WALKAROUND::WALKAROUND_STATUS WALKAROUND::Route( const LINE& aInitialPath, LINE& aWalkPath, bool aOptimize ) { LINE path_cw( aInitialPath ), path_ccw( aInitialPath ); WALKAROUND_STATUS s_cw = IN_PROGRESS, s_ccw = IN_PROGRESS; SHAPE_LINE_CHAIN best_path; // special case for via-in-the-middle-of-track placement if( aInitialPath.PointCount() <= 1 ) { if( aInitialPath.EndsWithVia() && m_world->CheckColliding( &aInitialPath.Via(), m_itemMask ) ) return STUCK; aWalkPath = aInitialPath; return DONE; } start( aInitialPath ); m_currentObstacle[0] = m_currentObstacle[1] = nearestObstacle( aInitialPath ); m_recursiveBlockageCount = 0; aWalkPath = aInitialPath; if( m_forceWinding ) { s_cw = m_forceCw ? IN_PROGRESS : STUCK; s_ccw = m_forceCw ? STUCK : IN_PROGRESS; m_forceSingleDirection = true; } else { m_forceSingleDirection = false; } while( m_iteration < m_iterationLimit ) { if( s_cw != STUCK ) s_cw = singleStep( path_cw, true ); if( s_ccw != STUCK ) s_ccw = singleStep( path_ccw, false ); if( ( s_cw == DONE && s_ccw == DONE ) || ( s_cw == STUCK && s_ccw == STUCK ) ) { int len_cw = path_cw.CLine().Length(); int len_ccw = path_ccw.CLine().Length(); if( m_forceLongerPath ) aWalkPath = ( len_cw > len_ccw ? path_cw : path_ccw ); else aWalkPath = ( len_cw < len_ccw ? path_cw : path_ccw ); break; } else if( s_cw == DONE && !m_forceLongerPath ) { aWalkPath = path_cw; break; } else if( s_ccw == DONE && !m_forceLongerPath ) { aWalkPath = path_ccw; break; } m_iteration++; } if( m_iteration == m_iterationLimit ) { int len_cw = path_cw.CLine().Length(); int len_ccw = path_ccw.CLine().Length(); if( m_forceLongerPath ) aWalkPath = ( len_cw > len_ccw ? path_cw : path_ccw ); else aWalkPath = ( len_cw < len_ccw ? path_cw : path_ccw ); } if( m_cursorApproachMode ) { // int len_cw = path_cw.GetCLine().Length(); // int len_ccw = path_ccw.GetCLine().Length(); bool found = false; SHAPE_LINE_CHAIN l = aWalkPath.CLine(); for( int i = 0; i < l.SegmentCount(); i++ ) { const SEG s = l.Segment( i ); VECTOR2I nearest = s.NearestPoint( m_cursorPos ); VECTOR2I::extended_type dist_a = ( s.A - m_cursorPos ).SquaredEuclideanNorm(); VECTOR2I::extended_type dist_b = ( s.B - m_cursorPos ).SquaredEuclideanNorm(); VECTOR2I::extended_type dist_n = ( nearest - m_cursorPos ).SquaredEuclideanNorm(); if( dist_n <= dist_a && dist_n < dist_b ) { l.Remove( i + 1, -1 ); l.Append( nearest ); l.Simplify(); found = true; break; } } if( found ) { aWalkPath = aInitialPath; aWalkPath.SetShape( l ); } } aWalkPath.Line().Simplify(); if( aWalkPath.SegmentCount() < 1 ) return STUCK; if( aWalkPath.CPoint( -1 ) != aInitialPath.CPoint( -1 ) ) return STUCK; if( aWalkPath.CPoint( 0 ) != aInitialPath.CPoint( 0 ) ) return STUCK; WALKAROUND_STATUS st = s_ccw == DONE || s_cw == DONE ? DONE : STUCK; if( st == DONE ) { if( aOptimize ) OPTIMIZER::Optimize( &aWalkPath, OPTIMIZER::MERGE_OBTUSE, m_world ); } return st; }
PNS_WALKAROUND::WalkaroundStatus PNS_WALKAROUND::Route( const PNS_LINE& aInitialPath, PNS_LINE& aWalkPath, bool aOptimize ) { PNS_LINE path_cw( aInitialPath ), path_ccw( aInitialPath ); WalkaroundStatus s_cw = IN_PROGRESS, s_ccw = IN_PROGRESS; SHAPE_LINE_CHAIN best_path; start( aInitialPath ); m_currentObstacle[0] = m_currentObstacle[1] = nearestObstacle( aInitialPath ); m_recursiveBlockageCount = 0; aWalkPath = aInitialPath; while( m_iteration < m_iteration_limit ) { if( s_cw != STUCK ) s_cw = singleStep( path_cw, true ); if( s_ccw != STUCK ) s_ccw = singleStep( path_ccw, false ); if( ( s_cw == DONE && s_ccw == DONE ) || ( s_cw == STUCK && s_ccw == STUCK ) ) { int len_cw = path_cw.GetCLine().Length(); int len_ccw = path_ccw.GetCLine().Length(); if( m_forceLongerPath ) aWalkPath = (len_cw > len_ccw ? path_cw : path_ccw); else aWalkPath = (len_cw < len_ccw ? path_cw : path_ccw); break; } else if( s_cw == DONE && !m_forceLongerPath ) { aWalkPath = path_cw; break; } else if( s_ccw == DONE && !m_forceLongerPath ) { aWalkPath = path_ccw; break; } m_iteration++; } if( m_iteration == m_iteration_limit ) { int len_cw = path_cw.GetCLine().Length(); int len_ccw = path_ccw.GetCLine().Length(); if( m_forceLongerPath ) aWalkPath = (len_cw > len_ccw ? path_cw : path_ccw); else aWalkPath = (len_cw < len_ccw ? path_cw : path_ccw); } if( m_cursorApproachMode ) { // int len_cw = path_cw.GetCLine().Length(); // int len_ccw = path_ccw.GetCLine().Length(); bool found = false; SHAPE_LINE_CHAIN l = aWalkPath.GetCLine(); for( int i = 0; i < l.SegmentCount(); i++ ) { const SEG s = l.Segment( i ); VECTOR2I nearest = s.NearestPoint( m_cursorPos ); VECTOR2I::extended_type dist_a = ( s.A - m_cursorPos ).SquaredEuclideanNorm(); VECTOR2I::extended_type dist_b = ( s.B - m_cursorPos ).SquaredEuclideanNorm(); VECTOR2I::extended_type dist_n = ( nearest - m_cursorPos ).SquaredEuclideanNorm(); if( dist_n <= dist_a && dist_n < dist_b ) { // PNSDisplayDebugLine( l, 3 ); l.Remove( i + 1, -1 ); l.Append( nearest ); l.Simplify(); found = true; break; } } if( found ) { aWalkPath = aInitialPath; aWalkPath.SetShape( l ); } } aWalkPath.SetWorld( m_world ); aWalkPath.GetLine().Simplify(); WalkaroundStatus st = s_ccw == DONE || s_cw == DONE ? DONE : STUCK; if( aOptimize && st == DONE ) PNS_OPTIMIZER::Optimize( &aWalkPath, PNS_OPTIMIZER::MERGE_OBTUSE, m_world ); return st; }
bool DRC::doEdgeZoneDrc( ZONE_CONTAINER* aArea, int aCornerIndex ) { if( !aArea->IsOnCopperLayer() ) // Cannot have a Drc error if not on copper layer return true; // Get polygon, contour and vertex index. SHAPE_POLY_SET::VERTEX_INDEX index; // If the vertex does not exist, there is no conflict if( !aArea->Outline()->GetRelativeIndices( aCornerIndex, &index ) ) return true; // Retrieve the selected contour SHAPE_LINE_CHAIN contour; contour = aArea->Outline()->Polygon( index.m_polygon )[index.m_contour]; // Retrieve the segment that starts at aCornerIndex-th corner. SEG selectedSegment = contour.Segment( index.m_vertex ); VECTOR2I start = selectedSegment.A; VECTOR2I end = selectedSegment.B; // iterate through all areas for( int ia2 = 0; ia2 < m_pcb->GetAreaCount(); ia2++ ) { ZONE_CONTAINER* area_to_test = m_pcb->GetArea( ia2 ); int zone_clearance = std::max( area_to_test->GetZoneClearance(), aArea->GetZoneClearance() ); // test for same layer if( area_to_test->GetLayer() != aArea->GetLayer() ) continue; // Test for same net if( ( aArea->GetNetCode() == area_to_test->GetNetCode() ) && (aArea->GetNetCode() >= 0) ) continue; // test for same priority if( area_to_test->GetPriority() != aArea->GetPriority() ) continue; // test for same type if( area_to_test->GetIsKeepout() != aArea->GetIsKeepout() ) continue; // For keepout, there is no clearance, so use a minimal value for it // use 1, not 0 as value to avoid some issues in tests if( area_to_test->GetIsKeepout() ) zone_clearance = 1; // test for ending line inside area_to_test if( area_to_test->Outline()->Contains( end ) ) { // COPPERAREA_COPPERAREA error: corner inside copper area m_currentMarker = fillMarker( aArea, static_cast<wxPoint>( end ), COPPERAREA_INSIDE_COPPERAREA, m_currentMarker ); return false; } // now test spacing between areas int ax1 = start.x; int ay1 = start.y; int ax2 = end.x; int ay2 = end.y; // Iterate through all edges in the polygon. SHAPE_POLY_SET::SEGMENT_ITERATOR iterator; for( iterator = area_to_test->Outline()->IterateSegmentsWithHoles(); iterator; iterator++ ) { SEG segment = *iterator; int bx1 = segment.A.x; int by1 = segment.A.y; int bx2 = segment.B.x; int by2 = segment.B.y; int x, y; // variables containing the intersecting point coordinates int d = GetClearanceBetweenSegments( bx1, by1, bx2, by2, 0, ax1, ay1, ax2, ay2, 0, zone_clearance, &x, &y ); if( d < zone_clearance ) { // COPPERAREA_COPPERAREA error : edge intersect or too close m_currentMarker = fillMarker( aArea, wxPoint( x, y ), COPPERAREA_CLOSE_TO_COPPERAREA, m_currentMarker ); return false; } } } return true; }