void computeGravityAndTraveledDistance(const QUESO::FullEnvironment& env) { struct timeval timevalNow; gettimeofday(&timevalNow, NULL); if (env.fullRank() == 0) { std::cout << "\nBeginning run of 'Gravity + Projectile motion' example at " << ctime(&timevalNow.tv_sec) << "\n my fullRank = " << env.fullRank() << "\n my subEnvironmentId = " << env.subId() << "\n my subRank = " << env.subRank() << "\n my interRank = " << env.inter0Rank() << std::endl << std::endl; } // Just examples of possible calls if ((env.subDisplayFile() ) && (env.displayVerbosity() >= 2)) { *env.subDisplayFile() << "Beginning run of 'Gravity + Projectile motion' example at " << ctime(&timevalNow.tv_sec) << std::endl; } env.fullComm().Barrier(); env.subComm().Barrier(); // Just an example of a possible call //================================================================ // Statistical inverse problem (SIP): find posterior PDF for 'g' //================================================================ gettimeofday(&timevalNow, NULL); if (env.fullRank() == 0) { std::cout << "Beginning 'SIP -> Gravity estimation' at " << ctime(&timevalNow.tv_sec) << std::endl; } //------------------------------------------------------ // SIP Step 1 of 6: Instantiate the parameter space //------------------------------------------------------ QUESO::VectorSpace<QUESO::GslVector,QUESO::GslMatrix> paramSpace(env, "param_", 1, NULL); //------------------------------------------------------ // SIP Step 2 of 6: Instantiate the parameter domain //------------------------------------------------------ QUESO::GslVector paramMinValues(paramSpace.zeroVector()); QUESO::GslVector paramMaxValues(paramSpace.zeroVector()); paramMinValues[0] = 8.; paramMaxValues[0] = 11.; QUESO::BoxSubset<QUESO::GslVector,QUESO::GslMatrix> paramDomain("param_", paramSpace, paramMinValues, paramMaxValues); //------------------------------------------------------ // SIP Step 3 of 6: Instantiate the likelihood function // object to be used by QUESO. //------------------------------------------------------ likelihoodRoutine_Data likelihoodRoutine_Data(env); QUESO::GenericScalarFunction<QUESO::GslVector,QUESO::GslMatrix> likelihoodFunctionObj("like_", paramDomain, likelihoodRoutine, (void *) &likelihoodRoutine_Data, true); // the routine computes [ln(function)] //------------------------------------------------------ // SIP Step 4 of 6: Define the prior RV //------------------------------------------------------ #ifdef PRIOR_IS_GAUSSIAN QUESO::GslVector meanVector( paramSpace.zeroVector() ); meanVector[0] = 9; QUESO::GslMatrix covMatrix = QUESO::GslMatrix(paramSpace.zeroVector()); covMatrix(0,0) = 1.; // Create a Gaussian prior RV QUESO::GaussianVectorRV<QUESO::GslVector,QUESO::GslMatrix> priorRv("prior_",paramDomain,meanVector,covMatrix); #else // Create an uniform prior RV QUESO::UniformVectorRV<QUESO::GslVector,QUESO::GslMatrix> priorRv("prior_",paramDomain); #endif //------------------------------------------------------ // SIP Step 5 of 6: Instantiate the inverse problem //------------------------------------------------------ QUESO::GenericVectorRV<QUESO::GslVector,QUESO::GslMatrix> postRv("post_", // Extra prefix before the default "rv_" prefix paramSpace); QUESO::StatisticalInverseProblem<QUESO::GslVector,QUESO::GslMatrix> ip("", // No extra prefix before the default "ip_" prefix NULL, priorRv, likelihoodFunctionObj, postRv); //------------------------------------------------------ // SIP Step 6 of 6: Solve the inverse problem, that is, // set the 'pdf' and the 'realizer' of the posterior RV //------------------------------------------------------ std::cout << "Solving the SIP with Metropolis Hastings" << std::endl << std::endl; QUESO::GslVector paramInitials(paramSpace.zeroVector()); priorRv.realizer().realization(paramInitials); QUESO::GslMatrix proposalCovMatrix(paramSpace.zeroVector()); proposalCovMatrix(0,0) = std::pow( fabs(paramInitials[0])/20. , 2. ); ip.solveWithBayesMetropolisHastings(NULL, paramInitials, &proposalCovMatrix); //================================================================ // Statistical forward problem (SFP): find the max distance // traveled by an object in projectile motion; input pdf for 'g' // is the solution of the SIP above. //================================================================ gettimeofday(&timevalNow, NULL); std::cout << "Beginning 'SFP -> Projectile motion' at " << ctime(&timevalNow.tv_sec) << std::endl; //------------------------------------------------------ // SFP Step 1 of 6: Instantiate the parameter *and* qoi spaces. // SFP input RV = FIP posterior RV, so SFP parameter space // has been already defined. //------------------------------------------------------ QUESO::VectorSpace<QUESO::GslVector,QUESO::GslMatrix> qoiSpace(env, "qoi_", 1, NULL); //------------------------------------------------------ // SFP Step 2 of 6: Instantiate the parameter domain //------------------------------------------------------ // Not necessary because input RV of the SFP = output RV of SIP. // Thus, the parameter domain has been already defined. //------------------------------------------------------ // SFP Step 3 of 6: Instantiate the qoi function object // to be used by QUESO. //------------------------------------------------------ qoiRoutine_Data qoiRoutine_Data; qoiRoutine_Data.m_angle = M_PI/4.0; //45 degrees (radians) qoiRoutine_Data.m_initialVelocity= 5.; //initial speed (m/s) qoiRoutine_Data.m_initialHeight = 0.; //initial height (m) QUESO::GenericVectorFunction<QUESO::GslVector,QUESO::GslMatrix,QUESO::GslVector,QUESO::GslMatrix> qoiFunctionObj("qoi_", paramDomain, qoiSpace, qoiRoutine, (void *) &qoiRoutine_Data); //------------------------------------------------------ // SFP Step 4 of 6: Define the input RV //------------------------------------------------------ // Not necessary because input RV of SFP = output RV of SIP // (postRv). //------------------------------------------------------ // SFP Step 5 of 6: Instantiate the forward problem //------------------------------------------------------ QUESO::GenericVectorRV<QUESO::GslVector,QUESO::GslMatrix> qoiRv("qoi_", qoiSpace); QUESO::StatisticalForwardProblem<QUESO::GslVector,QUESO::GslMatrix,QUESO::GslVector,QUESO::GslMatrix> fp("", NULL, postRv, qoiFunctionObj, qoiRv); //------------------------------------------------------ // SFP Step 6 of 6: Solve the forward problem //------------------------------------------------------ std::cout << "Solving the SFP with Monte Carlo" << std::endl << std::endl; fp.solveWithMonteCarlo(NULL); //------------------------------------------------------ gettimeofday(&timevalNow, NULL); if ((env.subDisplayFile() ) && (env.displayVerbosity() >= 2)) { *env.subDisplayFile() << "Ending run of 'Gravity + Projectile motion' example at " << ctime(&timevalNow.tv_sec) << std::endl; } if (env.fullRank() == 0) { std::cout << "Ending run of 'Gravity + Projectile motion' example at " << ctime(&timevalNow.tv_sec) << std::endl; } return; }
int main(int argc, char **argv) { MPI_Init(&argc, &argv); QUESO::EnvOptionsValues options; options.m_numSubEnvironments = 1; options.m_subDisplayFileName = "debug_output"; options.m_seed = 1.0; options.m_checkingLevel = 1; options.m_platformName = "my_platform"; options.m_displayVerbosity = 20; /* std::set<unsigned int> subDisplayAllowed; */ /* subDisplayAllowed.insert(0); */ /* options.m_subDisplayAllowedSet = subDisplayAllowed; */ /* options.m_subDisplayAllowAll = 0; */ QUESO::FullEnvironment *env = new QUESO::FullEnvironment(MPI_COMM_WORLD, "", "", &options); if (!env->fullEnvIsReady()) { std::cerr << "Full env ready test failed" << std::endl; return 1; } if (env->displayVerbosity() > 10) { std::cout << "have high enough display verbosity" << std::endl; } else { std::cout << "not high enough" << std::endl; } if (env->worldRank() != 0) { std::cerr << "World rank test failed" << std::endl; return 1; } if (env->subDisplayFileName() != "debug_output") { std::cerr << "subDisplayFileName test failed" << std::endl; return 1; } env->setOptionsInputFileAccessState(false); if (env->optionsInputFileName() != "") { std::cerr << "Input file acces state test failed" << std::endl; return 1; } env->setOptionsInputFileAccessState(true); if (env->checkingLevel() != options.m_checkingLevel) { std::cerr << "Checking level test failed" << std::endl; return 1; } if (env->seed() != options.m_seed) { std::cerr << "Seed test failed" << std::endl; return 1; } #ifdef QUESO_USES_NEW_RNG_CLASS env->resetSeed(2); if (env->seed() != 2) { std::cerr << "Second seed test failed" << std::endl; return 1; } env->resetSeed(-2); if (env->seed() != (2 + env->worldRank())) { std::cerr << "Third seed test failed" << std::endl; return 1; } #else env->resetGslSeed(2); if (gsl_rng_default_seed != 2) { std::cerr << "Second seed test failed" << std::endl; return 1; } env->resetGslSeed(-2); if (gsl_rng_default_seed != (2 + env->worldRank())) { std::cerr << "Third seed test failed" << std::endl; return 1; } #endif if (env->platformName() != options.m_platformName) { std::cerr << "Platform name test failed" << std::endl; return 1; } env->resetIdentifyingString("my_identifying_string"); if (env->identifyingString() != "my_identifying_string") { std::cerr << "Identifying string test failed" << std::endl; return 1; } delete env; MPI_Finalize(); /* * This code should never get here. If it does, the bash script that wraps * around it negates the return value, making this a failure */ return 0; }