void Foam::surfaceSets::getSurfaceSets ( const polyMesh& mesh, const fileName&, const triSurface&, const triSurfaceSearch& querySurf, const pointField& outsidePts, const label nCutLayers, labelHashSet& inside, labelHashSet& outside, labelHashSet& cut ) { // Construct search engine on mesh meshSearch queryMesh(mesh); // Cut faces with surface and classify cells cellClassification cellType ( mesh, queryMesh, querySurf, outsidePts ); if (nCutLayers > 0) { // Trim cutCells so they are max nCutLayers away (as seen in point-cell // walk) from outside cells. cellType.trimCutCells ( nCutLayers, cellClassification::OUTSIDE, cellClassification::INSIDE ); } forAll(cellType, celli) { label cType = cellType[celli]; if (cType == cellClassification::CUT) { cut.insert(celli); } else if (cType == cellClassification::INSIDE) { inside.insert(celli); } else if (cType == cellClassification::OUTSIDE) { outside.insert(celli); } }
forAll(patchIDs, i) { const labelUList& fc = pbm[patchIDs[i]].faceCells(); forAll(fc, i) { patchCells.insert(fc[i]); }
forAll(bMesh, patchI) { const polyPatch& patch = bMesh[patchI]; if (patchNamesHash.found(patch.name())) { patchIDs.insert(patchI); } }
forAll(ptc, pointi) { const labelList& curFaces = pf[ptc[pointi]]; forAll(curFaces, facei) { if (!facesToRemoveMap.found(curFaces[facei])) { facesToModify.insert(curFaces[facei]); } } }
// Find cells to refine forAllConstIter(labelHashSet, patchSet, iter) { const polyPatch& pp = mesh.boundaryMesh()[iter.key()]; const labelList& meshPoints = pp.meshPoints(); forAll(meshPoints, pointI) { label meshPointI = meshPoints[pointI]; const labelList& pCells = mesh.pointCells()[meshPointI]; forAll(pCells, pCellI) { cutCells.insert(pCells[pCellI]); }
void bigParticleVoidFraction::buildLabelHashSet ( const scalar radius, const vector position, const label cellID, labelHashSet& hashSett )const { hashSett.insert(cellID); //Info<<"cell inserted"<<cellID<<endl; const labelList& nc = particleCloud_.mesh().cellCells()[cellID]; forAll(nc,i){ label neighbor=nc[i]; if(!hashSett.found(neighbor) && mag(position-particleCloud_.mesh().C()[neighbor])<radius){ buildLabelHashSet(radius,position,neighbor,hashSett); } }
forAll(mc, celli) { const cell& curCell = cells[mc[celli]]; forAll(curCell, facei) { // Check if the face is in the master zone. If not, remove it if ( mesh.faceZones().whichZone(curCell[facei]) != faceZoneID_.index() ) { facesToRemoveMap.insert(curCell[facei]); } } }
// Step from faceI (on side cellI) to connected face & cell without crossing // fenceEdges. void Foam::regionSide::visitConnectedFaces ( const primitiveMesh& mesh, const labelHashSet& region, const labelHashSet& fenceEdges, const label cellI, const label faceI, labelHashSet& visitedFace ) { if (!visitedFace.found(faceI)) { if (debug) { Info<< "visitConnectedFaces : cellI:" << cellI << " faceI:" << faceI << " isOwner:" << (cellI == mesh.faceOwner()[faceI]) << endl; } // Mark as visited visitedFace.insert(faceI); // Mark which side of face was visited. if (cellI == mesh.faceOwner()[faceI]) { sideOwner_.insert(faceI); } // Visit all neighbouring faces on faceSet. Stay on this 'side' of // face by doing edge-face-cell walk. const labelList& fEdges = mesh.faceEdges()[faceI]; forAll(fEdges, fEdgeI) { label edgeI = fEdges[fEdgeI]; if (!fenceEdges.found(edgeI)) { // Step along faces on edge from cell to cell until // we hit face on faceSet. // Find face reachable from edge label otherFaceI = otherFace(mesh, cellI, faceI, edgeI); if (mesh.isInternalFace(otherFaceI)) { label otherCellI = cellI; // Keep on crossing faces/cells until back on face on // surface while (!region.found(otherFaceI)) { visitedFace.insert(otherFaceI); if (debug) { Info<< "visitConnectedFaces : cellI:" << cellI << " found insideEdgeFace:" << otherFaceI << endl; } // Cross otherFaceI into neighbouring cell otherCellI = meshTools::otherCell ( mesh, otherCellI, otherFaceI ); otherFaceI = otherFace ( mesh, otherCellI, otherFaceI, edgeI ); } visitConnectedFaces ( mesh, region, fenceEdges, otherCellI, otherFaceI, visitedFace ); } } } }
// Same check as snapMesh void checkSnapMesh ( const Time& runTime, const polyMesh& mesh, labelHashSet& wrongFaces ) { IOdictionary snapDict ( IOobject ( "snapMeshDict", runTime.system(), mesh, IOobject::MUST_READ, IOobject::NO_WRITE ) ); // Max nonorthogonality allowed scalar maxNonOrtho(readScalar(snapDict.lookup("maxNonOrtho"))); primitiveMesh::nonOrthThreshold_ = maxNonOrtho; // Max concaveness allowed. scalar maxConcave(readScalar(snapDict.lookup("maxConcave"))); primitiveMesh::faceAngleThreshold_ = maxConcave; // Min volume allowed (factor of minimum cellVolume) scalar relMinVol(readScalar(snapDict.lookup("minVol"))); const scalar minCellVol = min(mesh.cellVolumes()); const scalar minPyrVol = relMinVol*minCellVol; // Min area scalar minArea(readScalar(snapDict.lookup("minArea"))); if (maxNonOrtho < 180.0 - SMALL) { Pout<< "Checking non orthogonality" << endl; label nOldSize = wrongFaces.size(); mesh.checkFaceOrthogonality(false, &wrongFaces); Pout<< "Detected " << wrongFaces.size() - nOldSize << " faces with non-orthogonality > " << maxNonOrtho << " degrees" << endl; } if (minPyrVol > -GREAT) { Pout<< "Checking face pyramids" << endl; label nOldSize = wrongFaces.size(); mesh.checkFacePyramids(false, minPyrVol, &wrongFaces); Pout<< "Detected additional " << wrongFaces.size() - nOldSize << " faces with illegal face pyramids" << endl; } if (maxConcave < 180.0 - SMALL) { Pout<< "Checking face angles" << endl; label nOldSize = wrongFaces.size(); mesh.checkFaceAngles(false, &wrongFaces); Pout<< "Detected additional " << wrongFaces.size() - nOldSize << " faces with concavity > " << maxConcave << " degrees" << endl; } if (minArea > -SMALL) { Pout<< "Checking face areas" << endl; label nOldSize = wrongFaces.size(); const scalarField magFaceAreas = mag(mesh.faceAreas()); forAll(magFaceAreas, faceI) { if (magFaceAreas[faceI] < minArea) { wrongFaces.insert(faceI); } } Pout<< "Detected additional " << wrongFaces.size() - nOldSize << " faces with area < " << minArea << " m^2" << endl; }
void Foam::surfaceSets::getSurfaceSets ( const polyMesh& mesh, const fileName&, const triSurface&, const triSurfaceSearch& querySurf, const pointField& outsidePts, const label nCutLayers, labelHashSet& inside, labelHashSet& outside, labelHashSet& cut ) { // Construct search engine on mesh meshSearch queryMesh(mesh, true); // Check all 'outside' points forAll(outsidePts, outsideI) { const point& outsidePoint = outsidePts[outsideI]; // Find cell point is in. Linear search. if (queryMesh.findCell(outsidePoint, -1, false) == -1) { FatalErrorIn ( "surfaceSets::getSurfaceSets" "(const polyMesh&, const fileName&, const triSurface&" ", const triSurfaceSearch&, const pointField&" ", labelHashSet&, labelHashSet&, labelHashSet&)" ) << "outsidePoint " << outsidePoint << " is not inside any cell" << exit(FatalError); } } // Cut faces with surface and classify cells cellClassification cellType ( mesh, queryMesh, querySurf, outsidePts ); if (nCutLayers > 0) { // Trim cutCells so they are max nCutLayers away (as seen in point-cell // walk) from outside cells. cellType.trimCutCells ( nCutLayers, cellClassification::OUTSIDE, cellClassification::INSIDE ); } forAll(cellType, cellI) { label cType = cellType[cellI]; if (cType == cellClassification::CUT) { cut.insert(cellI); } else if (cType == cellClassification::INSIDE) { inside.insert(cellI); } else if (cType == cellClassification::OUTSIDE) { outside.insert(cellI); } }