void AddRadialForceToPxRigidBody_AssumesLocked(PxRigidBody& PRigidBody, const FVector& Origin, float Radius, float Strength, uint8 Falloff, bool bAccelChange) { #if WITH_PHYSX if (!(PRigidBody.getRigidBodyFlags() & PxRigidBodyFlag::eKINEMATIC)) { float Mass = PRigidBody.getMass(); PxTransform PCOMTransform = PRigidBody.getGlobalPose().transform(PRigidBody.getCMassLocalPose()); PxVec3 PCOMPos = PCOMTransform.p; // center of mass in world space PxVec3 POrigin = U2PVector(Origin); // origin of radial impulse, in world space PxVec3 PDelta = PCOMPos - POrigin; // vector from float Mag = PDelta.magnitude(); // Distance from COM to origin, in Unreal scale : @todo: do we still need conversion scale? // If COM is outside radius, do nothing. if (Mag > Radius) { return; } PDelta.normalize(); // If using linear falloff, scale with distance. float ForceMag = Strength; if (Falloff == RIF_Linear) { ForceMag *= (1.0f - (Mag / Radius)); } // Apply force PxVec3 PImpulse = PDelta * ForceMag; PRigidBody.addForce(PImpulse, bAccelChange ? PxForceMode::eACCELERATION : PxForceMode::eFORCE); } #endif // WITH_PHYSX }
void PxRigidBodyExt::computeVelocityDeltaFromImpulse(const PxRigidBody& body, const PxVec3& impulsiveForce, const PxVec3& impulsiveTorque, PxVec3& deltaLinearVelocity, PxVec3& deltaAngularVelocity) { { const PxF32 recipMass = body.getInvMass(); deltaLinearVelocity = impulsiveForce*recipMass; } { const PxTransform globalPose = body.getGlobalPose(); const PxTransform cmLocalPose = body.getCMassLocalPose(); const PxTransform body2World = globalPose*cmLocalPose; PxMat33 M(body2World.q); const PxVec3 recipInertiaBodySpace = body.getMassSpaceInvInertiaTensor(); PxMat33 recipInertiaWorldSpace; const float axx = recipInertiaBodySpace.x*M(0,0), axy = recipInertiaBodySpace.x*M(1,0), axz = recipInertiaBodySpace.x*M(2,0); const float byx = recipInertiaBodySpace.y*M(0,1), byy = recipInertiaBodySpace.y*M(1,1), byz = recipInertiaBodySpace.y*M(2,1); const float czx = recipInertiaBodySpace.z*M(0,2), czy = recipInertiaBodySpace.z*M(1,2), czz = recipInertiaBodySpace.z*M(2,2); recipInertiaWorldSpace(0,0) = axx*M(0,0) + byx*M(0,1) + czx*M(0,2); recipInertiaWorldSpace(1,1) = axy*M(1,0) + byy*M(1,1) + czy*M(1,2); recipInertiaWorldSpace(2,2) = axz*M(2,0) + byz*M(2,1) + czz*M(2,2); recipInertiaWorldSpace(0,1) = recipInertiaWorldSpace(1,0) = axx*M(1,0) + byx*M(1,1) + czx*M(1,2); recipInertiaWorldSpace(0,2) = recipInertiaWorldSpace(2,0) = axx*M(2,0) + byx*M(2,1) + czx*M(2,2); recipInertiaWorldSpace(1,2) = recipInertiaWorldSpace(2,1) = axy*M(2,0) + byy*M(2,1) + czy*M(2,2); deltaAngularVelocity = recipInertiaWorldSpace*(impulsiveTorque); } }
void AddRadialImpulseToPxRigidBody_AssumesLocked(PxRigidBody& PRigidBody, const FVector& Origin, float Radius, float Strength, uint8 Falloff, bool bVelChange) { #if WITH_PHYSX if (!(PRigidBody.getRigidBodyFlags() & PxRigidBodyFlag::eKINEMATIC)) { float Mass = PRigidBody.getMass(); PxTransform PCOMTransform = PRigidBody.getGlobalPose().transform(PRigidBody.getCMassLocalPose()); PxVec3 PCOMPos = PCOMTransform.p; // center of mass in world space PxVec3 POrigin = U2PVector(Origin); // origin of radial impulse, in world space PxVec3 PDelta = PCOMPos - POrigin; // vector from origin to COM float Mag = PDelta.magnitude(); // Distance from COM to origin, in Unreal scale : @todo: do we still need conversion scale? // If COM is outside radius, do nothing. if (Mag > Radius) { return; } PDelta.normalize(); // Scale by U2PScale here, because units are velocity * mass. float ImpulseMag = Strength; if (Falloff == RIF_Linear) { ImpulseMag *= (1.0f - (Mag / Radius)); } PxVec3 PImpulse = PDelta * ImpulseMag; PxForceMode::Enum Mode = bVelChange ? PxForceMode::eVELOCITY_CHANGE : PxForceMode::eIMPULSE; PRigidBody.addForce(PImpulse, Mode); } #endif // WITH_PHYSX }
void PxRigidBodyExt::computeLinearAngularImpulse(const PxRigidBody& body, const PxTransform& globalPose, const PxVec3& point, const PxVec3& impulse, const PxReal invMassScale, const PxReal invInertiaScale, PxVec3& linearImpulse, PxVec3& angularImpulse) { const PxVec3 centerOfMass = globalPose.transform(body.getCMassLocalPose().p); linearImpulse = impulse * invMassScale; angularImpulse = (point - centerOfMass).cross(impulse) * invInertiaScale; }
PxVec3 PxRigidBodyExt::getVelocityAtOffset(const PxRigidBody& body, const PxVec3& point) { const PxTransform globalPose = body.getGlobalPose(); const PxVec3 centerOfMass = globalPose.rotate(body.getCMassLocalPose().p); const PxVec3 rpoint = point - centerOfMass; return getVelocityAtPosInternal(body, rpoint); }
PxVec3 PxRigidBodyExt::getLocalVelocityAtLocalPos(const PxRigidBody& body, const PxVec3& point) { const PxTransform globalPose = body.getGlobalPose(); const PxVec3 centerOfMass = globalPose.transform(body.getCMassLocalPose().p); const PxVec3 rpoint = globalPose.transform(point) - centerOfMass; return getVelocityAtPosInternal(body, rpoint); }
void PxRigidBodyExt::computeVelocityDeltaFromImpulse(const PxRigidBody& body, const PxTransform& globalPose, const PxVec3& point, const PxVec3& impulse, const PxReal invMassScale, const PxReal invInertiaScale, PxVec3& linearVelocityChange, PxVec3& angularVelocityChange) { const PxVec3 centerOfMass = globalPose.transform(body.getCMassLocalPose().p); const PxReal invMass = body.getInvMass() * invMassScale; const PxVec3 invInertiaMS = body.getMassSpaceInvInertiaTensor() * invInertiaScale; PxMat33 invInertia; transformInertiaTensor(invInertiaMS, PxMat33(globalPose.q), invInertia); linearVelocityChange = impulse * invMass; const PxVec3 rXI = (point - centerOfMass).cross(impulse); angularVelocityChange = invInertia * rXI; }
PX_INLINE void addForceAtPosInternal(PxRigidBody& body, const PxVec3& force, const PxVec3& pos, PxForceMode::Enum mode, bool wakeup) { if(mode == PxForceMode::eACCELERATION || mode == PxForceMode::eVELOCITY_CHANGE) { Ps::getFoundation().error(PxErrorCode::eINVALID_PARAMETER, __FILE__, __LINE__, "PxRigidBodyExt::addForce methods do not support eACCELERATION or eVELOCITY_CHANGE modes"); return; } const PxTransform globalPose = body.getGlobalPose(); const PxVec3 centerOfMass = globalPose.transform(body.getCMassLocalPose().p); const PxVec3 torque = (pos - centerOfMass).cross(force); body.addForce(force, mode, wakeup); body.addTorque(torque, mode, wakeup); }