mitk::ProportionalTimeGeometry::Pointer mitk::ProportionalTimeGeometryToXML::FromXML(TiXmlElement *timeGeometryElement) { if (!timeGeometryElement) { MITK_ERROR << "Cannot deserialize ProportionalTimeGeometry from nullptr."; return nullptr; } int numberOfTimeSteps = 0; if (TIXML_SUCCESS != timeGeometryElement->QueryIntAttribute("NumberOfTimeSteps", &numberOfTimeSteps)) { MITK_WARN << "<ProportionalTimeGeometry> found without NumberOfTimeSteps attribute. Counting..."; } // might be missing! TimePointType firstTimePoint; std::string firstTimePoint_s; TimePointType stepDuration; std::string stepDuration_s; try { if (TIXML_SUCCESS == timeGeometryElement->QueryStringAttribute("FirstTimePoint", &firstTimePoint_s)) { firstTimePoint = boost::lexical_cast<double>(firstTimePoint_s); } else { firstTimePoint = -std::numeric_limits<TimePointType>::max(); } if (TIXML_SUCCESS == timeGeometryElement->QueryStringAttribute("StepDuration", &stepDuration_s)) { stepDuration = boost::lexical_cast<double>(stepDuration_s); } else { stepDuration = std::numeric_limits<TimePointType>::infinity(); } } catch (boost::bad_lexical_cast &e) { MITK_ERROR << "Could not parse string as number: " << e.what(); return nullptr; } // list of all geometries with their time steps std::multimap<TimeStepType, BaseGeometry::Pointer> allReadGeometries; int indexForUnlabeledTimeStep(-1); for (TiXmlElement *currentElement = timeGeometryElement->FirstChildElement(); currentElement != nullptr; currentElement = currentElement->NextSiblingElement()) { // different geometries could have been inside a ProportionalTimeGeometry. // By now, we only support Geometry3D std::string tagName = currentElement->Value(); if (tagName == "Geometry3D") { Geometry3D::Pointer restoredGeometry = Geometry3DToXML::FromXML(currentElement); if (restoredGeometry.IsNotNull()) { int timeStep(-1); if (TIXML_SUCCESS != currentElement->QueryIntAttribute("TimeStep", &timeStep)) { timeStep = indexForUnlabeledTimeStep--; // decrement index for next one MITK_WARN << "Found <Geometry3D> without 'TimeStep' attribute in <ProportionalTimeGeometry>. No guarantees " "on order anymore."; } if (allReadGeometries.count(static_cast<TimeStepType>(timeStep)) > 0) { MITK_WARN << "Found <Geometry3D> tags with identical 'TimeStep' attribute in <ProportionalTimeGeometry>. No " "guarantees on order anymore."; } allReadGeometries.insert(std::make_pair(static_cast<TimeStepType>(timeStep), restoredGeometry.GetPointer())); } } else { MITK_WARN << "Found unsupported tag <" << tagName << "> inside <ProportionalTimeGeometry>. Ignoring."; } } // now add all BaseGeometries that were read to a new instance // of ProportionalTimeGeometry ProportionalTimeGeometry::Pointer newTimeGeometry = ProportionalTimeGeometry::New(); newTimeGeometry->SetFirstTimePoint(firstTimePoint); newTimeGeometry->SetStepDuration(stepDuration); newTimeGeometry->ReserveSpaceForGeometries(allReadGeometries.size()); TimeStepType t(0); for (auto entry : allReadGeometries) { // We add items with newly assigned time steps. // This avoids great confusion when a file contains // bogus numbers. newTimeGeometry->SetTimeStepGeometry(entry.second, t++); } // Need to re-calculate global bounding box. // This is neither stored in a file, nor done by SetTimeStepGeometry newTimeGeometry->UpdateBoundingBox(); return newTimeGeometry; }
bool RenderingManager ::InitializeViews( const Geometry3D * dataGeometry, RequestType type, bool preserveRoughOrientationInWorldSpace ) { MITK_DEBUG << "initializing views"; bool boundingBoxInitialized = false; Geometry3D::ConstPointer geometry = dataGeometry; if (dataGeometry && preserveRoughOrientationInWorldSpace) { // clone the input geometry Geometry3D::Pointer modifiedGeometry = dynamic_cast<Geometry3D*>( dataGeometry->Clone().GetPointer() ); assert(modifiedGeometry.IsNotNull()); // construct an affine transform from it AffineGeometryFrame3D::TransformType::Pointer transform = AffineGeometryFrame3D::TransformType::New(); assert( modifiedGeometry->GetIndexToWorldTransform() ); transform->SetMatrix( modifiedGeometry->GetIndexToWorldTransform()->GetMatrix() ); transform->SetOffset( modifiedGeometry->GetIndexToWorldTransform()->GetOffset() ); // get transform matrix AffineGeometryFrame3D::TransformType::MatrixType::InternalMatrixType& oldMatrix = const_cast< AffineGeometryFrame3D::TransformType::MatrixType::InternalMatrixType& > ( transform->GetMatrix().GetVnlMatrix() ); AffineGeometryFrame3D::TransformType::MatrixType::InternalMatrixType newMatrix(oldMatrix); // get offset and bound Vector3D offset = modifiedGeometry->GetIndexToWorldTransform()->GetOffset(); Geometry3D::BoundsArrayType oldBounds = modifiedGeometry->GetBounds(); Geometry3D::BoundsArrayType newBounds = modifiedGeometry->GetBounds(); // get rid of rotation other than pi/2 degree for ( unsigned int i = 0; i < 3; ++i ) { // i-th column of the direction matrix Vector3D currentVector; currentVector[0] = oldMatrix(0,i); currentVector[1] = oldMatrix(1,i); currentVector[2] = oldMatrix(2,i); // matchingRow will store the row that holds the biggest // value in the column unsigned int matchingRow = 0; // maximum value in the column float max = std::numeric_limits<float>::min(); // sign of the maximum value (-1 or 1) int sign = 1; // iterate through the column vector for (unsigned int dim = 0; dim < 3; ++dim) { if ( fabs(currentVector[dim]) > max ) { matchingRow = dim; max = fabs(currentVector[dim]); if(currentVector[dim]<0) sign = -1; else sign = 1; } } // in case we found a negative maximum, // we negate the column and adjust the offset // (in order to run through the dimension in the opposite direction) if(sign == -1) { currentVector *= sign; offset += modifiedGeometry->GetAxisVector(i); } // matchingRow is now used as column index to place currentVector // correctly in the new matrix vnl_vector<ScalarType> newMatrixColumn(3); newMatrixColumn[0] = currentVector[0]; newMatrixColumn[1] = currentVector[1]; newMatrixColumn[2] = currentVector[2]; newMatrix.set_column( matchingRow, newMatrixColumn ); // if a column is moved, we also have to adjust the bounding // box accordingly, this is done here newBounds[2*matchingRow ] = oldBounds[2*i ]; newBounds[2*matchingRow+1] = oldBounds[2*i+1]; } // set the newly calculated bounds array modifiedGeometry->SetBounds(newBounds); // set new offset and direction matrix AffineGeometryFrame3D::TransformType::MatrixType newMatrixITK( newMatrix ); transform->SetMatrix( newMatrixITK ); transform->SetOffset( offset ); modifiedGeometry->SetIndexToWorldTransform( transform ); geometry = modifiedGeometry; } int warningLevel = vtkObject::GetGlobalWarningDisplay(); vtkObject::GlobalWarningDisplayOff(); if ( (geometry.IsNotNull() ) && (const_cast< mitk::BoundingBox * >( geometry->GetBoundingBox())->GetDiagonalLength2() > mitk::eps) ) { boundingBoxInitialized = true; } if (geometry.IsNotNull() ) { // make sure bounding box has an extent bigger than zero in any direction // clone the input geometry Geometry3D::Pointer modifiedGeometry = dynamic_cast<Geometry3D*>( dataGeometry->Clone().GetPointer() ); assert(modifiedGeometry.IsNotNull()); Geometry3D::BoundsArrayType newBounds = modifiedGeometry->GetBounds(); for( unsigned int dimension = 0; ( 2 * dimension ) < newBounds.Size() ; dimension++ ) { //check for equality but for an epsilon if( Equal( newBounds[ 2 * dimension ], newBounds[ 2 * dimension + 1 ] ) ) { newBounds[ 2 * dimension + 1 ] += 1; } } // set the newly calculated bounds array modifiedGeometry->SetBounds(newBounds); geometry = modifiedGeometry; } RenderWindowList::iterator it; for ( it = m_RenderWindowList.begin(); it != m_RenderWindowList.end(); ++it ) { mitk::BaseRenderer *baseRenderer = mitk::BaseRenderer::GetInstance( it->first ); baseRenderer->GetDisplayGeometry()->SetConstrainZoomingAndPanning(m_ConstrainedPaddingZooming); int id = baseRenderer->GetMapperID(); if ( ((type == REQUEST_UPDATE_ALL) || ((type == REQUEST_UPDATE_2DWINDOWS) && (id == 1)) || ((type == REQUEST_UPDATE_3DWINDOWS) && (id == 2))) ) { this->InternalViewInitialization( baseRenderer, geometry, boundingBoxInitialized, id ); } } if ( m_TimeNavigationController != NULL ) { if ( boundingBoxInitialized ) { m_TimeNavigationController->SetInputWorldGeometry( geometry ); } m_TimeNavigationController->Update(); } this->RequestUpdateAll( type ); vtkObject::SetGlobalWarningDisplay( warningLevel ); // Inform listeners that views have been initialized this->InvokeEvent( mitk::RenderingManagerViewsInitializedEvent() ); return boundingBoxInitialized; }
std::vector<itk::SmartPointer<mitk::BaseData>> mitk::GeometryDataReaderService::Read() { // Switch the current locale to "C" LocaleSwitch localeSwitch("C"); std::vector<itk::SmartPointer<BaseData>> result; InputStream stream(this); TiXmlDocument doc; stream >> doc; if (!doc.Error()) { TiXmlHandle docHandle(&doc); for (TiXmlElement *geomDataElement = docHandle.FirstChildElement("GeometryData").ToElement(); geomDataElement != nullptr; geomDataElement = geomDataElement->NextSiblingElement()) { for (TiXmlElement *currentElement = geomDataElement->FirstChildElement(); currentElement != nullptr; currentElement = currentElement->NextSiblingElement()) { // different geometries could have been serialized from a GeometryData // object: std::string tagName = currentElement->Value(); if (tagName == "Geometry3D") { Geometry3D::Pointer restoredGeometry = Geometry3DToXML::FromXML(currentElement); if (restoredGeometry.IsNotNull()) { GeometryData::Pointer newGeometryData = GeometryData::New(); newGeometryData->SetGeometry(restoredGeometry); result.push_back(newGeometryData.GetPointer()); } else { MITK_ERROR << "Invalid <Geometry3D> tag encountered. Skipping."; } } else if (tagName == "ProportionalTimeGeometry") { ProportionalTimeGeometry::Pointer restoredTimeGeometry = ProportionalTimeGeometryToXML::FromXML(currentElement); if (restoredTimeGeometry.IsNotNull()) { GeometryData::Pointer newGeometryData = GeometryData::New(); newGeometryData->SetTimeGeometry(restoredTimeGeometry); result.push_back(newGeometryData.GetPointer()); } else { MITK_ERROR << "Invalid <ProportionalTimeGeometry> tag encountered. Skipping."; } } } // for child of <GeometryData> } // for <GeometryData> } else { mitkThrow() << "Parsing error at line " << doc.ErrorRow() << ", col " << doc.ErrorCol() << ": " << doc.ErrorDesc(); } if (result.empty()) { mitkThrow() << "Did not read a single GeometryData object from input."; } return result; }
std::vector<itk::SmartPointer<mitk::BaseData>> mitk::PointSetReaderService::Read() { // Switch the current locale to "C" LocaleSwitch localeSwitch("C"); std::vector<itk::SmartPointer<mitk::BaseData>> result; InputStream stream(this); TiXmlDocument doc; stream >> doc; if (!doc.Error()) { TiXmlHandle docHandle(&doc); // unsigned int pointSetCounter(0); for (TiXmlElement *currentPointSetElement = docHandle.FirstChildElement("point_set_file").FirstChildElement("point_set").ToElement(); currentPointSetElement != NULL; currentPointSetElement = currentPointSetElement->NextSiblingElement()) { mitk::PointSet::Pointer newPointSet = mitk::PointSet::New(); // time geometry assembled for addition after all points // else the SetPoint method would already transform the points that we provide it mitk::ProportionalTimeGeometry::Pointer timeGeometry = mitk::ProportionalTimeGeometry::New(); if (currentPointSetElement->FirstChildElement("time_series") != NULL) { for (TiXmlElement *currentTimeSeries = currentPointSetElement->FirstChildElement("time_series")->ToElement(); currentTimeSeries != NULL; currentTimeSeries = currentTimeSeries->NextSiblingElement()) { unsigned int currentTimeStep(0); TiXmlElement *currentTimeSeriesID = currentTimeSeries->FirstChildElement("time_series_id"); currentTimeStep = atoi(currentTimeSeriesID->GetText()); timeGeometry->Expand(currentTimeStep + 1); // expand (default to identity) in any case TiXmlElement *geometryElem = currentTimeSeries->FirstChildElement("Geometry3D"); if (geometryElem) { Geometry3D::Pointer geometry = Geometry3DToXML::FromXML(geometryElem); if (geometry.IsNotNull()) { timeGeometry->SetTimeStepGeometry(geometry, currentTimeStep); } else { MITK_ERROR << "Could not deserialize Geometry3D element."; } } else { MITK_WARN << "Fallback to legacy behavior: defining PointSet geometry as identity"; } newPointSet = this->ReadPoints(newPointSet, currentTimeSeries, currentTimeStep); } } else { newPointSet = this->ReadPoints(newPointSet, currentPointSetElement, 0); } newPointSet->SetTimeGeometry(timeGeometry); result.push_back(newPointSet.GetPointer()); } } else { mitkThrow() << "Parsing error at line " << doc.ErrorRow() << ", col " << doc.ErrorCol() << ": " << doc.ErrorDesc(); } return result; }