/// @brief Computes total mobility and omega for a set of s/c values. /// @param[in] props rock and fluid properties /// @param[in] polyprops polymer properties /// @param[in] cells cells with which the saturation values are associated /// @param[in] s saturation values (for all phases) /// @param[in] c polymer concentration /// @param[out] totmob total mobility /// @param[out] omega mobility-weighted (or fractional-flow weighted) /// fluid densities. void computeTotalMobilityOmega(const Opm::IncompPropertiesInterface& props, const Opm::PolymerProperties& polyprops, const std::vector<int>& cells, const std::vector<double>& s, const std::vector<double>& c, const std::vector<double>& cmax, std::vector<double>& totmob, std::vector<double>& omega) { int num_cells = cells.size(); int num_phases = props.numPhases(); totmob.resize(num_cells); omega.resize(num_cells); assert(int(s.size()) == num_cells*num_phases); std::vector<double> kr(num_cells*num_phases); props.relperm(num_cells, &s[0], &cells[0], &kr[0], 0); const double* visc = props.viscosity(); const double* rho = props.density(); double mob[2]; // here we assume num_phases=2 for (int cell = 0; cell < num_cells; ++cell) { double* kr_cell = &kr[2*cell]; polyprops.effectiveMobilities(c[cell], cmax[cell], visc, kr_cell, mob); totmob[cell] = mob[0] + mob[1]; omega[cell] = rho[0]*mob[0]/totmob[cell] + rho[1]*mob[1]/totmob[cell]; } }
/// Computes the fractional flow for each cell in the cells argument /// @param[in] props rock and fluid properties /// @param[in] polyprops polymer properties /// @param[in] cells cells with which the saturation values are associated /// @param[in] s saturation values (for all phases) /// @param[in] c concentration values /// @param[in] cmax max polymer concentration experienced by cell /// @param[out] fractional_flow the fractional flow for each phase for each cell. void computeFractionalFlow(const Opm::IncompPropertiesInterface& props, const Opm::PolymerProperties& polyprops, const std::vector<int>& cells, const std::vector<double>& s, const std::vector<double>& c, const std::vector<double>& cmax, std::vector<double>& fractional_flows) { int num_cells = cells.size(); int num_phases = props.numPhases(); if (num_phases != 2) { OPM_THROW(std::runtime_error, "computeFractionalFlow() assumes 2 phases."); } fractional_flows.resize(num_cells*num_phases); assert(int(s.size()) == num_cells*num_phases); std::vector<double> kr(num_cells*num_phases); props.relperm(num_cells, &s[0], &cells[0], &kr[0], 0); const double* visc = props.viscosity(); double mob[2]; // here we assume num_phases=2 for (int cell = 0; cell < num_cells; ++cell) { double* kr_cell = &kr[2*cell]; polyprops.effectiveMobilities(c[cell], cmax[cell], visc, kr_cell, mob); fractional_flows[2*cell] = mob[0] / (mob[0] + mob[1]); fractional_flows[2*cell + 1] = mob[1] / (mob[0] + mob[1]); } }
/// @brief Computes total mobility for a set of s/c values. /// @param[in] props rock and fluid properties /// @param[in] polyprops polymer properties /// @param[in] cells cells with which the saturation values are associated /// @param[in] s saturation values (for all phases) /// @param[in] c polymer concentration /// @param[out] totmob total mobilities. void computeTotalMobility(const Opm::IncompPropertiesInterface& props, const Opm::PolymerProperties& polyprops, const std::vector<int>& cells, const std::vector<double>& s, const std::vector<double>& c, const std::vector<double>& cmax, std::vector<double>& totmob) { int num_cells = cells.size(); totmob.resize(num_cells); std::vector<double> kr(2*num_cells); props.relperm(num_cells, &s[0], &cells[0], &kr[0], 0); const double* visc = props.viscosity(); for (int cell = 0; cell < num_cells; ++cell) { double* kr_cell = &kr[2*cell]; polyprops.effectiveTotalMobility(c[cell], cmax[cell], visc, kr_cell, totmob[cell]); } }
TransportSolverTwophaseReorder::TransportSolverTwophaseReorder(const UnstructuredGrid& grid, const Opm::IncompPropertiesInterface& props, const double* gravity, const double tol, const int maxit) : grid_(grid), props_(props), tol_(tol), maxit_(maxit), darcyflux_(0), source_(0), dt_(0.0), saturation_(grid.number_of_cells, -1.0), fractionalflow_(grid.number_of_cells, -1.0), reorder_iterations_(grid.number_of_cells, 0), mob_(2*grid.number_of_cells, -1.0) #ifdef EXPERIMENT_GAUSS_SEIDEL , ia_upw_(grid.number_of_cells + 1, -1), ja_upw_(grid.number_of_faces, -1), ia_downw_(grid.number_of_cells + 1, -1), ja_downw_(grid.number_of_faces, -1) #endif { if (props.numPhases() != 2) { OPM_THROW(std::runtime_error, "Property object must have 2 phases"); } visc_ = props.viscosity(); int num_cells = props.numCells(); smin_.resize(props.numPhases()*num_cells); smax_.resize(props.numPhases()*num_cells); std::vector<int> cells(num_cells); for (int i = 0; i < num_cells; ++i) { cells[i] = i; } props.satRange(props.numCells(), &cells[0], &smin_[0], &smax_[0]); if (gravity) { initGravity(gravity); initColumns(); } }
std::vector<ADB> phaseMobility(const Opm::IncompPropertiesInterface& props, const std::vector<int>& cells, const typename ADB::V& sw) { typedef Eigen::Array<double, Eigen::Dynamic, 2, Eigen::RowMajor> TwoCol; typedef Eigen::Array<double, Eigen::Dynamic, 4, Eigen::RowMajor> FourCol; typedef Eigen::SparseMatrix<double> S; typedef typename ADB::V V; typedef typename ADB::M M; const int nc = props.numCells(); TwoCol s(nc, 2); s.leftCols<1>() = sw; s.rightCols<1>() = 1.0 - s.leftCols<1>(); TwoCol kr(nc, 2); FourCol dkr(nc, 4); props.relperm(nc, s.data(), cells.data(), kr.data(), dkr.data()); V krw = kr.leftCols<1>(); V kro = kr.rightCols<1>(); V dkrw = dkr.leftCols<1>(); // Left column is top-left of dkr/ds 2x2 matrix. V dkro = -dkr.rightCols<1>(); // Right column is bottom-right of dkr/ds 2x2 matrix. S krwjac(nc,nc); S krojac(nc,nc); auto sizes = Eigen::ArrayXi::Ones(nc); krwjac.reserve(sizes); krojac.reserve(sizes); for (int c = 0; c < nc; ++c) { krwjac.insert(c,c) = dkrw(c); krojac.insert(c,c) = dkro(c); } const double* mu = props.viscosity(); std::vector<M> dmw = { M(krwjac)/mu[0] }; std::vector<M> dmo = { M(krojac)/mu[1] }; std::vector<ADB> pmobc = { ADB::function(krw / mu[0], std::move(dmw)) , ADB::function(kro / mu[1], std::move(dmo)) }; return pmobc; }
/// @brief Computes phase mobilities for a set of saturation values. /// @param[in] props rock and fluid properties /// @param[in] cells cells with which the saturation values are associated /// @param[in] s saturation values (for all phases) /// @param[out] pmobc phase mobilities (for all phases). void computePhaseMobilities(const Opm::IncompPropertiesInterface& props, const std::vector<int>& cells, const std::vector<double>& s , std::vector<double>& pmobc) { const std::vector<int>::size_type nc = cells.size(); const std::size_t np = props.numPhases(); assert(s.size() == nc * np); std::vector<double>(nc * np, 0.0).swap(pmobc ); double* dpmobc = 0; props.relperm(static_cast<const int>(nc), &s[0], &cells[0], &pmobc[0], dpmobc); const double* mu = props.viscosity(); std::vector<double>::iterator lam = pmobc.begin(); for (std::vector<int>::size_type c = 0; c < nc; ++c) { for (std::size_t p = 0; p < np; ++p, ++lam) { *lam /= mu[ p ]; } } }