예제 #1
0
/* Build the filled solid areas data from real outlines (stored in m_Poly)
 * The solid areas can be more than one on copper layers, and do not have holes
 * ( holes are linked by overlapping segments to the main outline)
 */
bool ZONE_FILLER::fillSingleZone( const ZONE_CONTAINER* aZone, SHAPE_POLY_SET& aRawPolys,
                                  SHAPE_POLY_SET& aFinalPolys ) const
{
    SHAPE_POLY_SET smoothedPoly;

    /* convert outlines + holes to outlines without holes (adding extra segments if necessary)
     * m_Poly data is expected normalized, i.e. NormalizeAreaOutlines was used after building
     * this zone
     */
    if ( !aZone->BuildSmoothedPoly( smoothedPoly ) )
        return false;

    if( aZone->IsOnCopperLayer() )
    {
        computeRawFilledAreas( aZone, smoothedPoly, aRawPolys, aFinalPolys );
    }
    else
    {
        aRawPolys = smoothedPoly;
        aFinalPolys = smoothedPoly;
        aFinalPolys.Inflate( -aZone->GetMinThickness() / 2, 16 );
        aFinalPolys.Fracture( SHAPE_POLY_SET::PM_FAST );
    }

    return true;
}
void GERBER_PLOTTER::FlashPadCustom( const wxPoint& aPadPos, const wxSize& aSize,
                                     SHAPE_POLY_SET* aPolygons,
                                     EDA_DRAW_MODE_T aTraceMode, void* aData )

{
    // A Pad custom is plotted as polygon.

    // A flashed circle @aPadPos is added (anchor pad)
    // However, because the anchor pad can be circle or rect, we use only
    // a circle not bigger than the rect.
    // the main purpose is to print a flashed DCode as pad anchor
    if( aTraceMode == FILLED )
        FlashPadCircle( aPadPos, std::min( aSize.x, aSize.y ), aTraceMode, aData );

    GBR_METADATA gbr_metadata;

    if( aData )
    {
        gbr_metadata = *static_cast<GBR_METADATA*>( aData );
        // If the pad is drawn on a copper layer,
        // set attribute to GBR_APERTURE_ATTRIB_CONDUCTOR
        if( gbr_metadata.IsCopper() )
            gbr_metadata.SetApertureAttrib( GBR_APERTURE_METADATA::GBR_APERTURE_ATTRIB_CONDUCTOR );

        wxString attrname( ".P" );
        gbr_metadata.m_NetlistMetadata.ClearAttribute( &attrname );   // not allowed on inner layers
    }

    SHAPE_POLY_SET polyshape = *aPolygons;

    if( aTraceMode != FILLED )
    {
        SetCurrentLineWidth( USE_DEFAULT_LINE_WIDTH, &gbr_metadata );
        polyshape.Inflate( -GetCurrentLineWidth()/2, 16 );
    }

    std::vector< wxPoint > cornerList;

    for( int cnt = 0; cnt < polyshape.OutlineCount(); ++cnt )
    {
        SHAPE_LINE_CHAIN& poly = polyshape.Outline( cnt );

        cornerList.clear();

        for( int ii = 0; ii < poly.PointCount(); ++ii )
            cornerList.push_back( wxPoint( poly.Point( ii ).x, poly.Point( ii ).y ) );

        // Close polygon
        cornerList.push_back( cornerList[0] );

        PlotPoly( cornerList,
                  aTraceMode == FILLED ? FILLED_SHAPE : NO_FILL,
                  aTraceMode == FILLED ? 0 : GetCurrentLineWidth(), &gbr_metadata );
    }
}
void GERBER_PLOTTER::FlashPadRoundRect( const wxPoint& aPadPos, const wxSize& aSize,
                                     int aCornerRadius, double aOrient,
                                     EDA_DRAW_MODE_T aTraceMode, void* aData )

{
    GBR_METADATA gbr_metadata;

    if( aData )
    {
        gbr_metadata = *static_cast<GBR_METADATA*>( aData );
        // If the pad is drawn on a copper layer,
        // set attribute to GBR_APERTURE_ATTRIB_CONDUCTOR
        if( gbr_metadata.IsCopper() )
            gbr_metadata.SetApertureAttrib( GBR_APERTURE_METADATA::GBR_APERTURE_ATTRIB_CONDUCTOR );

        wxString attrname( ".P" );
        gbr_metadata.m_NetlistMetadata.ClearAttribute( &attrname );   // not allowed on inner layers
    }

    if( aTraceMode != FILLED )
        SetCurrentLineWidth( USE_DEFAULT_LINE_WIDTH, &gbr_metadata );

    // Currently, a Pad RoundRect is plotted as polygon.
    // TODO: use Aperture macro and flash it
    SHAPE_POLY_SET outline;
    const int segmentToCircleCount = 64;
    TransformRoundRectToPolygon( outline, aPadPos, aSize, aOrient,
                                 aCornerRadius, segmentToCircleCount );

    if( aTraceMode != FILLED )
        outline.Inflate( -GetCurrentLineWidth()/2, 16 );

    std::vector< wxPoint > cornerList;
    // TransformRoundRectToPolygon creates only one convex polygon
    SHAPE_LINE_CHAIN& poly = outline.Outline( 0 );
    cornerList.reserve( poly.PointCount() + 1 );

    for( int ii = 0; ii < poly.PointCount(); ++ii )
        cornerList.push_back( wxPoint( poly.Point( ii ).x, poly.Point( ii ).y ) );

    // Close polygon
    cornerList.push_back( cornerList[0] );

    PlotPoly( cornerList, aTraceMode == FILLED ? FILLED_SHAPE : NO_FILL,
              aTraceMode == FILLED ? 0 : GetCurrentLineWidth(), &gbr_metadata );

    // Now, flash a pad anchor, if a netlist attribute is set
    // (remove me when a Aperture macro will be used)
    if( aData && aTraceMode == FILLED )
    {
        int diameter = std::min( aSize.x, aSize.y );
        FlashPadCircle( aPadPos, diameter, aTraceMode , aData );
    }
}
/**
 * Function TransformRoundRectToPolygon
 * convert a rectangle with rounded corners to a polygon
 * Convert arcs to multiple straight lines
 * @param aCornerBuffer = a buffer to store the polygon
 * @param aPosition = the coordinate of the center of the rectangle
 * @param aSize = the size of the rectangle
 * @param aRadius = radius of rounded corners
 * @param aRotation = rotation in 0.1 degrees of the rectangle
 * @param aCircleToSegmentsCount = the number of segments to approximate a circle
 */
void TransformRoundRectToPolygon( SHAPE_POLY_SET& aCornerBuffer,
                                  const wxPoint& aPosition, const wxSize& aSize,
                                  double aRotation, int aCornerRadius,
                                  int aCircleToSegmentsCount )
{
    wxPoint corners[4];
    GetRoundRectCornerCenters( corners, aCornerRadius, aPosition, aSize, aRotation );

    SHAPE_POLY_SET outline;
    outline.NewOutline();

    for( int ii = 0; ii < 4; ++ii )
        outline.Append( corners[ii].x, corners[ii].y );

    outline.Inflate( aCornerRadius, aCircleToSegmentsCount );

    // Add the outline:
    aCornerBuffer.Append( outline );
}
void ZONE_CONTAINER::AddClearanceAreasPolygonsToPolysList_NG( BOARD* aPcb )
{
    int segsPerCircle;
    double correctionFactor;
    int outline_half_thickness = m_ZoneMinThickness / 2;


    std::unique_ptr<SHAPE_FILE_IO> dumper( new SHAPE_FILE_IO(
            g_DumpZonesWhenFilling ? "zones_dump.txt" : "", SHAPE_FILE_IO::IOM_APPEND ) );

    // Set the number of segments in arc approximations
    if( m_ArcToSegmentsCount == ARC_APPROX_SEGMENTS_COUNT_HIGHT_DEF  )
        segsPerCircle = ARC_APPROX_SEGMENTS_COUNT_HIGHT_DEF;
    else
        segsPerCircle = ARC_APPROX_SEGMENTS_COUNT_LOW_DEF;

    /* calculates the coeff to compensate radius reduction of holes clearance
     * due to the segment approx.
     * For a circle the min radius is radius * cos( 2PI / s_CircleToSegmentsCount / 2)
     * s_Correction is 1 /cos( PI/s_CircleToSegmentsCount  )
     */
    correctionFactor = 1.0 / cos( M_PI / (double) segsPerCircle );

    CPOLYGONS_LIST tmp;

    if(g_DumpZonesWhenFilling)
        dumper->BeginGroup("clipper-zone");

    SHAPE_POLY_SET solidAreas = ConvertPolyListToPolySet( m_smoothedPoly->m_CornersList );

    solidAreas.Inflate( -outline_half_thickness, segsPerCircle );
    solidAreas.Simplify( POLY_CALC_MODE );

    SHAPE_POLY_SET holes;

    if(g_DumpZonesWhenFilling)
        dumper->Write( &solidAreas, "solid-areas" );

    tmp.RemoveAllContours();
    buildFeatureHoleList( aPcb, holes );

    if(g_DumpZonesWhenFilling)
        dumper->Write( &holes, "feature-holes" );

    holes.Simplify( POLY_CALC_MODE );

    if (g_DumpZonesWhenFilling)
        dumper->Write( &holes, "feature-holes-postsimplify" );

    solidAreas.BooleanSubtract( holes, POLY_CALC_MODE );

    if (g_DumpZonesWhenFilling)
        dumper->Write( &solidAreas, "solid-areas-minus-holes" );

    SHAPE_POLY_SET areas_fractured = solidAreas;
    areas_fractured.Fracture( POLY_CALC_MODE );

    if (g_DumpZonesWhenFilling)
        dumper->Write( &areas_fractured, "areas_fractured" );

    m_FilledPolysList = areas_fractured;

    // Remove insulated islands:
    if( GetNetCode() > 0 )
        TestForCopperIslandAndRemoveInsulatedIslands( aPcb );

    SHAPE_POLY_SET thermalHoles;

    // Test thermal stubs connections and add polygons to remove unconnected stubs.
    // (this is a refinement for thermal relief shapes)
    if( GetNetCode() > 0 )
        BuildUnconnectedThermalStubsPolygonList( thermalHoles, aPcb, this,
                                                 correctionFactor, s_thermalRot );

    // remove copper areas corresponding to not connected stubs
    if( !thermalHoles.IsEmpty() )
    {
        thermalHoles.Simplify( POLY_CALC_MODE );
        // Remove unconnected stubs
        solidAreas.BooleanSubtract( thermalHoles, POLY_CALC_MODE );

        if( g_DumpZonesWhenFilling )
            dumper->Write( &thermalHoles, "thermal-holes" );

        // put these areas in m_FilledPolysList
        SHAPE_POLY_SET th_fractured = solidAreas;
        th_fractured.Fracture( POLY_CALC_MODE );

        if( g_DumpZonesWhenFilling )
            dumper->Write ( &th_fractured, "th_fractured" );

        m_FilledPolysList = th_fractured;

        if( GetNetCode() > 0 )
            TestForCopperIslandAndRemoveInsulatedIslands( aPcb );
    }

    if(g_DumpZonesWhenFilling)
        dumper->EndGroup();
}
void D_PAD::TransformShapeWithClearanceToPolygon(
        SHAPE_POLY_SET& aCornerBuffer, int aClearanceValue, int aError, bool ignoreLineWidth ) const
{
    wxASSERT_MSG( !ignoreLineWidth, "IgnoreLineWidth has no meaning for pads." );

    double  angle = m_Orient;
    int     dx = (m_Size.x / 2) + aClearanceValue;
    int     dy = (m_Size.y / 2) + aClearanceValue;

    wxPoint padShapePos = ShapePos();               /* Note: for pad having a shape offset,
                                                     * the pad position is NOT the shape position */

    switch( GetShape() )
    {
    case PAD_SHAPE_CIRCLE:
    {
        TransformCircleToPolygon( aCornerBuffer, padShapePos, dx, aError );
    }
        break;

    case PAD_SHAPE_OVAL:
        // An oval pad has the same shape as a segment with rounded ends
        {
        int width;
        wxPoint shape_offset;
        if( dy > dx )   // Oval pad X/Y ratio for choosing translation axis
        {
            shape_offset.y = dy - dx;
            width = dx * 2;
        }
        else    //if( dy <= dx )
        {
            shape_offset.x = dy - dx;
            width = dy * 2;
        }

        RotatePoint( &shape_offset, angle );
        wxPoint start = padShapePos - shape_offset;
        wxPoint end = padShapePos + shape_offset;
        TransformOvalClearanceToPolygon( aCornerBuffer, start, end, width, aError );
        }
        break;

    case PAD_SHAPE_TRAPEZOID:
    case PAD_SHAPE_RECT:
    {
        wxPoint corners[4];
        BuildPadPolygon( corners, wxSize( 0, 0 ), angle );

        SHAPE_POLY_SET outline;
        outline.NewOutline();

        for( int ii = 0; ii < 4; ii++ )
        {
            corners[ii] += padShapePos;
            outline.Append( corners[ii].x, corners[ii].y );
        }

        int    numSegs = std::max( GetArcToSegmentCount( aClearanceValue, aError, 360.0 ), 6 );
        double correction = GetCircletoPolyCorrectionFactor( numSegs );

        int rounding_radius = KiROUND( aClearanceValue * correction );
        outline.Inflate( rounding_radius, numSegs );

        aCornerBuffer.Append( outline );
    }
        break;

    case PAD_SHAPE_CHAMFERED_RECT:
    case PAD_SHAPE_ROUNDRECT:
    {
        SHAPE_POLY_SET outline;
        int            radius = GetRoundRectCornerRadius() + aClearanceValue;
        int            numSegs = std::max( GetArcToSegmentCount( radius, aError, 360.0 ), 6 );
        double         correction = GetCircletoPolyCorrectionFactor( numSegs );
        int            clearance = KiROUND( aClearanceValue * correction );
        int            rounding_radius = GetRoundRectCornerRadius() + clearance;
        wxSize         shapesize( m_Size );

        shapesize.x += clearance * 2;
        shapesize.y += clearance * 2;
        bool doChamfer = GetShape() == PAD_SHAPE_CHAMFERED_RECT;

        TransformRoundChamferedRectToPolygon( outline, padShapePos, shapesize, angle,
                rounding_radius, doChamfer ? GetChamferRectRatio() : 0.0,
                doChamfer ? GetChamferPositions() : 0, aError );

        aCornerBuffer.Append( outline );
    }
        break;

    case PAD_SHAPE_CUSTOM:
    {
        int    numSegs = std::max( GetArcToSegmentCount( aClearanceValue, aError, 360.0 ), 6 );
        double correction = GetCircletoPolyCorrectionFactor( numSegs );
        int    clearance = KiROUND( aClearanceValue * correction );
        SHAPE_POLY_SET outline;     // Will contain the corners in board coordinates
        outline.Append( m_customShapeAsPolygon );
        CustomShapeAsPolygonToBoardPosition( &outline, GetPosition(), GetOrientation() );
        outline.Simplify( SHAPE_POLY_SET::PM_FAST );
        outline.Inflate( clearance, numSegs );
        outline.Fracture( SHAPE_POLY_SET::PM_FAST );
        aCornerBuffer.Append( outline );
    }
        break;
    }
}
예제 #7
0
/**
 * Function ComputeRawFilledAreas
 * Supports a min thickness area constraint.
 * Add non copper areas polygons (pads and tracks with clearance)
 * to the filled copper area found
 * in BuildFilledPolysListData after calculating filled areas in a zone
 * Non filled copper areas are pads and track and their clearance areas
 * The filled copper area must be computed just before.
 * BuildFilledPolysListData() call this function just after creating the
 *  filled copper area polygon (without clearance areas)
 * to do that this function:
 * 1 - Creates the main outline (zone outline) using a correction to shrink the resulting area
 *     with m_ZoneMinThickness/2 value.
 *     The result is areas with a margin of m_ZoneMinThickness/2
 *     When drawing outline with segments having a thickness of m_ZoneMinThickness, the
 *      outlines will match exactly the initial outlines
 * 3 - Add all non filled areas (pads, tracks) in group B with a clearance of m_Clearance +
 *     m_ZoneMinThickness/2
 *     in a buffer
 *   - If Thermal shapes are wanted, add non filled area, in order to create these thermal shapes
 * 4 - calculates the polygon A - B
 * 5 - put resulting list of polygons (filled areas) in m_FilledPolysList
 *     This zone contains pads with the same net.
 * 6 - Remove insulated copper islands
 * 7 - If Thermal shapes are wanted, remove unconnected stubs in thermal shapes:
 *     creates a buffer of polygons corresponding to stubs to remove
 *     sub them to the filled areas.
 *     Remove new insulated copper islands
 */
void ZONE_FILLER::computeRawFilledAreas( const ZONE_CONTAINER* aZone,
        const SHAPE_POLY_SET& aSmoothedOutline,
        SHAPE_POLY_SET& aRawPolys,
        SHAPE_POLY_SET& aFinalPolys ) const
{
    int segsPerCircle;
    double correctionFactor;
    int outline_half_thickness = aZone->GetMinThickness() / 2;

    std::unique_ptr<SHAPE_FILE_IO> dumper( new SHAPE_FILE_IO(
                    s_DumpZonesWhenFilling ? "zones_dump.txt" : "", SHAPE_FILE_IO::IOM_APPEND ) );

    // Set the number of segments in arc approximations
    if( aZone->GetArcSegmentCount() == ARC_APPROX_SEGMENTS_COUNT_HIGHT_DEF  )
        segsPerCircle = ARC_APPROX_SEGMENTS_COUNT_HIGHT_DEF;
    else
        segsPerCircle = ARC_APPROX_SEGMENTS_COUNT_LOW_DEF;

    /* calculates the coeff to compensate radius reduction of holes clearance
     * due to the segment approx.
     * For a circle the min radius is radius * cos( 2PI / s_CircleToSegmentsCount / 2)
     * s_Correction is 1 /cos( PI/s_CircleToSegmentsCount  )
     */
    correctionFactor = 1.0 / cos( M_PI / (double) segsPerCircle );

    if( s_DumpZonesWhenFilling )
        dumper->BeginGroup( "clipper-zone" );

    SHAPE_POLY_SET solidAreas = aSmoothedOutline;

    solidAreas.Inflate( -outline_half_thickness, segsPerCircle );
    solidAreas.Simplify( SHAPE_POLY_SET::PM_FAST );

    SHAPE_POLY_SET holes;

    if( s_DumpZonesWhenFilling )
        dumper->Write( &solidAreas, "solid-areas" );

    buildZoneFeatureHoleList( aZone, holes );

    if( s_DumpZonesWhenFilling )
        dumper->Write( &holes, "feature-holes" );

    holes.Simplify( SHAPE_POLY_SET::PM_FAST );

    if( s_DumpZonesWhenFilling )
        dumper->Write( &holes, "feature-holes-postsimplify" );

    // Generate the filled areas (currently, without thermal shapes, which will
    // be created later).
    // Use SHAPE_POLY_SET::PM_STRICTLY_SIMPLE to generate strictly simple polygons
    // needed by Gerber files and Fracture()
    solidAreas.BooleanSubtract( holes, SHAPE_POLY_SET::PM_STRICTLY_SIMPLE );

    if( s_DumpZonesWhenFilling )
        dumper->Write( &solidAreas, "solid-areas-minus-holes" );

    SHAPE_POLY_SET areas_fractured = solidAreas;
    areas_fractured.Fracture( SHAPE_POLY_SET::PM_FAST );

    if( s_DumpZonesWhenFilling )
        dumper->Write( &areas_fractured, "areas_fractured" );

    aFinalPolys = areas_fractured;

    SHAPE_POLY_SET thermalHoles;

    // Test thermal stubs connections and add polygons to remove unconnected stubs.
    // (this is a refinement for thermal relief shapes)
    if( aZone->GetNetCode() > 0 )
    {
        buildUnconnectedThermalStubsPolygonList( thermalHoles, aZone, aFinalPolys,
                correctionFactor, s_thermalRot );

    }

    // remove copper areas corresponding to not connected stubs
    if( !thermalHoles.IsEmpty() )
    {
        thermalHoles.Simplify( SHAPE_POLY_SET::PM_FAST );
        // Remove unconnected stubs. Use SHAPE_POLY_SET::PM_STRICTLY_SIMPLE to
        // generate strictly simple polygons
        // needed by Gerber files and Fracture()
        solidAreas.BooleanSubtract( thermalHoles, SHAPE_POLY_SET::PM_STRICTLY_SIMPLE );

        if( s_DumpZonesWhenFilling )
            dumper->Write( &thermalHoles, "thermal-holes" );

        // put these areas in m_FilledPolysList
        SHAPE_POLY_SET th_fractured = solidAreas;
        th_fractured.Fracture( SHAPE_POLY_SET::PM_FAST );

        if( s_DumpZonesWhenFilling )
            dumper->Write( &th_fractured, "th_fractured" );

        aFinalPolys = th_fractured;
    }

    aRawPolys = aFinalPolys;

    if( s_DumpZonesWhenFilling )
        dumper->EndGroup();
}
bool D_PAD::buildCustomPadPolygon( SHAPE_POLY_SET* aMergedPolygon, int aError )

{
    SHAPE_POLY_SET aux_polyset;

    for( unsigned cnt = 0; cnt < m_basicShapes.size(); ++cnt )
    {
        const PAD_CS_PRIMITIVE& bshape = m_basicShapes[cnt];

        switch( bshape.m_Shape )
        {
        case S_CURVE:
        {
            std::vector<wxPoint> ctrlPoints = { bshape.m_Start, bshape.m_Ctrl1, bshape.m_Ctrl2, bshape.m_End };
            BEZIER_POLY converter( ctrlPoints );
            std::vector< wxPoint> poly;
            converter.GetPoly( poly, bshape.m_Thickness );

            for( unsigned ii = 1; ii < poly.size(); ii++ )
            {
                TransformRoundedEndsSegmentToPolygon(
                        aux_polyset, poly[ii - 1], poly[ii], aError, bshape.m_Thickness );
            }
            break;
        }

        case S_SEGMENT:         // usual segment : line with rounded ends
        {
            TransformRoundedEndsSegmentToPolygon(
                    aux_polyset, bshape.m_Start, bshape.m_End, aError, bshape.m_Thickness );
            break;
        }

        case S_ARC:             // Arc with rounded ends
        {
            TransformArcToPolygon( aux_polyset, bshape.m_Start, bshape.m_End, bshape.m_ArcAngle,
                    aError, bshape.m_Thickness );
            break;
        }

        case S_CIRCLE:          //  ring or circle
        {
            if( bshape.m_Thickness )    // ring
                TransformRingToPolygon(
                        aux_polyset, bshape.m_Start, bshape.m_Radius, aError, bshape.m_Thickness );
            else                // Filled circle
                TransformCircleToPolygon( aux_polyset, bshape.m_Start, bshape.m_Radius, aError );
            break;
        }

        case S_POLYGON:         // polygon
            if( bshape.m_Poly.size() < 2 )
                break;      // Malformed polygon.

            {
            // Insert the polygon:
            const std::vector< wxPoint>& poly = bshape.m_Poly;
            aux_polyset.NewOutline();

            if( bshape.m_Thickness )
            {
                SHAPE_POLY_SET polyset;
                polyset.NewOutline();

                for( unsigned ii = 0; ii < poly.size(); ii++ )
                {
                    polyset.Append( poly[ii].x, poly[ii].y );
                }

                int numSegs = std::max(
                        GetArcToSegmentCount( bshape.m_Thickness / 2, aError, 360.0 ), 6 );
                polyset.Inflate( bshape.m_Thickness / 2, numSegs );

                aux_polyset.Append( polyset );
            }

            else
                for( unsigned ii = 0; ii < poly.size(); ii++ )
                    aux_polyset.Append( poly[ii].x, poly[ii].y );
            }
            break;

        default:
            break;
        }
    }

    aux_polyset.Simplify( SHAPE_POLY_SET::PM_FAST );

    // Merge all polygons with the initial pad anchor shape
    if( aux_polyset.OutlineCount() )
    {
        aMergedPolygon->BooleanAdd( aux_polyset, SHAPE_POLY_SET::PM_STRICTLY_SIMPLE );
        aMergedPolygon->Fracture( SHAPE_POLY_SET::PM_STRICTLY_SIMPLE );
    }

    return aMergedPolygon->OutlineCount() <= 1;
}
예제 #9
0
void PCB_PAINTER::draw( const D_PAD* aPad, int aLayer )
{
    PAD_SHAPE_T shape;
    double m, n;
    double orientation = aPad->GetOrientation();

    // Draw description layer
    if( IsNetnameLayer( aLayer ) )
    {
        VECTOR2D position( aPad->ShapePos() );

        // Is anything that we can display enabled?
        if( m_pcbSettings.m_netNamesOnPads || m_pcbSettings.m_padNumbers )
        {
            bool displayNetname = ( m_pcbSettings.m_netNamesOnPads && !aPad->GetNetname().empty() );
            VECTOR2D padsize = VECTOR2D( aPad->GetSize() );
            double maxSize = PCB_RENDER_SETTINGS::MAX_FONT_SIZE;
            double size = padsize.y;

            // Keep the size ratio for the font, but make it smaller
            if( padsize.x < padsize.y )
            {
                orientation += 900.0;
                size = padsize.x;
                std::swap( padsize.x, padsize.y );
            }
            else if( padsize.x == padsize.y )
            {
                // If the text is displayed on a symmetrical pad, do not rotate it
                orientation = 0.0;
            }

            // Font size limits
            if( size > maxSize )
                size = maxSize;

            m_gal->Save();
            m_gal->Translate( position );

            // do not display descriptions upside down
            NORMALIZE_ANGLE_90( orientation );
            m_gal->Rotate( DECIDEG2RAD( -orientation ) );

            // Default font settings
            m_gal->SetHorizontalJustify( GR_TEXT_HJUSTIFY_CENTER );
            m_gal->SetVerticalJustify( GR_TEXT_VJUSTIFY_CENTER );
            m_gal->SetFontBold( false );
            m_gal->SetFontItalic( false );
            m_gal->SetTextMirrored( false );
            m_gal->SetStrokeColor( m_pcbSettings.GetColor( NULL, aLayer ) );
            m_gal->SetIsStroke( true );
            m_gal->SetIsFill( false );

            // Set the text position to the pad shape position (the pad position is not the best place)
            VECTOR2D textpos( 0.0, 0.0 );

            // Divide the space, to display both pad numbers and netnames
            // and set the Y text position to display 2 lines
            if( displayNetname && m_pcbSettings.m_padNumbers )
            {
                size = size / 2.0;
                textpos.y = size / 2.0;
            }

            if( displayNetname )
            {
                // calculate the size of net name text:
                double tsize = 1.5 * padsize.x / aPad->GetShortNetname().Length();
                tsize = std::min( tsize, size );
                // Use a smaller text size to handle interline, pen size..
                tsize *= 0.7;
                VECTOR2D namesize( tsize, tsize );

                m_gal->SetGlyphSize( namesize );
                m_gal->SetLineWidth( namesize.x / 12.0 );
                m_gal->BitmapText( aPad->GetShortNetname(), textpos, 0.0 );
            }

            if( m_pcbSettings.m_padNumbers )
            {
                const wxString& padName = aPad->GetName();
                textpos.y = -textpos.y;
                double tsize = 1.5 * padsize.x / padName.Length();
                tsize = std::min( tsize, size );
                // Use a smaller text size to handle interline, pen size..
                tsize *= 0.7;
                tsize = std::min( tsize, size );
                VECTOR2D numsize( tsize, tsize );

                m_gal->SetGlyphSize( numsize );
                m_gal->SetLineWidth( numsize.x / 12.0 );
                m_gal->BitmapText( padName, textpos, 0.0 );
            }

            m_gal->Restore();
        }
        return;
    }

    // Pad drawing
    COLOR4D color;

    // Pad holes color is type specific
    if( aLayer == LAYER_PADS_PLATEDHOLES || aLayer == LAYER_NON_PLATEDHOLES )
    {
        // Hole color is the background color for plated holes, but a specific color
        // for not plated holes (LAYER_NON_PLATEDHOLES color layer )
        if( aPad->GetAttribute() == PAD_ATTRIB_HOLE_NOT_PLATED )
            color = m_pcbSettings.GetColor( nullptr, LAYER_NON_PLATEDHOLES );
        // Don't let pads that *should* be NPTH get lost
        else if( aPad->PadShouldBeNPTH() )
            color = m_pcbSettings.GetColor( aPad, aLayer );
        else
            color = m_pcbSettings.GetBackgroundColor();
    }
    else
    {
        color = m_pcbSettings.GetColor( aPad, aLayer );
    }

    VECTOR2D size;

    if( m_pcbSettings.m_sketchMode[LAYER_PADS_TH] )
    {
        // Outline mode
        m_gal->SetIsFill( false );
        m_gal->SetIsStroke( true );
        m_gal->SetLineWidth( m_pcbSettings.m_outlineWidth );
        m_gal->SetStrokeColor( color );
    }
    else
    {
        // Filled mode
        m_gal->SetIsFill( true );
        m_gal->SetIsStroke( false );
        m_gal->SetFillColor( color );
    }

    m_gal->Save();
    m_gal->Translate( VECTOR2D( aPad->GetPosition() ) );
    m_gal->Rotate( -aPad->GetOrientationRadians() );

    int custom_margin = 0;     // a clearance/margin for custom shape, for solder paste/mask

    // Choose drawing settings depending on if we are drawing a pad itself or a hole
    if( aLayer == LAYER_PADS_PLATEDHOLES || aLayer == LAYER_NON_PLATEDHOLES )
    {
        // Drawing hole: has same shape as PAD_CIRCLE or PAD_OVAL
        size  = getDrillSize( aPad ) / 2.0;
        shape = getDrillShape( aPad ) == PAD_DRILL_SHAPE_OBLONG ? PAD_SHAPE_OVAL : PAD_SHAPE_CIRCLE;
    }
    else if( aLayer == F_Mask || aLayer == B_Mask )
    {
        // Drawing soldermask
        int soldermaskMargin = aPad->GetSolderMaskMargin();
        custom_margin = soldermaskMargin;

        m_gal->Translate( VECTOR2D( aPad->GetOffset() ) );
        size  = VECTOR2D( aPad->GetSize().x / 2.0 + soldermaskMargin,
                          aPad->GetSize().y / 2.0 + soldermaskMargin );
        shape = aPad->GetShape();
    }
    else if( aLayer == F_Paste || aLayer == B_Paste )
    {
        // Drawing solderpaste
        wxSize solderpasteMargin = aPad->GetSolderPasteMargin();
        // try to find a clearance which can be used for custom shapes
        custom_margin = solderpasteMargin.x;

        m_gal->Translate( VECTOR2D( aPad->GetOffset() ) );
        size  = VECTOR2D( aPad->GetSize().x / 2.0 + solderpasteMargin.x,
                          aPad->GetSize().y / 2.0 + solderpasteMargin.y );
        shape = aPad->GetShape();
    }
    else
    {
        // Drawing every kind of pad
        m_gal->Translate( VECTOR2D( aPad->GetOffset() ) );
        size  = VECTOR2D( aPad->GetSize() ) / 2.0;
        shape = aPad->GetShape();
    }

    switch( shape )
    {
    case PAD_SHAPE_OVAL:
        if( size.y >= size.x )
        {
            m = ( size.y - size.x );
            n = size.x;

            m_gal->DrawArc( VECTOR2D( 0, -m ), n, -M_PI, 0 );
            m_gal->DrawArc( VECTOR2D( 0, m ),  n, M_PI, 0 );

            if( m_pcbSettings.m_sketchMode[LAYER_PADS_TH] )
            {
                m_gal->DrawLine( VECTOR2D( -n, -m ), VECTOR2D( -n, m ) );
                m_gal->DrawLine( VECTOR2D( n, -m ),  VECTOR2D( n, m ) );
            }
            else
            {
                m_gal->DrawRectangle( VECTOR2D( -n, -m ), VECTOR2D( n, m ) );
            }
        }
        else
        {
            m = ( size.x - size.y );
            n = size.y;
            m_gal->DrawArc( VECTOR2D( -m, 0 ), n, M_PI / 2, 3 * M_PI / 2 );
            m_gal->DrawArc( VECTOR2D( m, 0 ),  n, M_PI / 2, -M_PI / 2 );

            if( m_pcbSettings.m_sketchMode[LAYER_PADS_TH] )
            {
                m_gal->DrawLine( VECTOR2D( -m, -n ), VECTOR2D( m, -n ) );
                m_gal->DrawLine( VECTOR2D( -m, n ),  VECTOR2D( m, n ) );
            }
            else
            {
                m_gal->DrawRectangle( VECTOR2D( -m, -n ), VECTOR2D( m, n ) );
            }
        }
        break;

    case PAD_SHAPE_RECT:
        m_gal->DrawRectangle( VECTOR2D( -size.x, -size.y ), VECTOR2D( size.x, size.y ) );
        break;

    case PAD_SHAPE_ROUNDRECT:
    {
        SHAPE_POLY_SET polySet;
        wxSize prsize( size.x * 2, size.y * 2 );
        const int segmentToCircleCount = 64;
        const int corner_radius = aPad->GetRoundRectCornerRadius( prsize );
        TransformRoundRectToPolygon( polySet, wxPoint( 0, 0 ), prsize,
                0.0, corner_radius, segmentToCircleCount );
        m_gal->DrawPolygon( polySet );
        break;
    }

    case PAD_SHAPE_CUSTOM:
    {   // Draw the complex custom shape

        // Use solder[Paste/Mask]size or pad size to build pad shape
        // however, solder[Paste/Mask] size has no actual meaning for a
        // custom shape, because it is a set of basic shapes
        // We use the custom_margin (good for solder mask, but approximative
        // for solder paste).
        if( custom_margin )
        {
            SHAPE_POLY_SET outline;
            outline.Append( aPad->GetCustomShapeAsPolygon() );
            const int segmentToCircleCount = ARC_APPROX_SEGMENTS_COUNT_HIGH_DEF;
            outline.Inflate( custom_margin, segmentToCircleCount );
            m_gal->DrawPolygon( outline );
        }
        else
        {
            // Draw the polygon: only one polygon is expected
            // However we provide a multi polygon shape drawing
            // ( for the future or  to show even an incorrect shape
            m_gal->DrawPolygon( aPad->GetCustomShapeAsPolygon() );
        }
    }
        break;

    case PAD_SHAPE_TRAPEZOID:
    {
        std::deque<VECTOR2D> pointList;
        wxPoint corners[4];

        VECTOR2D padSize = VECTOR2D( aPad->GetSize().x, aPad->GetSize().y ) / 2;
        VECTOR2D deltaPadSize = size - padSize; // = solder[Paste/Mask]Margin or 0

        aPad->BuildPadPolygon( corners, wxSize( deltaPadSize.x, deltaPadSize.y ), 0.0 );
        SHAPE_POLY_SET polySet;
        polySet.NewOutline();
        polySet.Append( VECTOR2I( corners[0] ) );
        polySet.Append( VECTOR2I( corners[1] ) );
        polySet.Append( VECTOR2I( corners[2] ) );
        polySet.Append( VECTOR2I( corners[3] ) );

        m_gal->DrawPolygon( polySet );
    }
    break;

    case PAD_SHAPE_CIRCLE:
        m_gal->DrawCircle( VECTOR2D( 0.0, 0.0 ), size.x );
        break;
    }

    m_gal->Restore();

    // Clearance lines
    // It has to be called after GAL::Restore() as TransformShapeWithClearanceToPolygon()
    // returns already transformed coordinates
    constexpr int clearanceFlags = /*PCB_RENDER_SETTINGS::CL_EXISTING |*/ PCB_RENDER_SETTINGS::CL_PADS;

    if( ( m_pcbSettings.m_clearance & clearanceFlags ) == clearanceFlags
            && ( aLayer == LAYER_PAD_FR
                || aLayer == LAYER_PAD_BK
                || aLayer == LAYER_PADS_TH ) )
    {
        SHAPE_POLY_SET polySet;
        constexpr int SEGCOUNT = 64;
        aPad->TransformShapeWithClearanceToPolygon( polySet, aPad->GetClearance(), SEGCOUNT, 1.0 );
        m_gal->SetLineWidth( m_pcbSettings.m_outlineWidth );
        m_gal->SetIsStroke( true );
        m_gal->SetIsFill( false );
        m_gal->SetStrokeColor( color );
        m_gal->DrawPolygon( polySet );
    }
}
/* Function TransformShapeWithClearanceToPolygon
 * Convert the pad shape to a closed polygon
 * Used in filling zones calculations and 3D view generation
 * Circles and arcs are approximated by segments
 * aCornerBuffer = a SHAPE_POLY_SET to store the polygon corners
 * aClearanceValue = the clearance around the pad
 * aCircleToSegmentsCount = the number of segments to approximate a circle
 * aCorrectionFactor = the correction to apply to circles radius to keep
 * clearance when the circle is approximated by segment bigger or equal
 * to the real clearance value (usually near from 1.0)
 */
void D_PAD:: TransformShapeWithClearanceToPolygon( SHAPE_POLY_SET& aCornerBuffer,
                                                   int             aClearanceValue,
                                                   int             aCircleToSegmentsCount,
                                                   double          aCorrectionFactor ) const
{
    double  angle = m_Orient;
    int     dx = (m_Size.x / 2) + aClearanceValue;
    int     dy = (m_Size.y / 2) + aClearanceValue;

    wxPoint PadShapePos = ShapePos();               /* Note: for pad having a shape offset,
                                                     * the pad position is NOT the shape position */

    switch( GetShape() )
    {
    case PAD_SHAPE_CIRCLE:
        dx = KiROUND( dx * aCorrectionFactor );
        TransformCircleToPolygon( aCornerBuffer, PadShapePos, dx,
                                  aCircleToSegmentsCount );
        break;

    case PAD_SHAPE_OVAL:
        // An oval pad has the same shape as a segment with rounded ends
        {
        int width;
        wxPoint shape_offset;
        if( dy > dx )   // Oval pad X/Y ratio for choosing translation axis
        {
            dy = KiROUND( dy * aCorrectionFactor );
            shape_offset.y = dy - dx;
            width = dx * 2;
        }
        else    //if( dy <= dx )
        {
            dx = KiROUND( dx * aCorrectionFactor );
            shape_offset.x = dy - dx;
            width = dy * 2;
        }

        RotatePoint( &shape_offset, angle );
        wxPoint start = PadShapePos - shape_offset;
        wxPoint end = PadShapePos + shape_offset;
        TransformRoundedEndsSegmentToPolygon( aCornerBuffer, start, end,
                                              aCircleToSegmentsCount, width );
        }
        break;

    case PAD_SHAPE_TRAPEZOID:
    case PAD_SHAPE_RECT:
    {
        wxPoint corners[4];
        BuildPadPolygon( corners, wxSize( 0, 0 ), angle );

        SHAPE_POLY_SET outline;

        outline.NewOutline();

        for( int ii = 0; ii < 4; ii++ )
        {
            corners[ii] += PadShapePos;
            outline.Append( corners[ii].x, corners[ii].y );
        }

        double rounding_radius = aClearanceValue * aCorrectionFactor;

        outline.Inflate( (int) rounding_radius, aCircleToSegmentsCount );

        aCornerBuffer.Append( outline );
    }
        break;
    }
}
예제 #11
0
/* Plot a solder mask layer.
 * Solder mask layers have a minimum thickness value and cannot be drawn like standard layers,
 * unless the minimum thickness is 0.
 * Currently the algo is:
 * 1 - build all pad shapes as polygons with a size inflated by
 *      mask clearance + (min width solder mask /2)
 * 2 - Merge shapes
 * 3 - deflate result by (min width solder mask /2)
 * 4 - oring result by all pad shapes as polygons with a size inflated by
 *      mask clearance only (because deflate sometimes creates shape artifacts)
 * 5 - draw result as polygons
 *
 * TODO:
 * make this calculation only for shapes with clearance near than (min width solder mask)
 * (using DRC algo)
 * plot all other shapes by flashing the basing shape
 * (shapes will be better, and calculations faster)
 */
void PlotSolderMaskLayer( BOARD *aBoard, PLOTTER* aPlotter,
                          LSET aLayerMask, const PCB_PLOT_PARAMS& aPlotOpt,
                          int aMinThickness )
{
    LAYER_ID    layer = aLayerMask[B_Mask] ? B_Mask : F_Mask;
    int         inflate = aMinThickness/2;

    BRDITEMS_PLOTTER itemplotter( aPlotter, aBoard, aPlotOpt );
    itemplotter.SetLayerSet( aLayerMask );

    // Plot edge layer and graphic items
    // They do not have a solder Mask margin, because they are only graphic items
    // on this layer (like logos), not actually areas around pads.
    itemplotter.PlotBoardGraphicItems();

    for( MODULE* module = aBoard->m_Modules;  module;  module = module->Next() )
    {
        for( BOARD_ITEM* item = module->GraphicalItems(); item; item = item->Next() )
        {
            if( layer != item->GetLayer() )
                continue;

            switch( item->Type() )
            {
            case PCB_MODULE_EDGE_T:
                itemplotter.Plot_1_EdgeModule( (EDGE_MODULE*) item );
                break;

            default:
                break;
            }
        }
    }

    // Build polygons for each pad shape.
    // the size of the shape on solder mask should be:
    // size of pad + clearance around the pad.
    // clearance = solder mask clearance + extra margin
    // extra margin is half the min width for solder mask
    // This extra margin is used to merge too close shapes
    // (distance < aMinThickness), and will be removed when creating
    // the actual shapes
    SHAPE_POLY_SET areas;           // Contains shapes to plot
    SHAPE_POLY_SET initialPolys;    // Contains exact shapes to plot

    /* calculates the coeff to compensate radius reduction of holes clearance
     * due to the segment approx ( 1 /cos( PI/circleToSegmentsCount )
     */
    int circleToSegmentsCount = 32;
    double correction = 1.0 / cos( M_PI / circleToSegmentsCount );

    // Plot pads
    for( MODULE* module = aBoard->m_Modules; module; module = module->Next() )
    {
        // add shapes with exact size
        module->TransformPadsShapesWithClearanceToPolygon( layer,
                initialPolys, 0,
                circleToSegmentsCount, correction );
        // add shapes inflated by aMinThickness/2
        module->TransformPadsShapesWithClearanceToPolygon( layer,
                areas, inflate,
                circleToSegmentsCount, correction );
    }

    // Plot vias on solder masks, if aPlotOpt.GetPlotViaOnMaskLayer() is true,
    if( aPlotOpt.GetPlotViaOnMaskLayer() )
    {
        // The current layer is a solder mask,
        // use the global mask clearance for vias
        int via_clearance = aBoard->GetDesignSettings().m_SolderMaskMargin;
        int via_margin = via_clearance + inflate;

        for( TRACK* track = aBoard->m_Track; track; track = track->Next() )
        {
            const VIA* via = dyn_cast<const VIA*>( track );

            if( !via )
                continue;

            // vias are plotted only if they are on the corresponding
            // external copper layer
            LSET via_set = via->GetLayerSet();

            if( via_set[B_Cu] )
                via_set.set( B_Mask );

            if( via_set[F_Cu] )
                via_set.set( F_Mask );

            if( !( via_set & aLayerMask ).any() )
                continue;

            via->TransformShapeWithClearanceToPolygon( areas, via_margin,
                    circleToSegmentsCount,
                    correction );
            via->TransformShapeWithClearanceToPolygon( initialPolys, via_clearance,
                    circleToSegmentsCount,
                    correction );
        }
    }

    // Add filled zone areas.
#if 0   // Set to 1 if a solder mask margin must be applied to zones on solder mask
    int zone_margin = aBoard->GetDesignSettings().m_SolderMaskMargin;
#else
    int zone_margin = 0;
#endif

    for( int ii = 0; ii < aBoard->GetAreaCount(); ii++ )
    {
        ZONE_CONTAINER* zone = aBoard->GetArea( ii );

        if( zone->GetLayer() != layer )
            continue;

        zone->TransformOutlinesShapeWithClearanceToPolygon( areas,
                inflate+zone_margin, false );
        zone->TransformOutlinesShapeWithClearanceToPolygon( initialPolys,
                zone_margin, false );
    }

    // To avoid a lot of code, use a ZONE_CONTAINER
    // to handle and plot polygons, because our polygons look exactly like
    // filled areas in zones
    // Note, also this code is not optimized: it creates a lot of copy/duplicate data
    // However it is not complex, and fast enough for plot purposes (copy/convert data
    // is only a very small calculation time for these calculations)
    ZONE_CONTAINER zone( aBoard );
    zone.SetArcSegmentCount( 32 );
    zone.SetMinThickness( 0 );      // trace polygons only
    zone.SetLayer ( layer );

    areas.BooleanAdd( initialPolys );
    areas.Inflate( -inflate, circleToSegmentsCount );

    // Combine the current areas to initial areas. This is mandatory because
    // inflate/deflate transform is not perfect, and we want the initial areas perfectly kept
    areas.BooleanAdd( initialPolys );
    areas.Fracture();

    zone.AddFilledPolysList( areas );

    itemplotter.PlotFilledAreas( &zone );
}
void TransformRoundChamferedRectToPolygon( SHAPE_POLY_SET& aCornerBuffer,
                                  const wxPoint& aPosition, const wxSize& aSize,
                                  double aRotation, int aCornerRadius,
                                  double aChamferRatio, int aChamferCorners,
                                  int aCircleToSegmentsCount )
{
    // Build the basic shape in orientation 0.0, position 0,0 for chamfered corners
    // or in actual position/orientation for round rect only
    wxPoint corners[4];
    GetRoundRectCornerCenters( corners, aCornerRadius,
                               aChamferCorners ? wxPoint( 0, 0 ) : aPosition,
                               aSize, aChamferCorners ? 0.0 : aRotation );

    SHAPE_POLY_SET outline;
    outline.NewOutline();

    for( int ii = 0; ii < 4; ++ii )
        outline.Append( corners[ii].x, corners[ii].y );

    outline.Inflate( aCornerRadius, aCircleToSegmentsCount );

    if( aChamferCorners == RECT_NO_CHAMFER )      // no chamfer
    {
        // Add the outline:
        aCornerBuffer.Append( outline );
        return;
    }

    // Now we have the round rect outline, in position 0,0 orientation 0.0.
    // Chamfer the corner(s).
    int chamfer_value = aChamferRatio * std::min( aSize.x, aSize.y );

    SHAPE_POLY_SET chamfered_corner;    // corner shape for the current corner to chamfer

    int corner_id[4] =
    {
        RECT_CHAMFER_TOP_LEFT, RECT_CHAMFER_TOP_RIGHT,
        RECT_CHAMFER_BOTTOM_LEFT, RECT_CHAMFER_BOTTOM_RIGHT
    };
    // Depending on the corner position, signX[] and signY[] give the sign of chamfer
    // coordinates relative to the corner position
    // The first corner is the top left corner, then top right, bottom left and bottom right
    int signX[4] = {1, -1, 1,-1 };
    int signY[4] = {1, 1, -1,-1 };

    for( int ii = 0; ii < 4; ii++ )
    {
        if( (corner_id[ii] & aChamferCorners) == 0 )
            continue;

        VECTOR2I corner_pos( -signX[ii]*aSize.x/2, -signY[ii]*aSize.y/2 );

        if( aCornerRadius )
        {
            // We recreate a rectangular area covering the full rounded corner (max size = aSize/2)
            // to rebuild the corner before chamfering, to be sure the rounded corner shape does not
            // overlap the chamfered corner shape:
            chamfered_corner.RemoveAllContours();
            chamfered_corner.NewOutline();
            chamfered_corner.Append( 0, 0 );
            chamfered_corner.Append( 0, signY[ii]*aSize.y/2 );
            chamfered_corner.Append( signX[ii]*aSize.x/2, signY[ii]*aSize.y/2 );
            chamfered_corner.Append( signX[ii]*aSize.x/2, 0 );
            chamfered_corner.Move( corner_pos );
            outline.BooleanAdd( chamfered_corner, SHAPE_POLY_SET::PM_STRICTLY_SIMPLE );
        }

        // Now chamfer this corner
        chamfered_corner.RemoveAllContours();
        chamfered_corner.NewOutline();
        chamfered_corner.Append( 0, 0 );
        chamfered_corner.Append( 0, signY[ii]*chamfer_value );
        chamfered_corner.Append( signX[ii]*chamfer_value, 0 );
        chamfered_corner.Move( corner_pos );
        outline.BooleanSubtract( chamfered_corner, SHAPE_POLY_SET::PM_STRICTLY_SIMPLE );
    }

    // Rotate and move the outline:
    if( aRotation != 0.0 )
        outline.Rotate( DECIDEG2RAD( -aRotation ), VECTOR2I( 0, 0 ) );

    outline.Move( VECTOR2I( aPosition ) );

    // Add the outline:
    aCornerBuffer.Append( outline );
}