int main() { // Time measurement. TimePeriod cpu_time; cpu_time.tick(); // Create coarse mesh, set Dirichlet BC, enumerate basis functions. Space* space = new Space(A, B, NELEM, DIR_BC_LEFT, DIR_BC_RIGHT, P_INIT, NEQ, NEQ); // Enumerate basis functions, info for user. int ndof = Space::get_num_dofs(space); info("ndof: %d", ndof); // Initialize the weak formulation. WeakForm wf; wf.add_matrix_form(jacobian); wf.add_vector_form(residual); // Initialize the FE problem. bool is_linear = false; DiscreteProblem *dp_coarse = new DiscreteProblem(&wf, space, is_linear); // Newton's loop on coarse mesh. // Fill vector coeff_vec using dof and coeffs arrays in elements. double *coeff_vec_coarse = new double[Space::get_num_dofs(space)]; get_coeff_vector(space, coeff_vec_coarse); // Set up the solver, matrix, and rhs according to the solver selection. SparseMatrix* matrix_coarse = create_matrix(matrix_solver); Vector* rhs_coarse = create_vector(matrix_solver); Solver* solver_coarse = create_linear_solver(matrix_solver, matrix_coarse, rhs_coarse); int it = 1; while (1) { // Obtain the number of degrees of freedom. int ndof_coarse = Space::get_num_dofs(space); // Assemble the Jacobian matrix and residual vector. dp_coarse->assemble(coeff_vec_coarse, matrix_coarse, rhs_coarse); // Calculate the l2-norm of residual vector. double res_l2_norm = get_l2_norm(rhs_coarse); // Info for user. info("---- Newton iter %d, ndof %d, res. l2 norm %g", it, Space::get_num_dofs(space), res_l2_norm); // If l2 norm of the residual vector is within tolerance, then quit. // NOTE: at least one full iteration forced // here because sometimes the initial // residual on fine mesh is too small. if(res_l2_norm < NEWTON_TOL_COARSE && it > 1) break; // Multiply the residual vector with -1 since the matrix // equation reads J(Y^n) \deltaY^{n+1} = -F(Y^n). for(int i=0; i<ndof_coarse; i++) rhs_coarse->set(i, -rhs_coarse->get(i)); // Solve the linear system. if(!solver_coarse->solve()) error ("Matrix solver failed.\n"); // Add \deltaY^{n+1} to Y^n. for (int i = 0; i < ndof_coarse; i++) coeff_vec_coarse[i] += solver_coarse->get_solution()[i]; // If the maximum number of iteration has been reached, then quit. if (it >= NEWTON_MAX_ITER) error ("Newton method did not converge."); // Copy coefficients from vector y to elements. set_coeff_vector(coeff_vec_coarse, space); it++; } // Cleanup. delete matrix_coarse; delete rhs_coarse; delete solver_coarse; delete [] coeff_vec_coarse; delete dp_coarse; // DOF and CPU convergence graphs. SimpleGraph graph_dof_est, graph_cpu_est; SimpleGraph graph_dof_exact, graph_cpu_exact; // Test variable. int success_test = 1; // Adaptivity loop: int as = 1; bool done = false; do { info("---- Adaptivity step %d:", as); // Construct globally refined reference mesh and setup reference space. Space* ref_space = construct_refined_space(space); // Initialize the FE problem. bool is_linear = false; DiscreteProblem* dp = new DiscreteProblem(&wf, ref_space, is_linear); // Set up the solver, matrix, and rhs according to the solver selection. SparseMatrix* matrix = create_matrix(matrix_solver); Vector* rhs = create_vector(matrix_solver); Solver* solver = create_linear_solver(matrix_solver, matrix, rhs); // Newton's loop on the fine mesh. info("Solving on fine mesh:"); // Fill vector coeff_vec using dof and coeffs arrays in elements. double *coeff_vec = new double[Space::get_num_dofs(ref_space)]; get_coeff_vector(ref_space, coeff_vec); int it = 1; while (1) { // Obtain the number of degrees of freedom. int ndof = Space::get_num_dofs(ref_space); // Assemble the Jacobian matrix and residual vector. dp->assemble(coeff_vec, matrix, rhs); // Calculate the l2-norm of residual vector. double res_l2_norm = get_l2_norm(rhs); // Info for user. info("---- Newton iter %d, ndof %d, res. l2 norm %g", it, Space::get_num_dofs(ref_space), res_l2_norm); // If l2 norm of the residual vector is within tolerance, then quit. // NOTE: at least one full iteration forced // here because sometimes the initial // residual on fine mesh is too small. if(res_l2_norm < NEWTON_TOL_REF && it > 1) break; // Multiply the residual vector with -1 since the matrix // equation reads J(Y^n) \deltaY^{n+1} = -F(Y^n). for(int i=0; i<ndof; i++) rhs->set(i, -rhs->get(i)); // Solve the linear system. if(!solver->solve()) error ("Matrix solver failed.\n"); // Add \deltaY^{n+1} to Y^n. for (int i = 0; i < ndof; i++) coeff_vec[i] += solver->get_solution()[i]; // If the maximum number of iteration has been reached, then quit. if (it >= NEWTON_MAX_ITER) error ("Newton method did not converge."); // Copy coefficients from vector y to elements. set_coeff_vector(coeff_vec, ref_space); it++; } // Starting with second adaptivity step, obtain new coarse // mesh solution via projecting the fine mesh solution. if(as > 1) { info("Projecting the fine mesh solution onto the coarse mesh."); // Project the fine mesh solution (defined on space_ref) onto the coarse mesh (defined on space). OGProjection::project_global(space, ref_space, matrix_solver); } // Calculate element errors and total error estimate. info("Calculating error estimate."); double err_est_array[MAX_ELEM_NUM]; double err_est_rel = calc_err_est(NORM, space, ref_space, err_est_array) * 100; // Report results. info("ndof_coarse: %d, ndof_fine: %d, err_est_rel: %g%%", Space::get_num_dofs(space), Space::get_num_dofs(ref_space), err_est_rel); // Time measurement. cpu_time.tick(); // If exact solution available, also calculate exact error. if (EXACT_SOL_PROVIDED) { // Calculate element errors wrt. exact solution. double err_exact_rel = calc_err_exact(NORM, space, exact_sol, NEQ, A, B) * 100; // Info for user. info("Relative error (exact) = %g %%", err_exact_rel); // Add entry to DOF and CPU convergence graphs. graph_dof_exact.add_values(Space::get_num_dofs(space), err_exact_rel); graph_cpu_exact.add_values(cpu_time.accumulated(), err_exact_rel); if (as == 2) if (err_exact_rel > 1e-10) success_test = 0; } // Add entry to DOF and CPU convergence graphs. graph_dof_est.add_values(Space::get_num_dofs(space), err_est_rel); graph_cpu_est.add_values(cpu_time.accumulated(), err_est_rel); // Decide whether the relative error is sufficiently small. if(err_est_rel < TOL_ERR_REL) done = true; // Extra code for this test. if (as == 30) { if (err_est_rel > 1e-10) success_test = 0; if (space->get_n_active_elem() != 2) success_test = 0; Element *e = space->first_active_element(); if (e->p != 2) success_test = 0; e = space->last_active_element(); if (e->p != 2) success_test = 0; break; } // Returns updated coarse and fine meshes, with the last // coarse and fine mesh solutions on them, respectively. // The coefficient vectors and numbers of degrees of freedom // on both meshes are also updated. adapt(NORM, ADAPT_TYPE, THRESHOLD, err_est_array, space, ref_space); as++; // Plot meshes, results, and errors. adapt_plotting(space, ref_space, NORM, EXACT_SOL_PROVIDED, exact_sol); // Cleanup. delete solver; delete matrix; delete rhs; delete ref_space; delete dp; delete [] coeff_vec; } while (done == false); info("Total running time: %g s", cpu_time.accumulated()); // Save convergence graphs. graph_dof_est.save("conv_dof_est.dat"); graph_cpu_est.save("conv_cpu_est.dat"); graph_dof_exact.save("conv_dof_exact.dat"); graph_cpu_exact.save("conv_cpu_exact.dat"); if (success_test) { info("Success!"); return ERROR_SUCCESS; } else { info("Failure!"); return ERROR_FAILURE; } }
int main() { // Time measurement. TimePeriod cpu_time; cpu_time.tick(); // Create coarse mesh, set Dirichlet BC, enumerate basis functions. Space* space = new Space(A, B, NELEM, DIR_BC_LEFT, DIR_BC_RIGHT, P_INIT, NEQ); // Enumerate basis functions, info for user. int ndof = Space::get_num_dofs(space); info("ndof: %d", ndof); // Initialize the weak formulation. WeakForm wf; wf.add_matrix_form(jacobian); wf.add_vector_form(residual); double elem_errors[MAX_ELEM_NUM]; // This array decides what // elements will be refined. ElemPtr2 ref_elem_pairs[MAX_ELEM_NUM]; // To store element pairs from the // FTR solution. Decides how // elements will be hp-refined. for (int i=0; i < MAX_ELEM_NUM; i++) { ref_elem_pairs[i][0] = new Element(); ref_elem_pairs[i][1] = new Element(); } // DOF and CPU convergence graphs. SimpleGraph graph_dof_exact, graph_cpu_exact; /// Adaptivity loop: int as = 1; bool done = false; do { info("---- Adaptivity step %d:", as); // Initialize the FE problem. bool is_linear = false; DiscreteProblem *dp_coarse = new DiscreteProblem(&wf, space, is_linear); // Newton's loop on coarse mesh. // Fill vector coeff_vec using dof and coeffs arrays in elements. double *coeff_vec_coarse = new double[Space::get_num_dofs(space)]; get_coeff_vector(space, coeff_vec_coarse); // Set up the solver, matrix, and rhs according to the solver selection. SparseMatrix* matrix_coarse = create_matrix(matrix_solver); Vector* rhs_coarse = create_vector(matrix_solver); Solver* solver_coarse = create_linear_solver(matrix_solver, matrix_coarse, rhs_coarse); int it = 1; while (1) { // Obtain the number of degrees of freedom. int ndof_coarse = Space::get_num_dofs(space); // Assemble the Jacobian matrix and residual vector. dp_coarse->assemble(coeff_vec_coarse, matrix_coarse, rhs_coarse); // Calculate the l2-norm of residual vector. double res_l2_norm = get_l2_norm(rhs_coarse); // Info for user. info("---- Newton iter %d, ndof %d, res. l2 norm %g", it, Space::get_num_dofs(space), res_l2_norm); // If l2 norm of the residual vector is within tolerance, then quit. // NOTE: at least one full iteration forced // here because sometimes the initial // residual on fine mesh is too small. if(res_l2_norm < NEWTON_TOL_COARSE && it > 1) break; // Multiply the residual vector with -1 since the matrix // equation reads J(Y^n) \deltaY^{n+1} = -F(Y^n). for(int i=0; i<ndof_coarse; i++) rhs_coarse->set(i, -rhs_coarse->get(i)); // Solve the linear system. if(!solver_coarse->solve()) error ("Matrix solver failed.\n"); // Add \deltaY^{n+1} to Y^n. for (int i = 0; i < ndof_coarse; i++) coeff_vec_coarse[i] += solver_coarse->get_solution()[i]; // If the maximum number of iteration has been reached, then quit. if (it >= NEWTON_MAX_ITER) error ("Newton method did not converge."); // Copy coefficients from vector y to elements. set_coeff_vector(coeff_vec_coarse, space); it++; } // Cleanup. delete matrix_coarse; delete rhs_coarse; delete solver_coarse; delete [] coeff_vec_coarse; delete dp_coarse; // For every element perform its fast trial refinement (FTR), // calculate the norm of the difference between the FTR // solution and the coarse space solution, and store the // error in the elem_errors[] array. int n_elem = space->get_n_active_elem(); for (int i=0; i < n_elem; i++) { info("=== Starting FTR of Elem [%d].", i); // Replicate coarse space including solution. Space *space_ref_local = space->replicate(); // Perform FTR of element 'i' space_ref_local->reference_refinement(i, 1); info("Elem [%d]: fine space created (%d DOF).", i, space_ref_local->assign_dofs()); // Initialize the FE problem. bool is_linear = false; DiscreteProblem* dp = new DiscreteProblem(&wf, space_ref_local, is_linear); // Set up the solver, matrix, and rhs according to the solver selection. SparseMatrix* matrix = create_matrix(matrix_solver); Vector* rhs = create_vector(matrix_solver); Solver* solver = create_linear_solver(matrix_solver, matrix, rhs); // Newton's loop on the FTR space. // Fill vector coeff_vec using dof and coeffs arrays in elements. double *coeff_vec = new double[Space::get_num_dofs(space_ref_local)]; get_coeff_vector(space_ref_local, coeff_vec); memset(coeff_vec, 0, Space::get_num_dofs(space_ref_local)*sizeof(double)); int it = 1; while (1) { // Obtain the number of degrees of freedom. int ndof = Space::get_num_dofs(space_ref_local); // Assemble the Jacobian matrix and residual vector. dp->assemble(coeff_vec, matrix, rhs); // Calculate the l2-norm of residual vector. double res_l2_norm = get_l2_norm(rhs); // Info for user. info("---- Newton iter %d, ndof %d, res. l2 norm %g", it, Space::get_num_dofs(space_ref_local), res_l2_norm); // If l2 norm of the residual vector is within tolerance, then quit. // NOTE: at least one full iteration forced // here because sometimes the initial // residual on fine mesh is too small. if(res_l2_norm < NEWTON_TOL_REF && it > 1) break; // Multiply the residual vector with -1 since the matrix // equation reads J(Y^n) \deltaY^{n+1} = -F(Y^n). for(int i=0; i<ndof; i++) rhs->set(i, -rhs->get(i)); // Solve the linear system. if(!solver->solve()) error ("Matrix solver failed.\n"); // Add \deltaY^{n+1} to Y^n. for (int i = 0; i < ndof; i++) coeff_vec[i] += solver->get_solution()[i]; // If the maximum number of iteration has been reached, then quit. if (it >= NEWTON_MAX_ITER) error ("Newton method did not converge."); // Copy coefficients from vector y to elements. set_coeff_vector(coeff_vec, space_ref_local); it++; } // Cleanup. delete matrix; delete rhs; delete solver; delete dp; delete [] coeff_vec; // Print FTR solution (enumerated). //Linearizer *lxx = new Linearizer(space_ref_local); //char out_filename[255]; //sprintf(out_filename, "solution_ref_%d.gp", i); //lxx->plot_solution(out_filename); //delete lxx; // Calculate norm of the difference between the coarse space // and FTR solutions. // NOTE: later we want to look at the difference in some quantity // of interest rather than error in global norm. double err_est_array[MAX_ELEM_NUM]; elem_errors[i] = calc_err_est(NORM, space, space_ref_local, err_est_array) * 100; info("Elem [%d]: absolute error (est) = %g%%", i, elem_errors[i]); // Copy the reference element pair for element 'i'. // into the ref_elem_pairs[i][] array Iterator *I = new Iterator(space); Iterator *I_ref = new Iterator(space_ref_local); Element *e, *e_ref; while (1) { e = I->next_active_element(); e_ref = I_ref->next_active_element(); if (e->id == i) { e_ref->copy_into(ref_elem_pairs[e->id][0]); // coarse element 'e' was split in space. if (e->level != e_ref->level) { e_ref = I_ref->next_active_element(); e_ref->copy_into(ref_elem_pairs[e->id][1]); } break; } } delete I; delete I_ref; delete space_ref_local; } // Time measurement. cpu_time.tick(); // If exact solution available, also calculate exact error. if (EXACT_SOL_PROVIDED) { // Calculate element errors wrt. exact solution. double err_exact_rel = calc_err_exact(NORM, space, exact_sol, NEQ, A, B) * 100; // Info for user. info("Relative error (exact) = %g %%", err_exact_rel); // Add entry to DOF and CPU convergence graphs. graph_dof_exact.add_values(Space::get_num_dofs(space), err_exact_rel); graph_cpu_exact.add_values(cpu_time.accumulated(), err_exact_rel); } // Calculate max FTR error. double max_ftr_error = 0; for (int i=0; i < space->get_n_active_elem(); i++) { if (elem_errors[i] > max_ftr_error) max_ftr_error = elem_errors[i]; } info("Max FTR error = %g%%.", max_ftr_error); // Decide whether the max. FTR error is sufficiently small. if(max_ftr_error < TOL_ERR_FTR) break; // debug //if (as >= 1) break; // Returns updated coarse space with the last solution on it. adapt(NORM, ADAPT_TYPE, THRESHOLD, elem_errors, space, ref_elem_pairs); // Plot spaces, results, and errors. //adapt_plotting(space, ref_elem_pairs, NORM, EXACT_SOL_PROVIDED, exact_sol); as++; } while (done == false); info("Total running time: %g s", cpu_time.accumulated()); // Save convergence graphs. graph_dof_exact.save("conv_dof_exact.dat"); graph_cpu_exact.save("conv_cpu_exact.dat"); // Test variable. bool success = true; info("ndof = %d.", Space::get_num_dofs(space)); if (Space::get_num_dofs(space) > 35) success = false; if (success) { info("Success!"); return ERROR_SUCCESS; } else { info("Failure!"); return ERROR_FAILURE; } }
int main() { // Time measurement. TimePeriod cpu_time; cpu_time.tick(); // Create coarse mesh, set Dirichlet BC, enumerate basis functions. Space* space = new Space(A, B, NELEM, DIR_BC_LEFT, DIR_BC_RIGHT, P_INIT, NEQ); // Enumerate basis functions, info for user. int ndof = Space::get_num_dofs(space); info("ndof: %d", ndof); // Initialize the weak formulation. WeakForm wf; wf.add_matrix_form(jacobian); wf.add_vector_form(residual); // Initialize the FE problem. bool is_linear = false; DiscreteProblem *dp_coarse = new DiscreteProblem(&wf, space, is_linear); if(JFNK == 0) { // Newton's loop on coarse mesh. // Fill vector coeff_vec using dof and coeffs arrays in elements. double *coeff_vec_coarse = new double[Space::get_num_dofs(space)]; get_coeff_vector(space, coeff_vec_coarse); // Set up the solver, matrix, and rhs according to the solver selection. SparseMatrix* matrix_coarse = create_matrix(matrix_solver); Vector* rhs_coarse = create_vector(matrix_solver); Solver* solver_coarse = create_linear_solver(matrix_solver, matrix_coarse, rhs_coarse); int it = 1; while (1) { // Obtain the number of degrees of freedom. int ndof_coarse = Space::get_num_dofs(space); // Assemble the Jacobian matrix and residual vector. dp_coarse->assemble(coeff_vec_coarse, matrix_coarse, rhs_coarse); // Calculate the l2-norm of residual vector. double res_l2_norm = get_l2_norm(rhs_coarse); // Info for user. info("---- Newton iter %d, ndof %d, res. l2 norm %g", it, Space::get_num_dofs(space), res_l2_norm); // If l2 norm of the residual vector is within tolerance, then quit. // NOTE: at least one full iteration forced // here because sometimes the initial // residual on fine mesh is too small. if(res_l2_norm < NEWTON_TOL_COARSE && it > 1) break; // Multiply the residual vector with -1 since the matrix // equation reads J(Y^n) \deltaY^{n+1} = -F(Y^n). for(int i = 0; i < ndof_coarse; i++) rhs_coarse->set(i, -rhs_coarse->get(i)); // Solve the linear system. if(!solver_coarse->solve()) error ("Matrix solver failed.\n"); // Add \deltaY^{n+1} to Y^n. for (int i = 0; i < ndof_coarse; i++) coeff_vec_coarse[i] += solver_coarse->get_solution()[i]; // If the maximum number of iteration has been reached, then quit. if (it >= NEWTON_MAX_ITER) error ("Newton method did not converge."); // Copy coefficients from vector y to elements. set_coeff_vector(coeff_vec_coarse, space); it++; } // Cleanup. delete matrix_coarse; delete rhs_coarse; delete solver_coarse; delete [] coeff_vec_coarse; } else jfnk_cg(dp_coarse, space, MATRIX_SOLVER_TOL, MATRIX_SOLVER_MAXITER, JFNK_EPSILON, NEWTON_TOL_COARSE, NEWTON_MAX_ITER, matrix_solver); // Cleanup. delete dp_coarse; // DOF and CPU convergence graphs. SimpleGraph graph_dof_est, graph_cpu_est; SimpleGraph graph_dof_exact, graph_cpu_exact; // Adaptivity loop: int as = 1; double ftr_errors[MAX_ELEM_NUM]; // This array decides what // elements will be refined. bool done = false; do { info("---- Adaptivity step %d:", as); // Construct globally refined reference mesh and setup reference space. Space* ref_space = construct_refined_space(space); // Initialize the FE problem. bool is_linear = false; DiscreteProblem* dp = new DiscreteProblem(&wf, ref_space, is_linear); if(JFNK == 0) { // Set up the solver, matrix, and rhs according to the solver selection. SparseMatrix* matrix = create_matrix(matrix_solver); Vector* rhs = create_vector(matrix_solver); Solver* solver = create_linear_solver(matrix_solver, matrix, rhs); // Newton's loop on the fine mesh. info("Solving on fine mesh:"); // Fill vector coeff_vec using dof and coeffs arrays in elements. double *coeff_vec = new double[Space::get_num_dofs(ref_space)]; get_coeff_vector(ref_space, coeff_vec); int it = 1; while (1) { // Obtain the number of degrees of freedom. int ndof = Space::get_num_dofs(ref_space); // Assemble the Jacobian matrix and residual vector. dp->assemble(coeff_vec, matrix, rhs); // Calculate the l2-norm of residual vector. double res_l2_norm = get_l2_norm(rhs); // Info for user. info("---- Newton iter %d, ndof %d, res. l2 norm %g", it, Space::get_num_dofs(ref_space), res_l2_norm); // If l2 norm of the residual vector is within tolerance, then quit. // NOTE: at least one full iteration forced // here because sometimes the initial // residual on fine mesh is too small. if(res_l2_norm < NEWTON_TOL_REF && it > 1) break; // Multiply the residual vector with -1 since the matrix // equation reads J(Y^n) \deltaY^{n+1} = -F(Y^n). for(int i = 0; i < ndof; i++) rhs->set(i, -rhs->get(i)); // Solve the linear system. if(!solver->solve()) error ("Matrix solver failed.\n"); // Add \deltaY^{n+1} to Y^n. for (int i = 0; i < ndof; i++) coeff_vec[i] += solver->get_solution()[i]; // If the maximum number of iteration has been reached, then quit. if (it >= NEWTON_MAX_ITER) error ("Newton method did not converge."); // Copy coefficients from vector y to elements. set_coeff_vector(coeff_vec, ref_space); it++; } // Cleanup. delete matrix; delete rhs; delete solver; delete [] coeff_vec; } else jfnk_cg(dp, ref_space, MATRIX_SOLVER_TOL, MATRIX_SOLVER_MAXITER, JFNK_EPSILON, NEWTON_TOL_COARSE, NEWTON_MAX_ITER, matrix_solver); // Cleanup. delete dp; // Starting with second adaptivity step, obtain new coarse // mesh solution via projecting the fine mesh solution. if(as > 1) { info("Projecting the fine mesh solution onto the coarse mesh."); // Project the fine mesh solution (defined on space_ref) onto the coarse mesh (defined on space). OGProjection::project_global(space, ref_space, matrix_solver); } double max_qoi_err_est = 0; for (int i=0; i < space->get_n_active_elem(); i++) { if (GOAL_ORIENTED == 1) { // Use quantity of interest. double qoi_est = quantity_of_interest(space, X_QOI); double qoi_ref_est = quantity_of_interest(ref_space, X_QOI); ftr_errors[i] = fabs(qoi_ref_est - qoi_est); } else { // Use global norm double err_est_array[MAX_ELEM_NUM]; ftr_errors[i] = calc_err_est(NORM, space, ref_space, err_est_array); } // Info for user. info("Elem [%d]: absolute error (est) = %g%%", i, ftr_errors[i]); // Time measurement. cpu_time.tick(); // Calculating maximum of QOI FTR error for plotting purposes if (GOAL_ORIENTED == 1) { if (ftr_errors[i] > max_qoi_err_est) max_qoi_err_est = ftr_errors[i]; } else { double qoi_est = quantity_of_interest(space, X_QOI); double qoi_ref_est = quantity_of_interest(ref_space, X_QOI); double err_est = fabs(qoi_ref_est - qoi_est); if (err_est > max_qoi_err_est) max_qoi_err_est = err_est; } } // Add entries to convergence graphs. if (EXACT_SOL_PROVIDED) { double qoi_est = quantity_of_interest(space, X_QOI); double u[MAX_EQN_NUM], dudx[MAX_EQN_NUM]; exact_sol(X_QOI, u, dudx); double err_qoi_exact = fabs(u[0] - qoi_est); // Info for user. info("Relative error (exact) = %g %%", err_qoi_exact); // Add entry to DOF and CPU convergence graphs. graph_dof_exact.add_values(Space::get_num_dofs(space), err_qoi_exact); graph_cpu_exact.add_values(cpu_time.accumulated(), err_qoi_exact); } // Add entry to DOF and CPU convergence graphs. graph_dof_est.add_values(Space::get_num_dofs(space), max_qoi_err_est); graph_cpu_est.add_values(cpu_time.accumulated(), max_qoi_err_est); // Decide whether the max. FTR error in the quantity of interest // is sufficiently small. if(max_qoi_err_est < TOL_ERR_QOI) break; // Returns updated coarse and fine meshes, with the last // coarse and fine mesh solutions on them, respectively. // The coefficient vectors and numbers of degrees of freedom // on both meshes are also updated. adapt(NORM, ADAPT_TYPE, THRESHOLD, ftr_errors, space, ref_space); as++; // Plot meshes, results, and errors. adapt_plotting(space, ref_space, NORM, EXACT_SOL_PROVIDED, exact_sol); // Cleanup. delete ref_space; } while (done == false); info("Total running time: %g s", cpu_time.accumulated()); // Save convergence graphs. graph_dof_est.save("conv_dof_est.dat"); graph_cpu_est.save("conv_cpu_est.dat"); graph_dof_exact.save("conv_dof_exact.dat"); graph_cpu_exact.save("conv_cpu_exact.dat"); // Test variable. bool success = true; info("ndof = %d.", Space::get_num_dofs(space)); if (Space::get_num_dofs(space) > 150) success = false; if (success) { info("Success!"); return ERROR_SUCCESS; } else { info("Failure!"); return ERROR_FAILURE; } }