/// @brief Computes total mobility and omega for a set of saturation values. /// @param[in] props rock and fluid properties /// @param[in] cells cells with which the saturation values are associated /// @param[in] s saturation values (for all phases) /// @param[out] totmob total mobility /// @param[out] omega fractional-flow weighted fluid densities. void computeTotalMobilityOmega(const Opm::IncompPropertiesInterface& props, const std::vector<int>& cells, const std::vector<double>& s, std::vector<double>& totmob, std::vector<double>& omega) { std::vector<double> pmobc; computePhaseMobilities(props, cells, s, pmobc); const std::size_t np = props.numPhases(); const std::vector<int>::size_type nc = cells.size(); std::vector<double>(cells.size(), 0.0).swap(totmob); std::vector<double>(cells.size(), 0.0).swap(omega ); const double* rho = props.density(); for (std::vector<int>::size_type c = 0; c < nc; ++c) { for (std::size_t p = 0; p < np; ++p) { totmob[ c ] += pmobc[c*np + p]; omega [ c ] += pmobc[c*np + p] * rho[ p ]; } omega[ c ] /= totmob[ c ]; } }
/// @brief Computes total mobility and omega for a set of s/c values. /// @param[in] props rock and fluid properties /// @param[in] polyprops polymer properties /// @param[in] cells cells with which the saturation values are associated /// @param[in] s saturation values (for all phases) /// @param[in] c polymer concentration /// @param[out] totmob total mobility /// @param[out] omega mobility-weighted (or fractional-flow weighted) /// fluid densities. void computeTotalMobilityOmega(const Opm::IncompPropertiesInterface& props, const Opm::PolymerProperties& polyprops, const std::vector<int>& cells, const std::vector<double>& s, const std::vector<double>& c, const std::vector<double>& cmax, std::vector<double>& totmob, std::vector<double>& omega) { int num_cells = cells.size(); int num_phases = props.numPhases(); totmob.resize(num_cells); omega.resize(num_cells); assert(int(s.size()) == num_cells*num_phases); std::vector<double> kr(num_cells*num_phases); props.relperm(num_cells, &s[0], &cells[0], &kr[0], 0); const double* visc = props.viscosity(); const double* rho = props.density(); double mob[2]; // here we assume num_phases=2 for (int cell = 0; cell < num_cells; ++cell) { double* kr_cell = &kr[2*cell]; polyprops.effectiveMobilities(c[cell], cmax[cell], visc, kr_cell, mob); totmob[cell] = mob[0] + mob[1]; omega[cell] = rho[0]*mob[0]/totmob[cell] + rho[1]*mob[1]/totmob[cell]; } }