double Vector_2::distance( Vector_2 v ) { double dx = x-v.getX(); double dy = y-v.getY(); return sqrt( dx*dx + dy*dy ); }
/*--------------------------------------------------------------------------- * StGetBackOnTrackAStar *---------------------------------------------------------------------------*/ StGetBackOnTrackAStar::StGetBackOnTrackAStar(my_context ctx) : my_base(ctx), StBase<StGetBackOnTrackAStar>(std::string("StGetBackOnTrackAStar")) { ChsmPlanner& planner = context<ChsmPlanner> (); Topology* topology = planner.topology_; assert( ! topology->route_is_finished() ); RndfEdge* edge = (*topology->complete_mission_graph.begin())->edge(); double x, y, psi; // calculate entry point Point_2 pp = edge->line().projection(topology->ego_vehicle.point()); Vector_2 nvec = edge->vector(); nvec = nvec / sqrt(nvec.squared_length()); pp = pp + nvec * 12.; Segment_2 seg = edge->segment(); if (squared_distance(seg, pp) > 0.001) { if (squared_distance(pp, edge->fromVertex()->point()) < squared_distance(pp, edge->toVertex()->point())) pp = edge->fromVertex()->point(); else pp = edge->toVertex()->point(); } // check distance to blocking edge if (sqrt(squared_distance(pp, edge->fromVertex()->point())) < 5.) { bool bl_edge = false; for (set<RndfEdge*>::iterator it = edge->fromVertex()->inEdges().begin(); it != edge->fromVertex()->inEdges().end(); ++it) { if ((*it)->isBlockedEdge()) bl_edge = true; } if (bl_edge) pp = edge->toVertex()->point(); } // set destination point x = pp.x(); y = pp.y(); psi = atan2(edge->toVertex()->y() - edge->fromVertex()->y(), edge->toVertex()->x() - edge->fromVertex()->x()); // TODO: reactivate gpp / emergency planner throw VLRException("Recover mode not reimplemented.."); next_replan = drc::Time::current() + GETBACKONTRACK_REPLAN_INTERVAL; }
Vector_2 Vector_2::rayCrossPoint( Vector_2 v1, double angle1, Vector_2 v2, double angle2 ) { double x1 = v1.getX(); double y1 = v1.getY(); double x2 = v2.getX(); double y2 = v2.getY(); double rx1 = cos(angle1); double ry1 = sin(angle1); double rx2 = cos(angle2); double ry2 = sin(angle2); double detA = ry1*rx2 - rx1*ry2; if ( detA == 0 ) return Vector_2(0,0,U); double dx = x2-x1; double dy = y2-y1; double lambda = ( dy*rx2 - dx*ry2 ) / detA; return Vector_2( x1 + lambda*rx1, y1 + lambda*ry1, K ); }
void load_fields_on_fft( const Triangulation& T , CH_FFT& fft ) { int Nb = fft.Nx(); size_t align=fft.alignment(); c_array ux( Nb , Nb , align ); c_array uy( Nb , Nb , align ); for(F_v_it vit=T.vertices_begin(); vit != T.vertices_end(); vit++) { int nx = vit->nx.val(); int ny = vit->ny.val(); // "right" ordering int i = ( Nb - 1 ) - ny ; int j = nx; // "wrong" ordering // int i = nx; // int j = ny; Vector_2 vv = vit->Uold.val(); //FT val = vit->alpha.val(); ux(i,j) = vv.x(); uy(i,j) = vv.y(); } fft.set_u( ux , uy ); return; }
int quadratic_line_intersection(const double a, const double b, const double c, const double d, const double e, const double f, const Point_2& B, const Vector_2& V, double t[2], Point_2 p_[2]) { const double A_ = a*V.x()*V.x()+b*V.x()*V.y()+c*V.y()*V.y(); const double B_ = 2*a*B.x()*V.x()+b*(B.y()*V.x()+B.x()*V.y())+2*c*B.y()*V.y()+d*V.x()+e*V.y(); const double C_ = a*B.x()*B.x()+b*B.x()*B.y()+c*B.y()*B.y()+d*B.x()+e*B.y()+f; int ret = quadratic(A_, B_, C_, t); if (ret == 0) { p_[0] = B + t[0]*V; p_[1] = p_[0]; } else if (ret == 1) { p_[0] = B + t[0]*V; p_[1] = B + t[1]*V; } return ret; }
Point_2 Origin::operator-(const Vector_2& v) const {return Point_2( CGAL::ORIGIN-v.get_data() ); }
FT move(Triangulation& Tp, const FT dt , FT& dd0 ) { vector<data_kept> prev; FT dd2=0; bool first=false; // debug for(F_v_it fv=Tp.finite_vertices_begin(); fv!=Tp.finite_vertices_end(); fv++) { data_kept data(fv); Vector_2 vel = fv->U(); Vector_2 disp = dt * vel; Periodic_point rr=Tp.periodic_point(fv); Point rnow=Tp.point(rr); // current point Point r0=fv->rold(); // starting point Point rnew= r0 + disp; Vector_2 disp2 = per_vect(rnew,rnow); FT rel_disp = sqrt(disp2.squared_length() ) / simu.h(); FT rel_disp0= sqrt( disp.squared_length() ) / simu.h(); if(first) { cout << "r0 " << r0 << " " << "rnow " << rnow << " " << "rnew " << rnew << " " << "disp2 " << disp2 << " " << " idx " << fv->idx() << " " << "rel_disp " << rel_disp << endl ; first=false; } dd2 += rel_disp; dd0 += rel_disp0; // cout << "New position: " << r0 ; data.pos = per_point( rnew ); // cout << " ---> " << data.pos << endl ; prev.push_back (data); } // cout << "relative displacement " << sqrt(dd2)/simu.no_of_points()/simu.h() << endl ; dd2 /= simu.no_of_particles(); dd0 /= simu.no_of_particles(); // cout << "relative displacement " << dd2 << endl ; Tp.clear(); // clears the triangulation !! for(vector<data_kept>::iterator data=prev.begin(); data!=prev.end(); data++) { // cout << "Inserting back at " << data->pos << endl ; Vertex_handle fv=Tp.insert(data->pos); data->restore(fv); // return info to vertices } // cout << "Insertion done" << endl ; Tp.convert_to_1_sheeted_covering(); return dd2; }