void FakeMDEventData::addFakeUniformData( typename MDEventWorkspace<MDE, nd>::sptr ws) { std::vector<double> params = getProperty("UniformParams"); if (params.empty()) return; bool randomEvents = true; if (params[0] < 0) { randomEvents = false; params[0] = -params[0]; } if (params.size() == 1) { if (randomEvents) { for (size_t d = 0; d < nd; ++d) { params.push_back(ws->getDimension(d)->getMinimum()); params.push_back(ws->getDimension(d)->getMaximum()); } } else // regular events { size_t nPoints = size_t(params[0]); double Vol = 1; for (size_t d = 0; d < nd; ++d) Vol *= (ws->getDimension(d)->getMaximum() - ws->getDimension(d)->getMinimum()); if (Vol == 0 || Vol > std::numeric_limits<float>::max()) throw std::invalid_argument( " Domain ranges are not defined properly for workspace: " + ws->getName()); double dV = Vol / double(nPoints); double delta0 = std::pow(dV, 1. / double(nd)); for (size_t d = 0; d < nd; ++d) { double min = ws->getDimension(d)->getMinimum(); params.push_back(min * (1 + FLT_EPSILON) - min + FLT_EPSILON); double extent = ws->getDimension(d)->getMaximum() - min; size_t nStrides = size_t(extent / delta0); if (nStrides < 1) nStrides = 1; params.push_back(extent / static_cast<double>(nStrides)); } } } if ((params.size() != 1 + nd * 2)) throw std::invalid_argument( "UniformParams: needs to have ndims*2+1 arguments "); if (randomEvents) addFakeRandomData<MDE, nd>(params, ws); else addFakeRegularData<MDE, nd>(params, ws); ws->splitBox(); Kernel::ThreadScheduler *ts = new ThreadSchedulerFIFO(); ThreadPool tp(ts); ws->splitAllIfNeeded(ts); tp.joinAll(); ws->refreshCache(); }
void FindPeaksMD::findPeaks(typename MDEventWorkspace<MDE, nd>::sptr ws) { if (nd < 3) throw std::invalid_argument("Workspace must have at least 3 dimensions."); progress(0.01, "Refreshing Centroids"); // TODO: This might be slow, progress report? // Make sure all centroids are fresh ws->getBox()->refreshCentroid(); typedef IMDBox<MDE,nd>* boxPtr; if (ws->getNumExperimentInfo() == 0) throw std::runtime_error("No instrument was found in the MDEventWorkspace. Cannot find peaks."); // TODO: Do we need to pick a different instrument info? ExperimentInfo_sptr ei = ws->getExperimentInfo(0); // Instrument associated with workspace Geometry::Instrument_const_sptr inst = ei->getInstrument(); // Find the run number int runNumber = ei->getRunNumber(); // Check that the workspace dimensions are in Q-sample-frame or Q-lab-frame. eDimensionType dimType; std::string dim0 = ws->getDimension(0)->getName(); if (dim0 == "H") { dimType = HKL; throw std::runtime_error("Cannot find peaks in a workspace that is already in HKL space."); } else if (dim0 == "Q_lab_x") { dimType = QLAB; } else if (dim0 == "Q_sample_x") dimType = QSAMPLE; else throw std::runtime_error("Unexpected dimensions: need either Q_lab_x or Q_sample_x."); // Find the goniometer rotation matrix Mantid::Kernel::Matrix<double> goniometer(3,3, true); // Default IDENTITY matrix try { goniometer = ei->mutableRun().getGoniometerMatrix(); } catch (std::exception & e) { g_log.warning() << "Error finding goniometer matrix. It will not be set in the peaks found." << std::endl; g_log.warning() << e.what() << std::endl; } /// Arbitrary scaling factor for density to make more manageable numbers, especially for older file formats. signal_t densityScalingFactor = 1e-6; // Calculate a threshold below which a box is too diffuse to be considered a peak. signal_t thresholdDensity = 0.0; thresholdDensity = ws->getBox()->getSignalNormalized() * DensityThresholdFactor * densityScalingFactor; g_log.notice() << "Threshold signal density: " << thresholdDensity << std::endl; // We will fill this vector with pointers to all the boxes (up to a given depth) typename std::vector<boxPtr> boxes; // Get all the MDboxes progress(0.10, "Getting Boxes"); ws->getBox()->getBoxes(boxes, 1000, true); // TODO: Here keep only the boxes > e.g. 3 * mean. typedef std::pair<double, boxPtr> dens_box; // Map that will sort the boxes by increasing density. The key = density; value = box *. typename std::multimap<double, boxPtr> sortedBoxes; progress(0.20, "Sorting Boxes by Density"); typename std::vector<boxPtr>::iterator it1; typename std::vector<boxPtr>::iterator it1_end = boxes.end(); for (it1 = boxes.begin(); it1 != it1_end; it1++) { boxPtr box = *it1; double density = box->getSignalNormalized() * densityScalingFactor; // Skip any boxes with too small a signal density. if (density > thresholdDensity) sortedBoxes.insert(dens_box(density,box)); } // List of chosen possible peak boxes. std::vector<boxPtr> peakBoxes; prog = new Progress(this, 0.30, 0.95, MaxPeaks); int64_t numBoxesFound = 0; // Now we go (backwards) through the map // e.g. from highest density down to lowest density. typename std::multimap<double, boxPtr>::reverse_iterator it2; typename std::multimap<double, boxPtr>::reverse_iterator it2_end = sortedBoxes.rend(); for (it2 = sortedBoxes.rbegin(); it2 != it2_end; it2++) { signal_t density = it2->first; boxPtr box = it2->second; #ifndef MDBOX_TRACK_CENTROID coord_t boxCenter[nd]; box->calculateCentroid(boxCenter); #else const coord_t * boxCenter = box->getCentroid(); #endif // Compare to all boxes already picked. bool badBox = false; for (typename std::vector<boxPtr>::iterator it3=peakBoxes.begin(); it3 != peakBoxes.end(); it3++) { #ifndef MDBOX_TRACK_CENTROID coord_t otherCenter[nd]; (*it3)->calculateCentroid(otherCenter); #else const coord_t * otherCenter = (*it3)->getCentroid(); #endif // Distance between this box and a box we already put in. coord_t distSquared = 0.0; for (size_t d=0; d<nd; d++) { coord_t dist = otherCenter[d] - boxCenter[d]; distSquared += (dist * dist); } // Reject this box if it is too close to another previously found box. if (distSquared < peakRadiusSquared) { badBox = true; break; } } // The box was not rejected for another reason. if (!badBox) { if (numBoxesFound++ >= MaxPeaks) { g_log.notice() << "Number of peaks found exceeded the limit of " << MaxPeaks << ". Stopping peak finding." << std::endl; break; } peakBoxes.push_back(box); g_log.information() << "Found box at "; for (size_t d=0; d<nd; d++) g_log.information() << (d>0?",":"") << boxCenter[d]; g_log.information() << "; Density = " << density << std::endl; // Report progres for each box found. prog->report("Finding Peaks"); } } prog->resetNumSteps(numBoxesFound, 0.95, 1.0); // Copy the instrument, sample, run to the peaks workspace. peakWS->copyExperimentInfoFrom(ei.get()); // --- Convert the "boxes" to peaks ---- for (typename std::vector<boxPtr>::iterator it3=peakBoxes.begin(); it3 != peakBoxes.end(); it3++) { // The center of the box = Q in the lab frame boxPtr box = *it3; #ifndef MDBOX_TRACK_CENTROID coord_t boxCenter[nd]; box->calculateCentroid(boxCenter); #else const coord_t * boxCenter = box->getCentroid(); #endif V3D Q(boxCenter[0], boxCenter[1], boxCenter[2]); // Create a peak and add it // Empty starting peak. Peak p; try { if (dimType == QLAB) { // Build using the Q-lab-frame constructor p = Peak(inst, Q); // Save gonio matrix for later p.setGoniometerMatrix(goniometer); } else if (dimType == QSAMPLE) { // Build using the Q-sample-frame constructor p = Peak(inst, Q, goniometer); } } catch (std::exception &e) { g_log.notice() << "Error creating peak at " << Q << " because of '" << e.what() << "'. Peak will be skipped." << std::endl; continue; } try { // Look for a detector p.findDetector(); } catch (...) { /* Ignore errors in ray-tracer TODO: Handle for WISH data later */ } // The "bin count" used will be the box density. p.setBinCount( box->getSignalNormalized() * densityScalingFactor); // Save the run number found before. p.setRunNumber(runNumber); peakWS->addPeak(p); // Report progres for each box found. prog->report("Adding Peaks"); } // for each box found }
void FakeMDEventData::addFakeRegularData( const std::vector<double> ¶ms, typename MDEventWorkspace<MDE, nd>::sptr ws) { // the parameters for regular distribution of events over the box std::vector<double> startPoint(nd), delta(nd); std::vector<size_t> indexMax(nd); size_t gridSize(0); // bool RandomizeSignal = getProperty("RandomizeSignal"); size_t num = size_t(params[0]); if (num == 0) throw std::invalid_argument( " number of distributed events can not be equal to 0"); Progress prog(this, 0.0, 1.0, 100); size_t progIncrement = num / 100; if (progIncrement == 0) progIncrement = 1; // Inserter to help choose the correct event type auto eventHelper = MDEvents::MDEventInserter<typename MDEventWorkspace<MDE, nd>::sptr>(ws); gridSize = 1; for (size_t d = 0; d < nd; ++d) { double min = ws->getDimension(d)->getMinimum(); double max = ws->getDimension(d)->getMaximum(); double shift = params[d * 2 + 1]; double step = params[d * 2 + 2]; if (shift < 0) shift = 0; if (shift >= step) shift = step * (1 - FLT_EPSILON); startPoint[d] = min + shift; if ((startPoint[d] < min) || (startPoint[d] >= max)) throw std::invalid_argument("RegularData: starting point must be within " "the box for all dimensions."); if (step <= 0) throw(std::invalid_argument( "Step of the regular grid is less or equal to 0")); indexMax[d] = size_t((max - min) / step); if (indexMax[d] == 0) indexMax[d] = 1; // deal with round-off errors while ((startPoint[d] + double(indexMax[d] - 1) * step) >= max) step *= (1 - FLT_EPSILON); delta[d] = step; gridSize *= indexMax[d]; } // Create all the requested events std::vector<size_t> indexes; size_t cellCount(0); for (size_t i = 0; i < num; ++i) { coord_t centers[nd]; Kernel::Utils::getIndicesFromLinearIndex(cellCount, indexMax, indexes); ++cellCount; if (cellCount >= gridSize) cellCount = 0; for (size_t d = 0; d < nd; d++) { centers[d] = coord_t(startPoint[d] + delta[d] * double(indexes[d])); } // Default or randomized error/signal float signal = 1.0; float errorSquared = 1.0; // if (RandomizeSignal) //{ // signal = float(0.5 + genUnit()); // errorSquared = float(0.5 + genUnit()); //} // Create and add the event. eventHelper.insertMDEvent(signal, errorSquared, 1, pickDetectorID(), centers); // 1 = run number // Progress report if ((i % progIncrement) == 0) prog.report(); } }