector3D pos = (1 - PERTURB_FRACT) * init + PERTURB_FRACT * mean; mesh.vertex_set_coordinates( skin[i], pos, err ); if (err) return 1; } mesh.write_vtk( argv[3], err ); if (err) return 1; return 0; }
void SlaveBoundaryVerticesTest::test_slaved_common( unsigned depth, unsigned boundary ) { MeshImpl mesh; DomainClassifier domain; make_mesh( mesh, domain, 2*depth+2 ); MsqPrintError err(std::cerr); std::vector< std::vector<Mesh::VertexHandle> > depths(depth+1); std::set<Mesh::VertexHandle> non_slave; std::set<Mesh::VertexHandle>::iterator p; // find boundary vertices std::vector<Mesh::VertexHandle> verts; mesh.get_all_vertices( verts, err ); ASSERT_NO_ERROR(err); CPPUNIT_ASSERT(!verts.empty()); if (boundary >= 4) { std::vector<bool> flags; mesh.vertices_get_fixed_flag( arrptr(verts), flags, verts.size(), err ); ASSERT_NO_ERROR(err); for (size_t i = 0; i < verts.size(); ++i) if (flags[i]) { depths[0].push_back( verts[i] ); non_slave.insert( verts[i] ); } } else { std::vector<unsigned short> dim(verts.size()); domain.domain_DoF( arrptr(verts), arrptr(dim), verts.size(), err ); ASSERT_NO_ERROR(err); for (size_t i = 0; i < verts.size(); ++i) if (dim[i] <= boundary) { depths[0].push_back( verts[i] ); non_slave.insert( verts[i] ); } } // check that our input is usable for this test CPPUNIT_ASSERT( !verts.empty() ); // find all vertices up to specified depth for (unsigned d = 0; d < depth; ++d) { for (size_t i = 0; i < depths[d].size(); ++i) { std::vector<Mesh::ElementHandle> adj; std::vector<size_t> junk; mesh.vertices_get_attached_elements( &depths[d][i], 1, adj, junk, err ); ASSERT_NO_ERROR(err); for(size_t j = 0; j < adj.size(); ++j) { junk.clear(); std::vector<Mesh::VertexHandle> conn; mesh.elements_get_attached_vertices( &adj[j], 1, conn, junk, err ); ASSERT_NO_ERROR(err); for (size_t k = 0; k < conn.size(); ++k) { p = non_slave.find(conn[k]); if (p == non_slave.end()) { non_slave.insert( p, conn[k] ); depths[d+1].push_back( conn[k] ); } } } } } // Check that our input is usable for this test: // Should have some vertices that are not within the specified depth of // the boundary. CPPUNIT_ASSERT( non_slave.size() < verts.size() ); // Now build a map of all higher-order nodes in the mesh std::set<Mesh::VertexHandle> higher_order; std::vector<Mesh::ElementHandle> elems; mesh.get_all_elements( elems, err ); ASSERT_NO_ERROR(err); CPPUNIT_ASSERT(!elems.empty()); std::vector<EntityTopology> types(elems.size()); mesh.elements_get_topologies( arrptr(elems), arrptr(types), elems.size(), err ); ASSERT_NO_ERROR(err); for (size_t i = 0; i < elems.size(); ++i) { std::vector<Mesh::VertexHandle> conn; std::vector<size_t> junk; mesh.elements_get_attached_vertices( &elems[i], 1, conn, junk, err ); ASSERT_NO_ERROR(err); for (size_t j = TopologyInfo::corners( types[i] ); j < conn.size(); ++j) higher_order.insert( conn[j] ); } // Check that our input is usable for this test: // Should have some higher-order vertices CPPUNIT_ASSERT( !higher_order.empty() ); // Now build a map of all fixed vertices std::set<Mesh::VertexHandle> fixed_vertices; std::vector<bool> fixed; mesh.vertices_get_fixed_flag( arrptr(verts), fixed, verts.size(), err ); ASSERT_NO_ERROR(err); for (size_t i = 0; i < verts.size(); ++i) if (fixed[i]) fixed_vertices.insert( verts[i] ); // Now actually run the tool Settings settings; settings.set_slaved_ho_node_mode( Settings::SLAVE_CALCULATED ); SlaveBoundaryVertices tool( depth, boundary ); tool.loop_over_mesh( &mesh, &domain, &settings, err ); ASSERT_NO_ERROR(err); // Now verify the results std::vector<unsigned char> bytes( verts.size() ); mesh.vertices_get_byte( arrptr(verts), arrptr(bytes), verts.size(), err ); ASSERT_NO_ERROR(err); for (size_t i = 0; i < verts.size(); ++i) { bool in_non_slave = (non_slave.find( verts[i] ) != non_slave.end()); bool in_fixed = (fixed_vertices.find( verts[i] ) != fixed_vertices.end()); bool in_higher_order = (higher_order.find( verts[i] ) != higher_order.end()); if (bytes[i] & MsqVertex::MSQ_DEPENDENT) { // if slave node // must not be within 'depth' of boundary CPPUNIT_ASSERT( !in_non_slave ); // must be a higher-order vertex CPPUNIT_ASSERT( in_higher_order ); // must not be fixed CPPUNIT_ASSERT( !in_fixed ); } else { // there are three reasons that a vertex isn't slaved bool in_non_slave = (non_slave.find( verts[i] ) != non_slave.end()); bool in_fixed = (fixed_vertices.find( verts[i] ) != fixed_vertices.end()); bool in_higher_order = (higher_order.find( verts[i] ) != higher_order.end()); CPPUNIT_ASSERT( in_fixed || !in_higher_order || in_non_slave ); } } }