void Operators::reset(bool removeStrokes) { ViewMap *vm = ViewMap::getInstance(); if (!vm) { cerr << "Error: no ViewMap computed yet" << endl; return; } _current_view_edges_set.clear(); for (I1DContainer::iterator it = _current_chains_set.begin(); it != _current_chains_set.end(); ++it) delete *it; _current_chains_set.clear(); ViewMap::viewedges_container& vedges = vm->ViewEdges(); ViewMap::viewedges_container::iterator ve = vedges.begin(), veend = vedges.end(); for (; ve != veend; ++ve) { if ((*ve)->getLength2D() < M_EPSILON) continue; _current_view_edges_set.push_back(*ve); } _current_set = &_current_view_edges_set; if (removeStrokes) _current_strokes_set.clear(); }
void CulledOccluderSource::cullViewEdges(ViewMap& viewMap, bool extensiveFEdgeSearch) { // Cull view edges by marking them as non-displayable. // This avoids the complications of trying to delete edges from the ViewMap. // Non-displayable view edges will be skipped over during visibility calculation. // View edges will be culled according to their position w.r.t. the viewport proscenium (viewport + 5% border, // or some such). // Get proscenium boundary for culling real viewProscenium[4]; GridHelpers::getDefaultViewProscenium(viewProscenium); real prosceniumOrigin[2]; prosceniumOrigin[0] = (viewProscenium[1] - viewProscenium[0]) / 2.0; prosceniumOrigin[1] = (viewProscenium[3] - viewProscenium[2]) / 2.0; if (G.debug & G_DEBUG_FREESTYLE) { cout << "Proscenium culling:" << endl; cout << "Proscenium: [" << viewProscenium[0] << ", " << viewProscenium[1] << ", " << viewProscenium[2] << ", " << viewProscenium[3] << "]"<< endl; cout << "Origin: [" << prosceniumOrigin[0] << ", " << prosceniumOrigin[1] << "]"<< endl; } // A separate occluder proscenium will also be maintained, starting out the same as the viewport proscenium, and // expanding as necessary so that it encompasses the center point of at least one feature edge in each // retained view edge. // The occluder proscenium will be used later to cull occluding triangles before they are inserted into the Grid. // The occluder proscenium starts out the same size as the view proscenium GridHelpers::getDefaultViewProscenium(occluderProscenium); // XXX Freestyle is inconsistent in its use of ViewMap::viewedges_container and vector<ViewEdge*>::iterator. // Probably all occurences of vector<ViewEdge*>::iterator should be replaced ViewMap::viewedges_container // throughout the code. // For each view edge ViewMap::viewedges_container::iterator ve, veend; for (ve = viewMap.ViewEdges().begin(), veend = viewMap.ViewEdges().end(); ve != veend; ve++) { // Overview: // Search for a visible feature edge // If none: mark view edge as non-displayable // Otherwise: // Find a feature edge with center point inside occluder proscenium. // If none exists, find the feature edge with center point closest to viewport origin. // Expand occluder proscenium to enclose center point. // For each feature edge, while bestOccluderTarget not found and view edge not visibile bool bestOccluderTargetFound = false; FEdge *bestOccluderTarget = NULL; real bestOccluderDistance = 0.0; FEdge *festart = (*ve)->fedgeA(); FEdge *fe = festart; // All ViewEdges start culled (*ve)->setIsInImage(false); // For simple visibility calculation: mark a feature edge that is known to have a center point inside // the occluder proscenium. Cull all other feature edges. do { // All FEdges start culled fe->setIsInImage(false); // Look for the visible edge that can most easily be included in the occluder proscenium. if (!bestOccluderTargetFound) { // If center point is inside occluder proscenium, if (insideProscenium(occluderProscenium, fe->center2d())) { // Use this feature edge for visibility deterimination fe->setIsInImage(true); expandGridSpaceOccluderProscenium(fe); // Mark bestOccluderTarget as found bestOccluderTargetFound = true; bestOccluderTarget = fe; } else { real d = distance2D(fe->center2d(), prosceniumOrigin); // If center point is closer to viewport origin than current target if (bestOccluderTarget == NULL || d < bestOccluderDistance) { // Then store as bestOccluderTarget bestOccluderDistance = d; bestOccluderTarget = fe; } } } // If feature edge crosses the view proscenium if (!(*ve)->isInImage() && crossesProscenium(viewProscenium, fe)) { // Then the view edge will be included in the image (*ve)->setIsInImage(true); } fe = fe->nextEdge(); } while (fe != NULL && fe != festart && !(bestOccluderTargetFound && (*ve)->isInImage())); // Either we have run out of FEdges, or we already have the one edge we need to determine visibility // Cull all remaining edges. while (fe != NULL && fe != festart) { fe->setIsInImage(false); fe = fe->nextEdge(); } // If bestOccluderTarget was not found inside the occluder proscenium, // we need to expand the occluder proscenium to include it. if ((*ve)->isInImage() && bestOccluderTarget != NULL && ! bestOccluderTargetFound) { // Expand occluder proscenium to enclose bestOccluderTarget Vec3r point = bestOccluderTarget->center2d(); if (point[0] < occluderProscenium[0]) { occluderProscenium[0] = point[0]; } else if (point[0] > occluderProscenium[1]) { occluderProscenium[1] = point[0]; } if (point[1] < occluderProscenium[2]) { occluderProscenium[2] = point[1]; } else if (point[1] > occluderProscenium[3]) { occluderProscenium[3] = point[1]; } // Use bestOccluderTarget for visibility determination bestOccluderTarget->setIsInImage(true); } } // We are done calculating the occluder proscenium. // Expand the occluder proscenium by an epsilon to avoid rounding errors. const real epsilon = 1.0e-6; occluderProscenium[0] -= epsilon; occluderProscenium[1] += epsilon; occluderProscenium[2] -= epsilon; occluderProscenium[3] += epsilon; // For "Normal" or "Fast" style visibility computation only: // For more detailed visibility calculation, make a second pass through the view map, marking all feature edges // with center points inside the final occluder proscenium. All of these feature edges can be considered during // visibility calculation. // So far we have only found one FEdge per ViewEdge. The "Normal" and "Fast" styles of visibility computation // want to consider many FEdges for each ViewEdge. // Here we re-scan the view map to find any usable FEdges that we skipped on the first pass, or that have become // usable because the occluder proscenium has been expanded since the edge was visited on the first pass. if (extensiveFEdgeSearch) { // For each view edge, for (ve = viewMap.ViewEdges().begin(), veend = viewMap.ViewEdges().end(); ve != veend; ve++) { if (!(*ve)->isInImage()) { continue; } // For each feature edge, FEdge *festart = (*ve)->fedgeA(); FEdge *fe = festart; do { // If not (already) visible and center point inside occluder proscenium, if (!fe->isInImage() && insideProscenium(occluderProscenium, fe->center2d())) { // Use the feature edge for visibility determination fe->setIsInImage(true); expandGridSpaceOccluderProscenium(fe); } fe = fe->nextEdge(); } while (fe != NULL && fe != festart); } } // Up until now, all calculations have been done in camera space. // However, the occluder source's iteration and the grid that consumes the occluders both work in gridspace, // so we need a version of the occluder proscenium in gridspace. // Set the gridspace occlude proscenium }