AirspaceIntersectionVector AirspaceCircle::Intersects(const GeoPoint &start, const GeoPoint &end, const TaskProjection &projection) const { const fixed f_radius = projection.ProjectRangeFloat(m_center, m_radius); const FlatPoint f_center = projection.ProjectFloat(m_center); const FlatPoint f_start = projection.ProjectFloat(start); const FlatPoint f_end = projection.ProjectFloat(end); const FlatLine line(f_start, f_end); FlatPoint f_p1, f_p2; if (!line.intersect_circle(f_radius, f_center, f_p1, f_p2)) return AirspaceIntersectionVector(); const fixed mag = line.dsq(); if (!positive(mag)) return AirspaceIntersectionVector(); const fixed inv_mag = fixed(1) / mag; const fixed t1 = FlatLine(f_start, f_p1).dot(line); const fixed t2 = (f_p1 == f_p2) ? fixed(-1) : FlatLine(f_start, f_p2).dot(line); const bool in_range = (t1 < mag) || (t2 < mag); // if at least one point is within range, capture both points AirspaceIntersectSort sorter(start, *this); if ((t1 >= fixed(0)) && in_range) sorter.add(t1 * inv_mag, projection.Unproject(f_p1)); if ((t2 >= fixed(0)) && in_range) sorter.add(t2 * inv_mag, projection.Unproject(f_p2)); return sorter.all(); }
SearchPoint::SearchPoint(const FlatGeoPoint &floc, const TaskProjection &tp) :location(tp.Unproject(floc)), flat_location(floc) #ifndef NDEBUG , projected(true) #endif { }
void AATPoint::SetTarget(const fixed range, const fixed radial, const TaskProjection &proj) { fixed oldrange = fixed_zero; fixed oldradial = fixed_zero; GetTargetRangeRadial(oldrange, oldradial); const FlatPoint fprev = proj.ProjectFloat(GetPrevious()->GetLocationRemaining()); const FlatPoint floc = proj.ProjectFloat(GetLocation()); const FlatLine flb (fprev,floc); const FlatLine fradius (floc,proj.ProjectFloat(GetLocationMin())); const fixed bearing = fixed_minus_one * flb.angle().Degrees(); const fixed radius = fradius.d(); fixed swapquadrants = fixed_zero; if (positive(range) != positive(oldrange)) swapquadrants = fixed(180); const FlatPoint ftarget1 (fabs(range) * radius * cos((bearing + radial + swapquadrants) / fixed(360) * fixed_two_pi), fabs(range) * radius * sin( fixed_minus_one * (bearing + radial + swapquadrants) / fixed(360) * fixed_two_pi)); const FlatPoint ftarget2 = floc + ftarget1; const GeoPoint targetG = proj.Unproject(ftarget2); SetTarget(targetG, true); }
GeoPoint AirspacePolygon::ClosestPoint(const GeoPoint &loc, const TaskProjection &projection) const { const FlatGeoPoint p = projection.ProjectInteger(loc); const FlatGeoPoint pb = m_border.NearestPoint(p); return projection.Unproject(pb); }
bool RoutePolars::CheckClearance(const RouteLink &e, const RasterMap* map, const TaskProjection &proj, RoutePoint& inp) const { if (!config.IsTerrainEnabled()) return true; GeoPoint int_x; int int_h; GeoPoint start = proj.Unproject(e.first); GeoPoint dest = proj.Unproject(e.second); assert(map); if (!map->FirstIntersection(start, (int)e.first.altitude, dest, (int)e.second.altitude, (int)CalcVHeight(e), (int)climb_ceiling, (int)GetSafetyHeight(), int_x, int_h)) return true; inp = RoutePoint(proj.ProjectInteger(int_x), RoughAltitude(int_h)); return false; }
GeoPoint RoutePolars::MSLIntercept(const int index, const AGeoPoint& p, const TaskProjection& proj) const { const unsigned safe_index = ((unsigned)index) % ROUTEPOLAR_POINTS; const FlatGeoPoint fp = proj.ProjectInteger(p); const fixed d = p.altitude * polar_glide.GetPoint(safe_index).inv_gradient; const fixed scale = proj.GetApproximateScale(); const int steps = int(d / scale) + 1; int dx, dy; RoutePolar::IndexToDXDY(safe_index, dx, dy); dx = (dx * steps) >> 7; dy = (dy * steps) >> 7; const FlatGeoPoint dp(fp.longitude + dx, fp.latitude + dy); return proj.Unproject(dp); }
void FlatTriangleFanTree::AcceptInRange(const FlatBoundingBox &bb, const TaskProjection &task_proj, TriangleFanVisitor &visitor) const { if (!bb.Overlaps(bb_children)) return; if (bb.Overlaps(bounding_box)) { visitor.StartFan(); for (auto it = vs.cbegin(), end = vs.cend(); it != end; ++it) visitor.AddPoint(task_proj.Unproject(*it)); visitor.EndFan(); } for (auto it = children.cbegin(), end = children.cend(); it != end; ++it) it->AcceptInRange(bb, task_proj, visitor); }
void FlatTriangleFanTree::AcceptInRange(const FlatBoundingBox &bb, const TaskProjection &task_proj, TriangleFanVisitor &visitor) const { if (!bb.Overlaps(bb_children)) return; if (bb.Overlaps(bounding_box)) { visitor.StartFan(); for (const auto &v : vs) visitor.AddPoint(task_proj.Unproject(v)); visitor.EndFan(); } for (const auto &child : children) child.AcceptInRange(bb, task_proj, visitor); }
AirspaceIntersectionVector AirspacePolygon::Intersects(const GeoPoint &start, const GeoPoint &end, const TaskProjection &projection) const { const FlatRay ray(projection.ProjectInteger(start), projection.ProjectInteger(end)); AirspaceIntersectSort sorter(start, *this); for (auto it = m_border.begin(); it + 1 != m_border.end(); ++it) { const FlatRay r_seg(it->GetFlatLocation(), (it + 1)->GetFlatLocation()); fixed t = ray.DistinctIntersection(r_seg); if (!negative(t)) sorter.add(t, projection.Unproject(ray.Parametric(t))); } return sorter.all(); }
void ThermalLocator::Update(const fixed t_0, const GeoPoint &location_0, const SpeedVector wind, ThermalLocatorInfo &therm) { if (n_points < TLOCATOR_NMIN) { therm.estimate_valid = false; return; // nothing to do. } GeoPoint dloc = FindLatitudeLongitude(location_0, wind.bearing, wind.norm); TaskProjection projection; projection.Reset(location_0); projection.Update(); // drift points Drift(t_0, projection, location_0 - dloc); FlatPoint av = glider_average(); // find thermal center relative to glider's average position FlatPoint f0(fixed(0), fixed(0)); fixed acc = fixed(0); for (unsigned i = 0; i < n_points; ++i) { f0 += (points[i].loc_drift-av)*points[i].lift_weight; acc += points[i].lift_weight; } // if sufficient data, estimate location if (!positive(acc)) { therm.estimate_valid = false; return; } f0 = f0 * (fixed(1)/acc) + av; therm.estimate_location = projection.Unproject(f0); therm.estimate_valid = true; }
void AATPoint::SetTarget(RangeAndRadial rar, const TaskProjection &proj) { const FlatPoint fprev = proj.ProjectFloat(GetPrevious()->GetLocationRemaining()); const FlatPoint floc = proj.ProjectFloat(GetLocation()); const FlatLine flb (fprev,floc); const FlatLine fradius(floc, proj.ProjectFloat(negative(rar.range) ? GetLocationMin() : GetLocationMax())); const fixed radius = fradius.d() * fabs(rar.range); const Angle angle = rar.radial - flb.angle(); const FlatPoint ftarget1(radius * angle.cos(), radius * -(angle).sin()); const FlatPoint ftarget2 = floc + ftarget1; const GeoPoint targetG = proj.Unproject(ftarget2); SetTarget(targetG, true); }