void EventPath::calculatePath() { ASSERT(m_node); ASSERT(m_nodeEventContexts.isEmpty()); m_node->updateDistribution(); // For performance and memory usage reasons we want to store the // path using as few bytes as possible and with as few allocations // as possible which is why we gather the data on the stack before // storing it in a perfectly sized m_nodeEventContexts Vector. WillBeHeapVector<RawPtrWillBeMember<Node>, 64> nodesInPath; Node* current = m_node; nodesInPath.append(current); while (current) { if (m_event && current->keepEventInNode(m_event)) break; WillBeHeapVector<RawPtrWillBeMember<InsertionPoint>, 8> insertionPoints; collectDestinationInsertionPoints(*current, insertionPoints); if (!insertionPoints.isEmpty()) { for (const auto& insertionPoint : insertionPoints) { if (insertionPoint->isShadowInsertionPoint()) { ShadowRoot* containingShadowRoot = insertionPoint->containingShadowRoot(); ASSERT(containingShadowRoot); if (!containingShadowRoot->isOldest()) nodesInPath.append(containingShadowRoot->olderShadowRoot()); } nodesInPath.append(insertionPoint); } current = insertionPoints.last(); continue; } if (current->isShadowRoot()) { if (m_event && shouldStopAtShadowRoot(*m_event, *toShadowRoot(current), *m_node)) break; current = current->shadowHost(); #if !ENABLE(OILPAN) // TODO(kochi): crbug.com/507413 This check is necessary when some asynchronous event // is queued while its shadow host is removed and the shadow root gets the event // immediately after it. When Oilpan is enabled, this situation does not happen. // Except this case, shadow root's host is assumed to be non-null. if (current) nodesInPath.append(current); #else nodesInPath.append(current); #endif } else { current = current->parentNode(); if (current) nodesInPath.append(current); } } m_nodeEventContexts.reserveCapacity(nodesInPath.size()); for (Node* nodeInPath : nodesInPath) { m_nodeEventContexts.append(NodeEventContext(nodeInPath, eventTargetRespectingTargetRules(*nodeInPath))); } }
void ElementShadow::distribute() { host()->setNeedsStyleRecalc(); Vector<HTMLShadowElement*, 32> shadowInsertionPoints; DistributionPool pool(*host()); for (ShadowRoot* root = youngestShadowRoot(); root; root = root->olderShadowRoot()) { HTMLShadowElement* shadowInsertionPoint = 0; const Vector<RefPtr<InsertionPoint> >& insertionPoints = root->descendantInsertionPoints(); for (size_t i = 0; i < insertionPoints.size(); ++i) { InsertionPoint* point = insertionPoints[i].get(); if (!point->isActive()) continue; if (isHTMLShadowElement(point)) { if (!shadowInsertionPoint) shadowInsertionPoint = toHTMLShadowElement(point); } else { pool.distributeTo(point, this); if (ElementShadow* shadow = shadowWhereNodeCanBeDistributed(*point)) shadow->setNeedsDistributionRecalc(); } } if (shadowInsertionPoint) { shadowInsertionPoints.append(shadowInsertionPoint); if (shadowInsertionPoint->hasChildNodes()) pool.populateChildren(*shadowInsertionPoint); } else { pool.clear(); } } for (size_t i = shadowInsertionPoints.size(); i > 0; --i) { HTMLShadowElement* shadowInsertionPoint = shadowInsertionPoints[i - 1]; ShadowRoot* root = shadowInsertionPoint->containingShadowRoot(); ASSERT(root); if (root->isOldest()) { pool.distributeTo(shadowInsertionPoint, this); } else if (root->olderShadowRoot()->type() == root->type()) { // Only allow reprojecting older shadow roots between the same type to // disallow reprojecting UA elements into author shadows. DistributionPool olderShadowRootPool(*root->olderShadowRoot()); olderShadowRootPool.distributeTo(shadowInsertionPoint, this); root->olderShadowRoot()->setShadowInsertionPointOfYoungerShadowRoot(shadowInsertionPoint); } if (ElementShadow* shadow = shadowWhereNodeCanBeDistributed(*shadowInsertionPoint)) shadow->setNeedsDistributionRecalc(); } }
void ElementShadowV0::distribute() { HeapVector<Member<HTMLShadowElement>, 32> shadowInsertionPoints; DistributionPool pool(m_elementShadow->host()); for (ShadowRoot* root = &youngestShadowRoot(); root; root = root->olderShadowRoot()) { HTMLShadowElement* shadowInsertionPoint = 0; for (const auto& point : root->descendantInsertionPoints()) { if (!point->isActive()) continue; if (isHTMLShadowElement(*point)) { DCHECK(!shadowInsertionPoint); shadowInsertionPoint = toHTMLShadowElement(point); shadowInsertionPoints.append(shadowInsertionPoint); } else { pool.distributeTo(point, this); if (ElementShadow* shadow = shadowWhereNodeCanBeDistributedForV0(*point)) shadow->setNeedsDistributionRecalc(); } } } for (size_t i = shadowInsertionPoints.size(); i > 0; --i) { HTMLShadowElement* shadowInsertionPoint = shadowInsertionPoints[i - 1]; ShadowRoot* root = shadowInsertionPoint->containingShadowRoot(); DCHECK(root); if (root->isOldest()) { pool.distributeTo(shadowInsertionPoint, this); } else if (root->olderShadowRoot()->type() == root->type()) { // Only allow reprojecting older shadow roots between the same type to // disallow reprojecting UA elements into author shadows. DistributionPool olderShadowRootPool(*root->olderShadowRoot()); olderShadowRootPool.distributeTo(shadowInsertionPoint, this); root->olderShadowRoot()->setShadowInsertionPointOfYoungerShadowRoot( shadowInsertionPoint); } if (ElementShadow* shadow = shadowWhereNodeCanBeDistributedForV0(*shadowInsertionPoint)) shadow->setNeedsDistributionRecalc(); } InspectorInstrumentation::didPerformElementShadowDistribution( &m_elementShadow->host()); }
void ElementShadow::distributeV0() { host()->setNeedsStyleRecalc(SubtreeStyleChange, StyleChangeReasonForTracing::create(StyleChangeReason::Shadow)); WillBeHeapVector<RawPtrWillBeMember<HTMLShadowElement>, 32> shadowInsertionPoints; DistributionPool pool(*host()); for (ShadowRoot* root = &youngestShadowRoot(); root; root = root->olderShadowRoot()) { HTMLShadowElement* shadowInsertionPoint = 0; const WillBeHeapVector<RefPtrWillBeMember<InsertionPoint>>& insertionPoints = root->descendantInsertionPoints(); for (size_t i = 0; i < insertionPoints.size(); ++i) { InsertionPoint* point = insertionPoints[i].get(); if (!point->isActive()) continue; if (isHTMLShadowElement(*point)) { ASSERT(!shadowInsertionPoint); shadowInsertionPoint = toHTMLShadowElement(point); shadowInsertionPoints.append(shadowInsertionPoint); } else { pool.distributeTo(point, this); if (ElementShadow* shadow = shadowWhereNodeCanBeDistributed(*point)) shadow->setNeedsDistributionRecalc(); } } } for (size_t i = shadowInsertionPoints.size(); i > 0; --i) { HTMLShadowElement* shadowInsertionPoint = shadowInsertionPoints[i - 1]; ShadowRoot* root = shadowInsertionPoint->containingShadowRoot(); ASSERT(root); if (root->isOldest()) { pool.distributeTo(shadowInsertionPoint, this); } else if (root->olderShadowRoot()->type() == root->type()) { // Only allow reprojecting older shadow roots between the same type to // disallow reprojecting UA elements into author shadows. DistributionPool olderShadowRootPool(*root->olderShadowRoot()); olderShadowRootPool.distributeTo(shadowInsertionPoint, this); root->olderShadowRoot()->setShadowInsertionPointOfYoungerShadowRoot(shadowInsertionPoint); } if (ElementShadow* shadow = shadowWhereNodeCanBeDistributed(*shadowInsertionPoint)) shadow->setNeedsDistributionRecalc(); } InspectorInstrumentation::didPerformElementShadowDistribution(host()); }
void EventPath::calculatePath() { ASSERT(m_node); ASSERT(m_nodeEventContexts.isEmpty()); m_node->document().updateDistributionForNodeIfNeeded(const_cast<Node*>(m_node.get())); Node* current = m_node; addNodeEventContext(*current); if (!m_node->inDocument()) return; while (current) { if (m_event && current->keepEventInNode(m_event)) break; WillBeHeapVector<RawPtrWillBeMember<InsertionPoint>, 8> insertionPoints; collectDestinationInsertionPoints(*current, insertionPoints); if (!insertionPoints.isEmpty()) { for (const auto& insertionPoint : insertionPoints) { if (insertionPoint->isShadowInsertionPoint()) { ShadowRoot* containingShadowRoot = insertionPoint->containingShadowRoot(); ASSERT(containingShadowRoot); if (!containingShadowRoot->isOldest()) addNodeEventContext(*containingShadowRoot->olderShadowRoot()); } addNodeEventContext(*insertionPoint); } current = insertionPoints.last(); continue; } if (current->isShadowRoot()) { if (m_event && shouldStopAtShadowRoot(*m_event, *toShadowRoot(current), *m_node)) break; current = current->shadowHost(); addNodeEventContext(*current); } else { current = current->parentNode(); if (current) addNodeEventContext(*current); } } }
void EventPath::calculatePath() { ASSERT(m_node); ASSERT(m_nodeEventContexts.isEmpty()); m_node->document().updateDistributionForNodeIfNeeded(const_cast<Node*>(m_node)); Node* current = m_node; addNodeEventContext(current); if (!m_node->inDocument()) return; while (current) { if (current->isShadowRoot() && m_event && determineDispatchBehavior(m_event, toShadowRoot(current), m_node) == StayInsideShadowDOM) break; Vector<InsertionPoint*, 8> insertionPoints; collectDestinationInsertionPoints(*current, insertionPoints); if (!insertionPoints.isEmpty()) { for (size_t i = 0; i < insertionPoints.size(); ++i) { InsertionPoint* insertionPoint = insertionPoints[i]; if (insertionPoint->isShadowInsertionPoint()) { ShadowRoot* containingShadowRoot = insertionPoint->containingShadowRoot(); ASSERT(containingShadowRoot); if (!containingShadowRoot->isOldest()) addNodeEventContext(containingShadowRoot->olderShadowRoot()); } addNodeEventContext(insertionPoint); } current = insertionPoints.last(); continue; } if (current->isShadowRoot()) { current = current->shadowHost(); addNodeEventContext(current); } else { current = current->parentNode(); if (current) addNodeEventContext(current); } } }