// Installed by default in BlockEnvironment::execute, it runs the bytecodes // for the block in the interpreter. // // Future code will detect hot blocks and queue them in the JIT, whereby the // JIT will install a newly minted machine function into ::execute. Object* BlockEnvironment::execute_interpreter(STATE, CallFrame* previous, BlockEnvironment* env, Arguments& args, BlockInvocation& invocation) { // Don't use env->machine_code() because it might lock and the work should // already be done. MachineCode* const mcode = env->compiled_code_->machine_code(); if(!mcode) { Exception::internal_error(state, previous, "invalid bytecode method"); return 0; } #ifdef ENABLE_LLVM if(mcode->call_count >= 0) { if(mcode->call_count >= state->shared().config.jit_threshold_compile) { OnStack<1> os(state, env); G(jit)->compile_soon(state, env->compiled_code(), previous, invocation.self->direct_class(state), env, true); } else { mcode->call_count++; } } #endif StackVariables* scope = ALLOCA_STACKVARIABLES(mcode->number_of_locals); Module* mod = invocation.module; if(!mod) mod = env->module(); Object* block = cNil; if(VariableScope* scope = env->top_scope_) { if(!scope->nil_p()) block = scope->block(); } scope->initialize(invocation.self, block, mod, mcode->number_of_locals); scope->set_parent(env->scope_); InterpreterCallFrame* frame = ALLOCA_CALLFRAME(mcode->stack_size); frame->prepare(mcode->stack_size); frame->previous = previous; frame->constant_scope_ = invocation.constant_scope; frame->arguments = &args; frame->dispatch_data = env; frame->compiled_code = env->compiled_code_; frame->scope = scope; frame->top_scope_ = env->top_scope_; frame->flags = invocation.flags | CallFrame::cMultipleScopes | CallFrame::cBlock; if(!GenericArguments::call(state, frame, mcode, scope, args, invocation.flags)) { if(state->vm()->thread_state()->raise_reason() == cNone) { Exception* exc = Exception::make_argument_error(state, mcode->required_args, args.total(), mcode->name()); exc->locations(state, Location::from_call_stack(state, previous)); state->raise_exception(exc); } return NULL; } #ifdef RBX_PROFILER if(unlikely(state->vm()->tooling())) { Module* mod = scope->module(); if(SingletonClass* sc = try_as<SingletonClass>(mod)) { if(Module* ma = try_as<Module>(sc->singleton())) { mod = ma; } } OnStack<2> os(state, env, mod); // Check the stack and interrupts here rather than in the interpreter // loop itself. GCTokenImpl gct; if(!state->check_interrupts(gct, frame, frame)) return NULL; state->checkpoint(gct, frame); tooling::BlockEntry method(state, env, mod); return (*mcode->run)(state, mcode, frame); } else { // Check the stack and interrupts here rather than in the interpreter // loop itself. GCTokenImpl gct; if(!state->check_interrupts(gct, frame, frame)) return NULL; state->checkpoint(gct, frame); return (*mcode->run)(state, mcode, frame); } #else // Check the stack and interrupts here rather than in the interpreter // loop itself. GCTokenImpl gct; if(!state->check_interrupts(gct, frame, frame)) return NULL; state->checkpoint(gct, frame); return (*mcode->run)(state, mcode, frame); #endif }
// Installed by default in BlockEnvironment::execute, it runs the bytecodes // for the block in the interpreter. // // Future code will detect hot blocks and queue them in the JIT, whereby the // JIT will install a newly minted machine function into ::execute. Object* BlockEnvironment::execute_interpreter(STATE, CallFrame* previous, BlockEnvironment* const env, Arguments& args, BlockInvocation& invocation) { VMMethod* const vmm = env->vmmethod(state); if(!vmm) { Exception::internal_error(state, previous, "invalid bytecode method"); return 0; } #ifdef ENABLE_LLVM if(vmm->call_count >= 0) { if(vmm->call_count >= state->shared.config.jit_call_til_compile) { LLVMState* ls = LLVMState::get(state); ls->compile_soon(state, env->code(), env); } else { vmm->call_count++; } } #endif size_t scope_size = sizeof(StackVariables) + (vmm->number_of_locals * sizeof(Object*)); StackVariables* scope = reinterpret_cast<StackVariables*>(alloca(scope_size)); Module* mod = invocation.module; if(!mod) mod = env->module(); scope->initialize(invocation.self, env->top_scope_->block(), mod, vmm->number_of_locals); scope->set_parent(env->scope_); InterpreterCallFrame* frame = ALLOCA_CALLFRAME(vmm->stack_size); frame->prepare(vmm->stack_size); frame->previous = previous; frame->static_scope_ = invocation.static_scope; frame->arguments = &args; frame->dispatch_data = reinterpret_cast<BlockEnvironment*>(env); frame->cm = env->code_; frame->scope = scope; frame->top_scope_ = env->top_scope_; frame->flags = invocation.flags | CallFrame::cCustomStaticScope | CallFrame::cMultipleScopes | CallFrame::cBlock; // Check the stack and interrupts here rather than in the interpreter // loop itself. if(state->detect_stack_condition(frame)) { if(!state->check_interrupts(frame, frame)) return NULL; } state->global_lock().checkpoint(state, frame); if(unlikely(state->interrupts.check)) { state->interrupts.checked(); if(state->interrupts.perform_gc) { state->interrupts.perform_gc = false; state->collect_maybe(frame); } } #ifdef RBX_PROFILER if(unlikely(state->tooling())) { Module* mod = scope->module(); if(SingletonClass* sc = try_as<SingletonClass>(mod)) { if(Module* ma = try_as<Module>(sc->attached_instance())) { mod = ma; } } tooling::BlockEntry method(state, env, mod); return (*vmm->run)(state, vmm, frame); } else { return (*vmm->run)(state, vmm, frame); } #else return (*vmm->run)(state, vmm, frame); #endif }
// Installed by default in BlockEnvironment::execute, it runs the bytecodes // for the block in the interpreter. // // Future code will detect hot blocks and queue them in the JIT, whereby the // JIT will install a newly minted machine function into ::execute. Object* BlockEnvironment::execute_interpreter(STATE, CallFrame* previous, BlockEnvironment* env, Arguments& args, BlockInvocation& invocation) { // Don't use env->machine_code() because it might lock and the work should // already be done. MachineCode* const mcode = env->compiled_code_->machine_code(); if(!mcode) { Exception::internal_error(state, previous, "invalid bytecode method"); return 0; } #ifdef ENABLE_LLVM if(mcode->call_count >= 0) { if(mcode->call_count >= state->shared().config.jit_call_til_compile) { LLVMState* ls = LLVMState::get(state); GCTokenImpl gct; OnStack<1> os(state, env); ls->compile_soon(state, gct, env->compiled_code(), previous, invocation.self->lookup_begin(state), env, true); } else { mcode->call_count++; } } #endif StackVariables* scope = ALLOCA_STACKVARIABLES(mcode->number_of_locals); Module* mod = invocation.module; if(!mod) mod = env->module(); scope->initialize(invocation.self, env->top_scope_->block(), mod, mcode->number_of_locals); scope->set_parent(env->scope_); InterpreterCallFrame* frame = ALLOCA_CALLFRAME(mcode->stack_size); frame->prepare(mcode->stack_size); frame->previous = previous; frame->constant_scope_ = invocation.constant_scope; frame->arguments = &args; frame->dispatch_data = env; frame->compiled_code = env->compiled_code_; frame->scope = scope; frame->top_scope_ = env->top_scope_; frame->flags = invocation.flags | CallFrame::cCustomConstantScope | CallFrame::cMultipleScopes | CallFrame::cBlock; // TODO: this is a quick hack to process block arguments in 1.9. if(!LANGUAGE_18_ENABLED(state)) { if(!GenericArguments::call(state, frame, mcode, scope, args, invocation.flags)) { return NULL; } } #ifdef RBX_PROFILER if(unlikely(state->vm()->tooling())) { Module* mod = scope->module(); if(SingletonClass* sc = try_as<SingletonClass>(mod)) { if(Module* ma = try_as<Module>(sc->attached_instance())) { mod = ma; } } OnStack<2> os(state, env, mod); // Check the stack and interrupts here rather than in the interpreter // loop itself. GCTokenImpl gct; if(!state->check_interrupts(gct, frame, frame)) return NULL; state->checkpoint(gct, frame); tooling::BlockEntry method(state, env, mod); return (*mcode->run)(state, mcode, frame); } else { // Check the stack and interrupts here rather than in the interpreter // loop itself. GCTokenImpl gct; if(!state->check_interrupts(gct, frame, frame)) return NULL; state->checkpoint(gct, frame); return (*mcode->run)(state, mcode, frame); } #else // Check the stack and interrupts here rather than in the interpreter // loop itself. GCTokenImpl gct; if(!state->check_interrupts(gct, frame, frame)) return NULL; state->checkpoint(gct, frame); return (*mcode->run)(state, mcode, frame); #endif }
// Installed by default in BlockEnvironment::execute, it runs the bytecodes // for the block in the interpreter. // // Future code will detect hot blocks and queue them in the JIT, whereby the // JIT will install a newly minted machine function into ::execute. Object* BlockEnvironment::execute_interpreter(STATE, CallFrame* previous, BlockEnvironment* const env, Arguments& args, BlockInvocation& invocation) { if(!env->vmm) { env->method_->formalize(state, false); env->vmm = env->method_->backend_method(); // Not sure why we hit this case currenly, so just disable the JIT // for them all together. env->vmm->call_count = -1; } VMMethod* const vmm = env->vmm; #ifdef ENABLE_LLVM if(vmm->call_count >= 0) { if(vmm->call_count >= state->shared.config.jit_call_til_compile) { LLVMState* ls = LLVMState::get(state); if(state->shared.config.jit_inline_blocks) { if(VMMethod* parent = vmm->parent()) { while(VMMethod* next = parent->parent()) { parent = next; } if(parent->call_count >= 200) { ls->compile_soon(state, parent); } } } ls->compile_soon(state, vmm, env); } else { vmm->call_count++; } } #endif size_t scope_size = sizeof(StackVariables) + (vmm->number_of_locals * sizeof(Object*)); StackVariables* scope = reinterpret_cast<StackVariables*>(alloca(scope_size)); Module* mod = invocation.module; if(!mod) mod = env->module(); scope->initialize(invocation.self, env->top_scope_->block(), mod, vmm->number_of_locals); scope->set_parent(env->scope_); InterpreterCallFrame* frame = ALLOCA_CALLFRAME(vmm->stack_size); frame->prepare(vmm->stack_size); frame->previous = previous; frame->static_scope_ = invocation.static_scope; frame->msg = NULL; frame->cm = env->method_; frame->scope = scope; frame->top_scope_ = env->top_scope_; frame->flags = invocation.flags | CallFrame::cCustomStaticScope | CallFrame::cMultipleScopes; #ifdef RBX_PROFILER if(unlikely(state->shared.profiling())) { profiler::MethodEntry method(state, env->top_scope_->method()->name(), scope->module(), env->method_); return (*vmm->run)(state, vmm, frame, args); } else { return (*vmm->run)(state, vmm, frame, args); } #else return (*vmm->run)(state, vmm, frame, args); #endif }
// Installed by default in BlockEnvironment::execute, it runs the bytecodes // for the block in the interpreter. // // Future code will detect hot blocks and queue them in the JIT, whereby the // JIT will install a newly minted machine function into ::execute. Object* BlockEnvironment::execute_interpreter(STATE, CallFrame* previous, BlockEnvironment* env, Arguments& args, BlockInvocation& invocation) { // Don't use env->vmmethod() because it mighc lock and the work should already // be done. VMMethod* const vmm = env->code_->backend_method(); if(!vmm) { Exception::internal_error(state, previous, "invalid bytecode method"); return 0; } #ifdef ENABLE_LLVM if(vmm->call_count >= 0) { if(vmm->call_count >= state->shared().config.jit_call_til_compile) { LLVMState* ls = LLVMState::get(state); ls->compile_soon(state, env->code(), env, true); } else { vmm->call_count++; } } #endif size_t scope_size = sizeof(StackVariables) + (vmm->number_of_locals * sizeof(Object*)); StackVariables* scope = reinterpret_cast<StackVariables*>(alloca(scope_size)); Module* mod = invocation.module; if(!mod) mod = env->module(); scope->initialize(invocation.self, env->top_scope_->block(), mod, vmm->number_of_locals); scope->set_parent(env->scope_); InterpreterCallFrame* frame = ALLOCA_CALLFRAME(vmm->stack_size); frame->prepare(vmm->stack_size); frame->previous = previous; frame->static_scope_ = invocation.static_scope; frame->arguments = &args; frame->dispatch_data = reinterpret_cast<BlockEnvironment*>(env); frame->cm = env->code_; frame->scope = scope; frame->top_scope_ = env->top_scope_; frame->flags = invocation.flags | CallFrame::cCustomStaticScope | CallFrame::cMultipleScopes | CallFrame::cBlock; frame->stack_top_ptr_ptr = NULL; // TODO: this is a quick hack to process block arguments in 1.9. if(!LANGUAGE_18_ENABLED(state)) { if(!GenericArguments::call(state, frame, vmm, scope, args, invocation.flags)) { return NULL; } } // Check the stack and interrupts here rather than in the interpreter // loop itself. GCTokenImpl gct; if(state->detect_stack_condition(frame)) { if(!state->check_interrupts(gct, frame, frame)) return NULL; } state->checkpoint(gct, frame); #ifdef RBX_PROFILER if(unlikely(state->vm()->tooling())) { Module* mod = scope->module(); if(SingletonClass* sc = try_as<SingletonClass>(mod)) { if(Module* ma = try_as<Module>(sc->attached_instance())) { mod = ma; } } tooling::BlockEntry method(state, env, mod); return (*vmm->run)(state, vmm, frame); } else { return (*vmm->run)(state, vmm, frame); } #else return (*vmm->run)(state, vmm, frame); #endif }