/** * @v * @vth */ inline vec_float4 updateF(vec_float4 v,vec_float4 vth) { vec_float4 updateF_rtn; updateF_rtn = spu_sel(updateF_rtn,1.0,spu_cmpgt(spu_sub(v,vth),0.0)); updateF_rtn = spu_sel(updateF_rtn,0.0,spu_nand(spu_cmpgt(spu_sub(v,vth),0.0),spu_cmpgt(spu_sub(v,vth),0.0))); return updateF_rtn; }
inline void MinMaxBinCount3SIMD(aabb_t *aabb, minmaxbin_t *mmb, aabb_t *baabb) { vector float *baabb_min = (vector float*)baabb->min; vector float *baabb_max = (vector float*)baabb->max; vector float *aabb_min = (vector float*)aabb->min; vector float *aabb_max = (vector float*)aabb->max; vector float nbins = spu_splats((float)nsamplepoints); vector float invnbins = spu_re(nbins); nbins = spu_sub(nbins, spu_splats(1.0f)); vector float width = spu_abs(spu_sub(*baabb_max, *baabb_min)); vector float invdelta = spu_re(spu_mul(width, invnbins)); vector int minindex = GetBinSIMD(*baabb_min, *baabb_max, *aabb_min, invdelta, nbins); vector int maxindex = GetBinSIMD(*baabb_min, *baabb_max, *aabb_max, invdelta, nbins); mmb->minbins[minindex[0]].b[0]++; mmb->minbins[minindex[1]].b[1]++; mmb->minbins[minindex[2]].b[2]++; mmb->maxbins[maxindex[0]].b[0]++; mmb->maxbins[maxindex[1]].b[1]++; mmb->maxbins[maxindex[2]].b[2]++; }
vec_uint4 ulpDiff_f4(vec_float4 ref, vec_float4 vals) { vec_int4 refi = (vec_int4)ref; vec_int4 valsi = (vec_int4)vals; vec_int4 diff = spu_sub(refi, valsi); vec_int4 negdiff = spu_sub(spu_splats((int)0), diff); return (vec_uint4)(spu_sel(negdiff, diff, spu_cmpgt(diff, 0))); }
inline void AreaLeftRight(vector float aabb_min, vector float aabb_max, vector float side, vector float plane, vector float *aleft, vector float *aright) { vector float lside; vector float rside; lside = spu_abs(spu_sub(plane, aabb_min)); rside = spu_abs(spu_sub(aabb_max, plane)); *aleft = spu_mul(lside, side); *aright = spu_mul(rside, side); }
int num_in_buffer(int side){ volatile vector signed int *head_idx, *tail_idx; int buffer_size; if(side == OUT && mcb[am].local[OUT] < 255){ int parent_idx = mcb[am].local[OUT]; int side = (mcb[am].id+1)&1; head_idx = &md[parent_idx].idx[side][HEAD]; tail_idx = &md[parent_idx].idx[side][TAIL]; buffer_size = mcb[parent_idx].buffer_size[side]; } else { head_idx = &md[am].idx[side][HEAD]; tail_idx = &md[am].idx[side][TAIL]; buffer_size = mcb[am].buffer_size[side]; } vector signed int diff = spu_sub(*head_idx,*tail_idx); int num = spu_extract(diff,0); if(num < 0) num = num + buffer_size; return num; }
void check_pull_dma(int side){ // Check left if(md[am].held_tag[side] < 32){ mfc_write_tag_mask( 1 << md[am].held_tag[side] ); int status = mfc_read_tag_status_immediate(); if(status){ // Update idx md[am].idx[side][HEAD] = spu_add(md[am].idx[side][HEAD], md[am].num_waiting[side]); vector signed int buffer_size = spu_splats(mcb[am].buffer_size[side] -1); vector unsigned int cmp_v = spu_cmpgt(md[am].idx[side][HEAD], buffer_size); vector signed int zeros = {0,0,0,0}; buffer_size = spu_add(buffer_size,1); zeros = spu_sel(zeros,buffer_size,cmp_v); md[am].idx[side][HEAD] = spu_sub(md[am].idx[side][HEAD],zeros); md[am].num_pulled[side] += md[am].num_waiting[side]; md[am].num_waiting[side] = 0; if(md[am].num_pulled[side] == mcb[am].data_size[side]){ md[am].mm_depleted[side] = 1; } // Release tag mfc_tag_release( md[am].held_tag[side] ); md[am].held_tag[side] = 32; } } }
inline void merge_cache_blocks(RenderableCacheLine* cache) { vec_uchar16 next = cache->chunkNext; for (;;) { vec_uchar16 nextnext = spu_shuffle(next, next, next); vec_uchar16 nextmask = spu_and(next, spu_splats((unsigned char)CHUNKNEXT_MASK)); vec_ushort8 firstblock0 = spu_cmpeq( cache->chunkStart[0], 0); vec_ushort8 firstblock1 = spu_cmpeq( cache->chunkStart[1], 0); // change next to word offset, note we don't care what the low bit shifted in is vec_uchar16 firstshuf = (vec_uchar16) spu_sl( (vec_ushort8)nextmask, 1 ); vec_uchar16 first = (vec_uchar16) spu_shuffle( firstblock0, firstblock1, firstshuf ); vec_ushort8 tri0 = cache->chunkTriangle[0]; vec_ushort8 tri1 = cache->chunkTriangle[1]; vec_uchar16 trishufhi = spu_or ( firstshuf, spu_splats((unsigned char) 1)); vec_uchar16 trishuflo = spu_and( firstshuf, spu_splats((unsigned char) 254)); vec_ushort8 ntri0 = spu_shuffle( tri0, tri1, spu_shuffle( trishuflo, trishufhi, SHUF0 ) ); vec_ushort8 ntri1 = spu_shuffle( tri0, tri1, spu_shuffle( trishuflo, trishufhi, SHUF1 ) ); vec_ushort8 trieq0 = spu_cmpeq( tri0, ntri0 ); vec_ushort8 trieq1 = spu_cmpeq( tri1, ntri1 ); vec_uchar16 trieq = (vec_uchar16) spu_shuffle( trieq0, trieq1, MERGE ); vec_uchar16 combi = spu_orc(first, trieq); vec_uchar16 canmerge = spu_cmpgt( spu_nor(spu_or(next, nextnext), combi), 256-CHUNKNEXT_BUSY_BIT ); vec_uint4 gather = spu_gather( canmerge ); vec_uint4 mergeid = spu_sub( spu_cntlz( gather ), spu_promote((unsigned int)16, 0)); if( !spu_extract(gather, 0) ) { return; } // unsigned int firstchunk = spu_extract(mergeid, 0); // unsigned int nextchunk = cache->chunkNextArray[firstchunk]; vec_uint4 v_chunkNext = (vec_uint4) si_rotqby( (qword) next, (qword) spu_add(mergeid,13) ); vec_uint4 v_chunkNextNext = (vec_uint4) si_rotqby( (qword) next, (qword) spu_add(v_chunkNext,13) ); // cache->chunkNextArray[firstchunk] = cache->chunkNextArray[nextchunk]; next = spu_shuffle( (vec_uchar16) v_chunkNextNext, next, (vec_uchar16) si_cbd( (qword) mergeid, 0 ) ); // cache->chunkNextArray[nextchunk] = CHUNKNEXT_FREE_BLOCK; next = spu_shuffle( spu_splats( (unsigned char) CHUNKNEXT_FREE_BLOCK), next, (vec_uchar16) si_cbd( (qword) v_chunkNext, 0 ) ); // this is for debug use only, it's not really needed... // cache->chunkStartArray[nextchunk] = -1; cache->chunkStartArray[ spu_extract(v_chunkNext,0) & 255 ] = -1; cache->chunkNext = next; } }
void * sbrk (ptrdiff_t increment) { static caddr_t heap_ptr = NULL; caddr_t base; vector unsigned int sp_reg, sp_delta; vector unsigned int *sp_ptr; caddr_t sps; /* The stack pointer register. */ volatile register vector unsigned int sp_r1 __asm__("1"); if (heap_ptr == NULL) heap_ptr = (caddr_t) & _end; sps = (caddr_t) spu_extract (sp_r1, 0); if (((int) sps - STACKSIZE - (int) heap_ptr) >= increment) { base = heap_ptr; heap_ptr += increment; sp_delta = (vector unsigned int) spu_insert (increment, spu_splats (0), 1); /* Subtract sp_delta from the SP limit (word 1). */ sp_r1 = spu_sub (sp_r1, sp_delta); /* Fix-up backchain. */ sp_ptr = (vector unsigned int *) spu_extract (sp_r1, 0); do { sp_reg = *sp_ptr; *sp_ptr = (vector unsigned int) spu_sub (sp_reg, sp_delta); } while ((sp_ptr = (vector unsigned int *) spu_extract (sp_reg, 0))); return (base); } else { errno = ENOMEM; return ((void *) -1); } }
inline vector int GetBinSIMD(vector float left, vector float right, vector float pos, vector float invdelta, vector float nbins) { pos = spu_min(pos, right); pos = spu_max(pos, left); vector float bin = spu_mul(spu_abs(spu_sub(pos, left)), invdelta); bin = spu_min(bin, nbins); bin = spu_max(spu_splats(0.0f), bin); return spu_convts(bin, 0); }
unsigned int __mfc_multi_tag_reserve (unsigned int number_of_tags) { vector unsigned int table_copy; vector unsigned int one = (vector unsigned int) { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF }; vector unsigned int count_busy, is_valid; vector unsigned int count_total; vector unsigned int count_avail = (vector unsigned int) { 0, 0, 0, 0 }; vector unsigned int index = (vector unsigned int) { 0, 0, 0, 0 }; table_copy = __mfc_tag_table; /* count_busy: number of consecutive busy tags count_avail: number of consecutive free tags table_copy: temporary copy of the tag table count_total: sum of count_busy and count_avail index: index of the current working tag */ do { table_copy = spu_sl (table_copy, count_avail); count_busy = spu_cntlz (table_copy); table_copy = spu_sl (table_copy, count_busy); count_avail = spu_cntlz (spu_xor(table_copy, -1)); count_total = spu_add (count_busy, count_avail); index = spu_add (index, count_total); } while (spu_extract (count_avail, 0) < number_of_tags && spu_extract (table_copy, 0) != 0); index = spu_sub (index, count_avail); /* is_valid is set to 0xFFFFFFFF if table_copy == 0, 0 otherwise. */ is_valid = spu_cmpeq (table_copy, 0); index = spu_sel (index, is_valid, is_valid); /* Now I need to actually mark the tags as used. */ table_copy = spu_sl (one, number_of_tags); table_copy = spu_rl (table_copy, -number_of_tags - spu_extract (index, 0)); table_copy = spu_sel (table_copy, __mfc_tag_table, table_copy); __mfc_tag_table = spu_sel (table_copy, __mfc_tag_table, is_valid); return spu_extract (index, 0); }
void _compute( unsigned int bs, unsigned int k, unsigned int row, vector float *BKJ, float *B, float *A ) { vector float *BIJ, aik; unsigned int i; for( ; k < bs ; k++ ) { aik = spu_splats( A[k*bs+row] ); BIJ = (vector float*)( B + ( k * bs ) ); // -----> For each vector in row for( i = 0 ; i < bs / 4 ; i++ ) { // BIJ[i] = BIJ[i] - BKJ[i] * aik; BIJ[i] = spu_sub( BIJ[i], spu_mul( BKJ[i], aik ) ); } } }
unsigned int __mfc_tag_reserve (void) { vector unsigned int mask = (vector unsigned int) { 0x80000000, 0x80000000, 0x80000000, 0x80000000 }; vector unsigned int count_zeros, is_valid; vector signed int count_neg; count_zeros = spu_cntlz (__mfc_tag_table); count_neg = spu_sub (0, (vector signed int) count_zeros); mask = spu_rlmask (mask, (vector signed int) count_neg); __mfc_tag_table = spu_andc (__mfc_tag_table, mask); is_valid = spu_cmpeq (count_zeros, 32); count_zeros = spu_sel (count_zeros, is_valid, is_valid); return spu_extract (count_zeros, 0); }
void _compute2( unsigned int bs, unsigned int k, unsigned int row, vector float *BKJ, float *B, float *A, Functions_t *funcs ) { vector float *BIJ, aik; unsigned int i; for( ; k < bs ; k++ ) { aik = spu_splats( A[k*bs+row] ); BIJ = (vector float*)( B + ( k * bs ) ); funcs->printuint( 900000 + k ); // -----> For each vector in row for( i = 0 ; i < bs / 4 ; i++ ) { funcs->printfloatv( &aik ); funcs->printfloatv( &BIJ[i] ); funcs->printfloatv( &BKJ[i] ); // BIJ[i] = BIJ[i] - BKJ[i] * aik; BIJ[i] = spu_sub( BIJ[i], spu_mul( BKJ[i], aik ) ); funcs->printfloatv( &BIJ[i] ); } } }
void merge_buffers(){ vector unsigned int cmp_v, cmp_v2; const vector signed int one_at_0 = {1,0,0,0}; const vector signed int one_at_1 = {0,1,0,0}; const vector signed int one_at_2 = {0,0,1,0}; const vector signed int ones = {1,1,1,1}; const vector signed int zeros = {0,0,0,0}; const vector unsigned char cmp_v_shuffle_mask = {31,31,31,31, 31,31,31,31, 31,31,31,31, 31,31,31,31}; vector unsigned char rev_mask; const vector unsigned char rev_left = {12,13,14,15, 8,9,10,11, 4,5,6,7, 0,1,2,3}; const vector unsigned char rev_right = {28,29,30,31, 24,25,26,27, 20,21,22,23, 16,17,18,19}; vector signed int *out_head_idx; if(mcb[am].local[OUT] < 255){ int parent_idx = mcb[am].local[OUT]; int side = (mcb[am].id+1)&1; out_head_idx = (vector signed int*) &md[parent_idx].idx[side][HEAD]; } else { out_head_idx = (vector signed int*) &md[am].idx[OUT][HEAD]; } vector signed int *left_tail_idx = (vector signed int*) &md[am].idx[LEFT][TAIL]; vector signed int *right_tail_idx = (vector signed int*) &md[am].idx[RIGHT][TAIL]; vector signed int size_v = {mcb[am].buffer_size[LEFT], mcb[am].buffer_size[RIGHT], mcb[am].buffer_size[OUT], 0}; vector signed int avail_v = {num_in_buffer(LEFT), num_in_buffer(RIGHT), num_free_in_buffer(OUT), 1}; vector signed int avail_before = { spu_extract(avail_v, 0), spu_extract(avail_v, 1), 0, 0 }; vector unsigned int avail = spu_gather( spu_cmpgt(avail_v, zeros) ); // avail = 0x0F if all avail_v > zeros vector signed int *left, *right, *out; left = (vector signed int*) &md[am].buffer[LEFT][ spu_extract(*left_tail_idx,0) ]; right = (vector signed int*) &md[am].buffer[RIGHT][ spu_extract(*right_tail_idx,0) ]; out = (vector signed int*) &md[am].buffer[OUT][ spu_extract(*out_head_idx,0) ]; #ifdef TRACE_TIME dec_val2 = spu_read_decrementer(); #endif while(spu_extract(avail,0) == 0x0F){ // cmp left and right to determine who gets eaten cmp_v = spu_cmpgt(*left,*right); cmp_v = spu_shuffle(cmp_v, cmp_v, cmp_v_shuffle_mask); // cmp_v = {FFFF,FFFF,FFFF,FFFF} if left[3] > right[3] *out = spu_sel(*left,*right,cmp_v); rev_mask = spu_sel(rev_right,rev_left,(vector unsigned char)cmp_v); *left = spu_shuffle(*left,*right,rev_mask); // data to be sorted is now in out and left, left in descending order sort_vectors(out,left); // update index of the used side if( spu_extract(cmp_v,0) ){ // left[3] > right[3] *right_tail_idx = spu_add(*right_tail_idx,ones); avail_v = spu_sub(avail_v, one_at_1); right++; // modulus hack cmp_v2 = spu_cmpeq(*right_tail_idx, size_v); if( __builtin_expect( spu_extract(cmp_v2,0) ,0) ){ *right_tail_idx = zeros; right = (vector signed int*) &md[am].buffer[RIGHT][0]; } } else { *right = *left; *left_tail_idx = spu_add(*left_tail_idx,ones); avail_v = spu_sub(avail_v, one_at_0); left++; // modulus hack cmp_v2 = spu_cmpeq(*left_tail_idx, size_v); if( __builtin_expect( spu_extract(cmp_v2,0) ,0) ){ *left_tail_idx = zeros; left = (vector signed int*) &md[am].buffer[LEFT][0]; } } // update out head idx *out_head_idx = spu_add(*out_head_idx,ones); avail_v = spu_sub(avail_v, one_at_2); out++; // modulus hack cmp_v2 = spu_cmpeq(*out_head_idx, size_v); if( __builtin_expect(spu_extract(cmp_v2,0),0) ){ out = (vector signed int*) &md[am].buffer[OUT][0]; *out_head_idx = zeros; } // is there data still available? avail = spu_gather(spu_cmpgt(avail_v, zeros)); } #ifdef TRACE_TIME merge_loop_ticks += -(spu_read_decrementer() - dec_val2); #endif // how much got produced? vector signed int consumed = spu_sub(avail_before, avail_v); int consumed_left = spu_extract(consumed, 0); int consumed_right = spu_extract(consumed, 1); if(consumed_left) update_tail(LEFT); if(consumed_right) update_tail(RIGHT); md[am].consumed[LEFT] += consumed_left; md[am].consumed[RIGHT] += consumed_right; if(md[am].consumed[LEFT] == mcb[am].data_size[LEFT]) md[am].depleted[LEFT] = 1; if(md[am].consumed[RIGHT] == mcb[am].data_size[RIGHT]) md[am].depleted[RIGHT] = 1; if(mcb[am].local[OUT] < 255 && md[am].depleted[LEFT] && md[am].depleted[RIGHT]){ md[am].done = 1; --num_active_mergers; } }
void* libvector_16s_vector_subtract_unaligned(void* target, void* src0, void* src1, unsigned int num_bytes){ //loop iterator i int i = 0; void* retval = target; //put the target and source addresses into qwords vector unsigned int address_counter_tgt = {(unsigned int)target, 0, 0, 0}; vector unsigned int address_counter_src0 = {(unsigned int)src0, 0, 0 ,0}; vector unsigned int address_counter_src1 = {(unsigned int)src1, 0, 0, 0}; //create shuffle masks //shuffle mask building blocks: //all from the first vector vector unsigned char oneup = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f}; //all from the second vector vector unsigned char second_oneup = {0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f}; //gamma: second half of the second, first half of the first, break at (unsigned int)src0%16 vector unsigned char src_cmp = spu_splats((unsigned char)((unsigned int)src0%16)); vector unsigned char gt_res = spu_cmpgt(oneup, src_cmp); vector unsigned char eq_res = spu_cmpeq(oneup, src_cmp); vector unsigned char cmp_res = spu_or(gt_res, eq_res); vector unsigned char sixteen_uchar = spu_splats((unsigned char)16); vector unsigned char phase_change = spu_and(sixteen_uchar, cmp_res); vector unsigned int shuffle_mask_gamma = spu_add((vector unsigned int)phase_change, (vector unsigned int)oneup); shuffle_mask_gamma = spu_rlqwbyte(shuffle_mask_gamma, (unsigned int)src0%16); //eta: second half of the second, first half of the first, break at (unsigned int)src1%16 src_cmp = spu_splats((unsigned char)((unsigned int)src1%16)); gt_res = spu_cmpgt(oneup, src_cmp); eq_res = spu_cmpeq(oneup, src_cmp); cmp_res = spu_or(gt_res, eq_res); sixteen_uchar = spu_splats((unsigned char)16); phase_change = spu_and(sixteen_uchar, cmp_res); vector unsigned int shuffle_mask_eta = spu_add((vector unsigned int)phase_change, (vector unsigned int)oneup); shuffle_mask_eta = spu_rlqwbyte(shuffle_mask_eta, (unsigned int)src1%16); vector unsigned char tgt_second = spu_rlqwbyte(second_oneup, -((unsigned int)target%16)); vector unsigned char tgt_first = spu_rlqwbyte(oneup, -((unsigned int)target%16)); //alpha: first half of first, second half of second, break at (unsigned int)target%16 src_cmp = spu_splats((unsigned char)((unsigned int)target%16)); gt_res = spu_cmpgt(oneup, src_cmp); eq_res = spu_cmpeq(oneup, src_cmp); cmp_res = spu_or(gt_res, eq_res); phase_change = spu_and(sixteen_uchar, cmp_res); vector unsigned int shuffle_mask_alpha = spu_add((vector unsigned int)phase_change, (vector unsigned int)oneup); //delta: first half of first, first half of second, break at (unsigned int)target%16 vector unsigned char shuffle_mask_delta = spu_shuffle(oneup, tgt_second, (vector unsigned char)shuffle_mask_alpha); //epsilon: second half of second, second half of first, break at (unsigned int)target%16 vector unsigned char shuffle_mask_epsilon = spu_shuffle(tgt_second, oneup, (vector unsigned char)shuffle_mask_alpha); //zeta: second half of second, first half of first, break at 16 - (unsigned int)target%16 vector unsigned int shuffle_mask_zeta = spu_rlqwbyte(shuffle_mask_alpha, (unsigned int)target%16); //beta: first half of first, second half of second, break at num_bytes%16 src_cmp = spu_splats((unsigned char)(num_bytes%16)); gt_res = spu_cmpgt(oneup, src_cmp); eq_res = spu_cmpeq(oneup, src_cmp); cmp_res = spu_or(gt_res, eq_res); phase_change = spu_and(sixteen_uchar, cmp_res); vector unsigned int shuffle_mask_beta = spu_add((vector unsigned int)phase_change, (vector unsigned int)oneup); qword src0_past; qword src0_present; qword src1_past; qword src1_present; qword tgt_past; qword tgt_present; qword in_temp0; qword in_temp1; qword out_temp0; qword out_temp1; vector signed short sum; src0_past = si_lqd((qword)address_counter_src0, 0); src1_past = si_lqd((qword)address_counter_src1, 0); tgt_past = si_lqd((qword)address_counter_tgt, 0); for(i = 0; i < num_bytes/16; ++i) { src0_present = si_lqd((qword)address_counter_src0, 16); src1_present = si_lqd((qword)address_counter_src1, 16); tgt_present = si_lqd((qword)address_counter_tgt, 16); in_temp0 = spu_shuffle(src0_present, src0_past, (vector unsigned char)shuffle_mask_gamma); in_temp1 = spu_shuffle(src1_present, src1_past, (vector unsigned char)shuffle_mask_eta); sum = spu_sub((vector signed short)in_temp0, (vector signed short)in_temp1); out_temp0 = spu_shuffle(tgt_past, (qword)sum, shuffle_mask_delta); out_temp1 = spu_shuffle(tgt_present, (qword)sum, shuffle_mask_epsilon); si_stqd(out_temp0, (qword)address_counter_tgt, 0); si_stqd(out_temp1, (qword)address_counter_tgt, 16); tgt_past = out_temp1; src0_past = src0_present; src1_past = src1_present; address_counter_src0 = spu_add(address_counter_src0, 16); address_counter_src1 = spu_add(address_counter_src1, 16); address_counter_tgt = spu_add(address_counter_tgt, 16); } src0_present = si_lqd((qword)address_counter_src0, 16); src1_present = si_lqd((qword)address_counter_src1, 16); tgt_present = si_lqd((qword)address_counter_tgt, 16); in_temp0 = spu_shuffle(src0_present, src0_past, (vector unsigned char) shuffle_mask_gamma); in_temp1 = spu_shuffle(src1_present, src1_past, (vector unsigned char) shuffle_mask_eta); sum = spu_sub((vector signed short)in_temp0, (vector signed short)in_temp1); qword target_temp = spu_shuffle(tgt_present, tgt_past, (vector unsigned char) shuffle_mask_zeta); qword meld = spu_shuffle((qword)sum, target_temp, (vector unsigned char)shuffle_mask_beta); out_temp0 = spu_shuffle(tgt_past, meld, shuffle_mask_delta); out_temp1 = spu_shuffle(tgt_present, meld, shuffle_mask_epsilon); si_stqd(out_temp0, (qword)address_counter_tgt, 0); si_stqd(out_temp1, (qword)address_counter_tgt, 16); return retval; }
/** * Sort vertices from top to bottom. * Compute area and determine front vs. back facing. * Do coarse clip test against tile bounds * \return FALSE if tri is totally outside tile, TRUE otherwise */ static boolean setup_sort_vertices(const qword vs) { float area, sign; #if DEBUG_VERTS if (spu.init.id==0) { fprintf(stderr, "SPU %u: Triangle:\n", spu.init.id); print_vertex(v0); print_vertex(v1); print_vertex(v2); } #endif { /* Load the float values for various processing... */ const qword f0 = (qword)(((const struct vertex_header*)si_to_ptr(vs))->data[0]); const qword f1 = (qword)(((const struct vertex_header*)si_to_ptr(si_rotqbyi(vs, 4)))->data[0]); const qword f2 = (qword)(((const struct vertex_header*)si_to_ptr(si_rotqbyi(vs, 8)))->data[0]); /* Check if triangle is completely outside the tile bounds * Find the min and max x and y positions of the three poits */ const qword minf = min3fq(f0, f1, f2); const qword maxf = max3fq(f0, f1, f2); /* Compare min and max against cliprect vals */ const qword maxsmins = si_shufb(maxf, minf, SHUFB4(A,B,a,b)); const qword outside = si_fcgt(maxsmins, si_csflt(setup.cliprect, 0)); /* Use a little magic to work out of the tri is visible or not */ if(si_to_uint(si_xori(si_gb(outside), 0xc))) return FALSE; /* determine bottom to top order of vertices */ /* A table of shuffle patterns for putting vertex_header pointers into correct order. Quite magical. */ const qword sort_order_patterns[] = { SHUFB4(A,B,C,C), SHUFB4(C,A,B,C), SHUFB4(A,C,B,C), SHUFB4(B,C,A,C), SHUFB4(B,A,C,C), SHUFB4(C,B,A,C) }; /* Collate y values into two vectors for comparison. Using only one shuffle constant! ;) */ const qword y_02_ = si_shufb(f0, f2, SHUFB4(0,B,b,C)); const qword y_10_ = si_shufb(f1, f0, SHUFB4(0,B,b,C)); const qword y_012 = si_shufb(y_02_, f1, SHUFB4(0,B,b,C)); const qword y_120 = si_shufb(y_10_, f2, SHUFB4(0,B,b,C)); /* Perform comparison: {y0,y1,y2} > {y1,y2,y0} */ const qword compare = si_fcgt(y_012, y_120); /* Compress the result of the comparison into 4 bits */ const qword gather = si_gb(compare); /* Subtract one to attain the index into the LUT. Magical. */ const unsigned int index = si_to_uint(gather) - 1; /* Load the appropriate pattern and construct the desired vector. */ setup.vertex_headers = si_shufb(vs, vs, sort_order_patterns[index]); /* Using the result of the comparison, set sign. Very magical. */ sign = ((si_to_uint(si_cntb(gather)) == 2) ? 1.0f : -1.0f); } setup.ebot.ds = spu_sub(setup.vmid->data[0], setup.vmin->data[0]); setup.emaj.ds = spu_sub(setup.vmax->data[0], setup.vmin->data[0]); setup.etop.ds = spu_sub(setup.vmax->data[0], setup.vmid->data[0]); /* * Compute triangle's area. Use 1/area to compute partial * derivatives of attributes later. */ area = setup.emaj.dx * setup.ebot.dy - setup.ebot.dx * setup.emaj.dy; setup.oneOverArea = 1.0f / area; /* The product of area * sign indicates front/back orientation (0/1). * Just in case someone gets the bright idea of switching the front * and back constants without noticing that we're assuming their * values in this operation, also assert that the values are * what we think they are. */ ASSERT(CELL_FACING_FRONT == 0); ASSERT(CELL_FACING_BACK == 1); setup.facing = (area * sign > 0.0f) ^ (spu.rasterizer.front_winding == PIPE_WINDING_CW); return TRUE; }
inline vector real_t advec_diff_v(vector real_t cell_size, vector real_t c2l, vector real_t w2l, vector real_t d2l, vector real_t c1l, vector real_t w1l, vector real_t d1l, vector real_t c, vector real_t w, vector real_t d, vector real_t c1r, vector real_t w1r, vector real_t d1r, vector real_t c2r, vector real_t w2r, vector real_t d2r) { vector real_t acc1, acc2, acc3; vector real_t wind, diff_term, advec_term; vector real_t advec_term_pos, advec_term_neg; vector real_t advec_termR, advec_termL; acc1 = spu_add(w1l, w); wind = spu_mul(acc1, HALF); acc1 = spu_mul(c1l, FIVE); acc2 = spu_mul(c, TWO); advec_term_pos = spu_add(acc1, acc2); advec_term_pos = spu_sub(advec_term_pos, c2l); acc1 = spu_mul(c1l, TWO); acc2 = spu_mul(c, FIVE); advec_term_neg = spu_add(acc1, acc2); advec_term_neg = spu_sub(advec_term_neg, c1r); acc1 = (vector real_t)spu_cmpgt(wind, ZERO); acc1 = spu_and(acc1, advec_term_pos); acc2 = (vector real_t)spu_cmpgt(ZERO, wind); acc2 = spu_and(acc2, advec_term_neg); advec_termL = spu_add(acc1, acc2); advec_termL = spu_mul(advec_termL, SIXTH); advec_termL = spu_mul(advec_termL, wind); acc1 = spu_add(w1r, w); wind = spu_mul(acc1, HALF); acc1 = spu_mul(c, FIVE); acc2 = spu_mul(c1r, TWO); advec_term_pos = spu_add(acc1, acc2); advec_term_pos = spu_sub(advec_term_pos, c1l); acc1 = spu_mul(c, TWO); acc2 = spu_mul(c1r, FIVE); advec_term_neg = spu_add(acc1, acc2); advec_term_neg = spu_sub(advec_term_neg, c2r); acc1 = (vector real_t)spu_cmpgt(wind, ZERO); acc1 = spu_and(acc1, advec_term_pos); acc2 = (vector real_t)spu_cmpgt(ZERO, wind); acc2 = spu_and(acc2, advec_term_neg); advec_termR = spu_add(acc1, acc2); advec_termR = spu_mul(advec_termR, SIXTH); advec_termR = spu_mul(advec_termR, wind); acc1 = spu_sub(advec_termL, advec_termR); advec_term = VEC_DIVIDE(acc1, cell_size); acc1 = spu_add(d1l, d); acc1 = spu_mul(acc1, HALF); acc3 = spu_sub(c1l, c); acc1 = spu_mul(acc1, acc3); acc2 = spu_add(d, d1r); acc2 = spu_mul(acc2, HALF); acc3 = spu_sub(c, c1r); acc2 = spu_mul(acc2, acc3); acc1 = spu_sub(acc1, acc2); acc2 = spu_mul(cell_size, cell_size); diff_term = VEC_DIVIDE(acc1, acc2); return spu_add(advec_term, diff_term); }
vector double __divv2df3 (vector double a_in, vector double b_in) { /* Variables */ vec_int4 exp, exp_bias; vec_uint4 no_underflow, overflow; vec_float4 mant_bf, inv_bf; vec_ullong2 exp_a, exp_b; vec_ullong2 a_nan, a_zero, a_inf, a_denorm, a_denorm0; vec_ullong2 b_nan, b_zero, b_inf, b_denorm, b_denorm0; vec_ullong2 nan; vec_uint4 a_exp, b_exp; vec_ullong2 a_mant_0, b_mant_0; vec_ullong2 a_exp_1s, b_exp_1s; vec_ullong2 sign_exp_mask; vec_double2 a, b; vec_double2 mant_a, mant_b, inv_b, q0, q1, q2, mult; /* Constants */ vec_uint4 exp_mask_u32 = spu_splats((unsigned int)0x7FF00000); vec_uchar16 splat_hi = (vec_uchar16) { 0,1,2,3, 0,1,2,3, 8, 9,10,11, 8,9,10,11 }; vec_uchar16 swap_32 = (vec_uchar16) { 4,5,6,7, 0,1,2,3, 12,13,14,15, 8,9,10,11 }; vec_ullong2 exp_mask = spu_splats(0x7FF0000000000000ULL); vec_ullong2 sign_mask = spu_splats(0x8000000000000000ULL); vec_float4 onef = spu_splats(1.0f); vec_double2 one = spu_splats(1.0); vec_double2 exp_53 = (vec_double2)spu_splats(0x0350000000000000ULL); sign_exp_mask = spu_or(sign_mask, exp_mask); /* Extract the floating point components from each of the operands including * exponent and mantissa. */ a_exp = (vec_uint4)spu_and((vec_uint4)a_in, exp_mask_u32); a_exp = spu_shuffle(a_exp, a_exp, splat_hi); b_exp = (vec_uint4)spu_and((vec_uint4)b_in, exp_mask_u32); b_exp = spu_shuffle(b_exp, b_exp, splat_hi); a_mant_0 = (vec_ullong2)spu_cmpeq((vec_uint4)spu_andc((vec_ullong2)a_in, sign_exp_mask), 0); a_mant_0 = spu_and(a_mant_0, spu_shuffle(a_mant_0, a_mant_0, swap_32)); b_mant_0 = (vec_ullong2)spu_cmpeq((vec_uint4)spu_andc((vec_ullong2)b_in, sign_exp_mask), 0); b_mant_0 = spu_and(b_mant_0, spu_shuffle(b_mant_0, b_mant_0, swap_32)); a_exp_1s = (vec_ullong2)spu_cmpeq(a_exp, exp_mask_u32); b_exp_1s = (vec_ullong2)spu_cmpeq(b_exp, exp_mask_u32); /* Identify all possible special values that must be accommodated including: * +-denorm, +-0, +-infinity, and NaNs. */ a_denorm0= (vec_ullong2)spu_cmpeq(a_exp, 0); a_nan = spu_andc(a_exp_1s, a_mant_0); a_zero = spu_and (a_denorm0, a_mant_0); a_inf = spu_and (a_exp_1s, a_mant_0); a_denorm = spu_andc(a_denorm0, a_zero); b_denorm0= (vec_ullong2)spu_cmpeq(b_exp, 0); b_nan = spu_andc(b_exp_1s, b_mant_0); b_zero = spu_and (b_denorm0, b_mant_0); b_inf = spu_and (b_exp_1s, b_mant_0); b_denorm = spu_andc(b_denorm0, b_zero); /* Scale denorm inputs to into normalized numbers by conditionally scaling the * input parameters. */ a = spu_sub(spu_or(a_in, exp_53), spu_sel(exp_53, a_in, sign_mask)); a = spu_sel(a_in, a, a_denorm); b = spu_sub(spu_or(b_in, exp_53), spu_sel(exp_53, b_in, sign_mask)); b = spu_sel(b_in, b, b_denorm); /* Extract the divisor and dividend exponent and force parameters into the signed * range [1.0,2.0) or [-1.0,2.0). */ exp_a = spu_and((vec_ullong2)a, exp_mask); exp_b = spu_and((vec_ullong2)b, exp_mask); mant_a = spu_sel(a, one, (vec_ullong2)exp_mask); mant_b = spu_sel(b, one, (vec_ullong2)exp_mask); /* Approximate the single reciprocal of b by using * the single precision reciprocal estimate followed by one * single precision iteration of Newton-Raphson. */ mant_bf = spu_roundtf(mant_b); inv_bf = spu_re(mant_bf); inv_bf = spu_madd(spu_nmsub(mant_bf, inv_bf, onef), inv_bf, inv_bf); /* Perform 2 more Newton-Raphson iterations in double precision. The * result (q1) is in the range (0.5, 2.0). */ inv_b = spu_extend(inv_bf); inv_b = spu_madd(spu_nmsub(mant_b, inv_b, one), inv_b, inv_b); q0 = spu_mul(mant_a, inv_b); q1 = spu_madd(spu_nmsub(mant_b, q0, mant_a), inv_b, q0); /* Determine the exponent correction factor that must be applied * to q1 by taking into account the exponent of the normalized inputs * and the scale factors that were applied to normalize them. */ exp = spu_rlmaska(spu_sub((vec_int4)exp_a, (vec_int4)exp_b), -20); exp = spu_add(exp, (vec_int4)spu_add(spu_and((vec_int4)a_denorm, -0x34), spu_and((vec_int4)b_denorm, 0x34))); /* Bias the quotient exponent depending on the sign of the exponent correction * factor so that a single multiplier will ensure the entire double precision * domain (including denorms) can be achieved. * * exp bias q1 adjust exp * ===== ======== ========== * positive 2^+65 -65 * negative 2^-64 +64 */ exp_bias = spu_xor(spu_rlmaska(exp, -31), 64); exp = spu_sub(exp, exp_bias); q1 = spu_sel(q1, (vec_double2)spu_add((vec_int4)q1, spu_sl(exp_bias, 20)), exp_mask); /* Compute a multiplier (mult) to applied to the quotient (q1) to produce the * expected result. On overflow, clamp the multiplier to the maximum non-infinite * number in case the rounding mode is not round-to-nearest. */ exp = spu_add(exp, 0x3FF); no_underflow = spu_cmpgt(exp, 0); overflow = spu_cmpgt(exp, 0x7FE); exp = spu_and(spu_sl(exp, 20), (vec_int4)no_underflow); exp = spu_and(exp, (vec_int4)exp_mask); mult = spu_sel((vec_double2)exp, (vec_double2)(spu_add((vec_uint4)exp_mask, -1)), (vec_ullong2)overflow); /* Handle special value conditions. These include: * * 1) IF either operand is a NaN OR both operands are 0 or INFINITY THEN a NaN * results. * 2) ELSE IF the dividend is an INFINITY OR the divisor is 0 THEN a INFINITY results. * 3) ELSE IF the dividend is 0 OR the divisor is INFINITY THEN a 0 results. */ mult = spu_andc(mult, (vec_double2)spu_or(a_zero, b_inf)); mult = spu_sel(mult, (vec_double2)exp_mask, spu_or(a_inf, b_zero)); nan = spu_or(a_nan, b_nan); nan = spu_or(nan, spu_and(a_zero, b_zero)); nan = spu_or(nan, spu_and(a_inf, b_inf)); mult = spu_or(mult, (vec_double2)nan); /* Scale the final quotient */ q2 = spu_mul(q1, mult); return (q2); }
/* Scans the string pointed to by s for the character c and * returns a pointer to the last occurance of c. If * c is not found, then NULL is returned. */ char * strrchr(const char *s, int c) { int nskip; vec_uchar16 *ptr, data, vc; vec_uint4 cmp_c, cmp_0, cmp; vec_uint4 res_ptr, res_cmp; vec_uint4 mask, result; vec_uint4 one = spu_splats(0xffffU); /* Scan memory array a quadword at a time. Skip leading * mis-aligned bytes. */ ptr = (vec_uchar16 *)s; nskip = -((unsigned int)(ptr) & 15); mask = spu_rlmask(one, nskip); vc = spu_splats((unsigned char)(c)); data = *ptr++; ptr = (vec_uchar16 *)((unsigned int)ptr & ~15); cmp_c = spu_and(spu_gather(spu_cmpeq(data, vc)), mask); cmp_0 = spu_and(spu_gather(spu_cmpeq(data, 0)), mask); res_ptr = spu_splats(0U); res_cmp = spu_splats(0U); while (spu_extract(cmp_0, 0) == 0) { cmp = spu_cmpeq(cmp_c, 0); res_ptr = spu_sel(spu_promote((unsigned int)(ptr), 0), res_ptr, cmp); res_cmp = spu_sel(cmp_c, res_cmp, cmp); data = *ptr++; cmp_c = spu_gather(spu_cmpeq(data, vc)); cmp_0 = spu_gather(spu_cmpeq(data, 0)); cmp = spu_cmpeq(cmp_c, 0); } /* Compute the location of the last character before termination * character. * * First mask off compare results following the first termination character. */ mask = spu_sl(one, 31 - spu_extract(spu_cntlz(cmp_0), 0)); cmp_c = spu_and(cmp_c, mask); /* Conditionally update res_ptr and res_cmd if a match was found in the last * quadword. */ cmp = spu_cmpeq(cmp_c, 0); res_ptr = spu_sel(spu_promote((unsigned int)(ptr), 0), res_ptr, cmp); res_cmp = spu_sel(cmp_c, res_cmp, cmp); /* Bit reserve res_cmp for locating last occurance. */ mask = spu_cmpeq(res_cmp, 0); res_cmp = (vec_uint4)spu_maskb(spu_extract(res_cmp, 0)); res_cmp = spu_gather((vec_uchar16)spu_shuffle(res_cmp, res_cmp, VEC_LITERAL(vec_uchar16, 15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0))); /* Compute the location (ptr) of the last occurance of c. If no * occurance was found (ie, element 0 of res_cmp == 0, then return * NULL. */ result = spu_sub(spu_add(res_ptr, 15), spu_cntlz(res_cmp)); result = spu_andc(result, mask); return ((char *)spu_extract(result, 0)); }
void process_render_tasks(unsigned long eah_render_tasks, unsigned long eal_render_tasks) { const vec_uchar16 SHUFFLE_MERGE_BYTES = (vec_uchar16) { // merge lo bytes from unsigned shorts (array) 1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31 }; const vec_uchar16 SHUFFLE_GET_BUSY_WITH_ONES = (vec_uchar16) { // get busy flag with ones in unused bytes 0xc0, 0xc0, 2, 3, 0xc0,0xc0,0xc0,0xc0, 0xc0,0xc0,0xc0,0xc0 }; const vec_uchar16 ZERO_BYTES = (vec_uchar16) spu_splats(0); char trianglebuffer[ 256 + TRIANGLE_MAX_SIZE ]; char sync_buffer[128+127]; void* aligned_sync_buffer = (void*) ( ((unsigned long)sync_buffer+127) & ~127 ); RenderableCacheLine* cache = (RenderableCacheLine*) aligned_sync_buffer; unsigned long long cache_ea; spu_mfcdma64(&cache_ea, eah_render_tasks, eal_render_tasks, sizeof(cache_ea), 0, MFC_GET_CMD); mfc_write_tag_mask(1<<0); mfc_read_tag_status_all(); while (cache_ea) { // terminate immediately if possible if (spu_stat_in_mbox()) return; // read the cache line spu_mfcdma64(cache, mfc_ea2h(cache_ea), mfc_ea2l(cache_ea), 128, 0, MFC_GETLLAR_CMD); spu_readch(MFC_RdAtomicStat); unsigned int endTriangle = cache->endTriangle; vec_ushort8 testTriangle = spu_splats((unsigned short) endTriangle); // first look for short chunks vec_uchar16 next = cache->chunkNext; vec_uchar16 nextmask = spu_and(next, spu_splats((unsigned char)CHUNKNEXT_MASK)); // change next to word offset, note we don't care what the low bit shifted in is vec_uchar16 firstshuf = (vec_uchar16) spu_sl( (vec_ushort8)nextmask, 1 ); vec_uchar16 trishufhi = spu_or ( firstshuf, spu_splats((unsigned char) 1)); vec_uchar16 trishuflo = spu_and( firstshuf, spu_splats((unsigned char) 254)); vec_ushort8 start0 = cache->chunkStart[0]; vec_ushort8 start1 = cache->chunkStart[1]; vec_ushort8 nstart0 = spu_shuffle( start0, start1, spu_shuffle( trishuflo, trishufhi, SHUF0 ) ); vec_ushort8 nstart1 = spu_shuffle( start0, start1, spu_shuffle( trishuflo, trishufhi, SHUF1 ) ); vec_ushort8 starteq0 = spu_cmpeq( nstart0, spu_splats((unsigned short)0) ); vec_ushort8 starteq1 = spu_cmpeq( nstart1, spu_splats((unsigned short)0) ); vec_ushort8 end0 = spu_sel( nstart0, spu_splats((unsigned short)4096), starteq0); vec_ushort8 end1 = spu_sel( nstart1, spu_splats((unsigned short)4096), starteq1); vec_ushort8 len0 = spu_sub( end0, start0); vec_ushort8 len1 = spu_sub( end1, start1); vec_ushort8 small0 = spu_cmpgt( spu_splats((unsigned short)17), len0); vec_ushort8 small1 = spu_cmpgt( spu_splats((unsigned short)17), len1); vec_uchar16 small = (vec_uchar16) spu_shuffle( small0, small1, MERGE ); vec_uint4 smallChunkGather = spu_gather(small); // check to see if chunk is already at the last triangle vec_uint4 doneChunkGather = spu_gather( (vec_uchar16) spu_shuffle( (vec_uchar16) spu_cmpeq(testTriangle, cache->chunkTriangle[0]), (vec_uchar16) spu_cmpeq(testTriangle, cache->chunkTriangle[1]), SHUFFLE_MERGE_BYTES) ); // check if the chunk is free vec_uint4 freeChunkGather = spu_gather( spu_cmpeq( spu_splats( (unsigned char) CHUNKNEXT_FREE_BLOCK ), cache->chunkNext ) ); // check to see if the chunk is being processed vec_uint4 busyChunkGather = spu_gather( spu_cmpgt( cache->chunkNext, //spu_and(cache->chunkNext, CHUNKNEXT_MASK), spu_splats( (unsigned char) (CHUNKNEXT_BUSY_BIT-1) ) ) ); // doneChunkGather, freeChunkGather, busyChunkGather - rightmost 16 bits of word 0 // note that if freeChunkGather is true then busyChunkGather must also be true // done=false, free=false, busy=false -> can process // free=false, busy=false -> can be merged // decide which chunk to process vec_uint4 mayProcessGather = spu_nor( doneChunkGather, busyChunkGather ); vec_uint4 mayProcessShortGather = spu_and( mayProcessGather, smallChunkGather ); vec_uint4 shortSelMask = spu_cmpeq( mayProcessShortGather, spu_splats(0U) ); vec_uint4 mayProcessSelection = spu_sel( mayProcessShortGather, mayProcessGather, shortSelMask ); /* if (!spu_extract(shortSelMask, 0)) printf("taken short: may=%04x short=%04x mayshort=%04x mask=%04x sel=%04x\n", spu_extract(mayProcessGather, 0) & 0xffff, spu_extract(smallChunkGather, 0), spu_extract(mayProcessShortGather, 0), spu_extract(shortSelMask, 0) & 0xffff, spu_extract(mayProcessSelection, 0) & 0xffff ); */ vec_uint4 mayProcessBits = spu_sl( mayProcessSelection, 16); unsigned int chunkToProcess = spu_extract( spu_cntlz( mayProcessBits ), 0); unsigned int freeChunk = spu_extract( spu_cntlz( spu_sl( freeChunkGather, 16 ) ), 0); // if there's nothing to process, try the next cache line in the rendering tasks list if (!spu_extract(mayProcessBits, 0)) { trynextcacheline: cache_ea = cache->next; // sleep(); continue; } unsigned int chunkStart = cache->chunkStartArray [chunkToProcess]; unsigned int chunkTriangle = cache->chunkTriangleArray[chunkToProcess]; unsigned int chunkNext = cache->chunkNextArray [chunkToProcess] & CHUNKNEXT_MASK; unsigned int chunkEnd = (cache->chunkStartArray [chunkNext]-1) & (NUMBER_OF_TILES-1); unsigned int chunkLength = 1 + chunkEnd-chunkStart; // only need an extra block if the block is especially long if (chunkLength <= NUMBER_OF_TILES_PER_CHUNK) { freeChunk = 32; } // mark this block as busy cache->chunkNextArray[chunkToProcess] |= CHUNKNEXT_BUSY_BIT; // if there's at least one free chunk, claim it if (freeChunk != 32) { cache->chunkNextArray[freeChunk] = CHUNKNEXT_RESERVED; cache->chunkTriangleArray[freeChunk] = chunkTriangle; } // write the cache line back spu_mfcdma64(cache, mfc_ea2h(cache_ea), mfc_ea2l(cache_ea), 128, 0, MFC_PUTLLC_CMD); if (spu_readch(MFC_RdAtomicStat) & MFC_PUTLLC_STATUS) continue; #ifdef INFO printf("[%d] Claimed chunk %d (%d-%d len %d) at tri %x end %x with free chunk %d\n", _SPUID, chunkToProcess, chunkStart, chunkEnd, chunkLength, chunkTriangle, endTriangle, freeChunk!=32 ? freeChunk : -1 ); // debug_render_tasks(cache); #endif Triangle* triangle; int firstTile; do { // read the triangle data for the current triangle unsigned int extra = chunkTriangle & 127; unsigned long long trianglebuffer_ea = cache_ea + TRIANGLE_OFFSET_FROM_CACHE_LINE + (chunkTriangle & ~127); triangle = (Triangle*) (trianglebuffer+extra); unsigned int length = (extra + TRIANGLE_MAX_SIZE + 127) & ~127; // ensure DMA slot available do {} while (!spu_readchcnt(MFC_Cmd)); spu_mfcdma64(trianglebuffer, mfc_ea2h(trianglebuffer_ea), mfc_ea2l(trianglebuffer_ea), length, 0, MFC_GET_CMD); mfc_write_tag_mask(1<<0); mfc_read_tag_status_all(); // get the triangle deltas firstTile = findFirstTriangleTile(triangle, chunkStart, chunkEnd); if (firstTile>=0) break; // no match, try next triangle chunkTriangle = triangle->next_triangle; } while (chunkTriangle != endTriangle); // if we actually have something to process... if (firstTile>=0) { // the "normal" splitting will now become: // chunkStart .. (firstTile-1) -> triangle->next_triangle // firstTile .. (firstTile+NUM-1) -> chunkTriangle (BUSY) // (firstTile+NUM) .. chunkEnd -> chunkTriangle (FREE) int tailChunk; int thisChunk; int nextBlockStart; int thisBlockStart; int realBlockStart; do { retry: // read the cache line spu_mfcdma64(cache, mfc_ea2h(cache_ea), mfc_ea2l(cache_ea), 128, 0, MFC_GETLLAR_CMD); spu_readch(MFC_RdAtomicStat); // calculate start of next block nextBlockStart = firstTile + NUMBER_OF_TILES_PER_CHUNK; if (nextBlockStart > chunkEnd) nextBlockStart = chunkEnd+1; // calculate start of block to mark as busy thisBlockStart = nextBlockStart - NUMBER_OF_TILES_PER_CHUNK; if (thisBlockStart < chunkStart) thisBlockStart = chunkStart; realBlockStart = thisBlockStart; #ifdef INFO printf("[%d] nextBlockStart=%d, realBlockStart=%d, thisBlockStart=%d, chunkStart=%d\n", _SPUID, nextBlockStart, realBlockStart, thisBlockStart, chunkStart); #endif // allocate some more free chunks vec_uint4 freeChunkGather2 = spu_sl(spu_gather(spu_cmpeq( spu_splats((unsigned char)CHUNKNEXT_FREE_BLOCK), cache->chunkNext)), 16); unsigned int freeChunk2 = spu_extract(spu_cntlz(freeChunkGather2), 0); if (freeChunk == 32) { // if we didn't have one before, try again freeChunk = freeChunk2; // and try to get the second one freeChunkGather2 = spu_andc( freeChunkGather2, spu_promote(0x80000000>>freeChunk2, 0) ); freeChunk2 = spu_extract(spu_cntlz(freeChunkGather2), 0); } else { // speculatively clear the free chunk just in case we don't need it cache->chunkNextArray[freeChunk] = CHUNKNEXT_FREE_BLOCK; } #ifdef INFO printf("[%d] Free chunks %d and %d, cN=%d, nBS=%d, cE=%d, tBS=%d, cS=%d\n", _SPUID, freeChunk, freeChunk2, chunkNext, nextBlockStart, chunkEnd, thisBlockStart, chunkStart ); #endif // mark region after as available for processing if required if (nextBlockStart < chunkEnd) { if (freeChunk==32) { // if no free chunk, relinquish entire block and write back cache->chunkNextArray[chunkToProcess] = chunkNext; spu_mfcdma64(cache, mfc_ea2h(cache_ea), mfc_ea2l(cache_ea), 128, 0, MFC_PUTLLC_CMD); // if writeback failed, we *might* have a free block, retry if (spu_readch(MFC_RdAtomicStat) & MFC_PUTLLC_STATUS) goto retry; // otherwise give up and try the next cache line goto trynextcacheline; } cache->chunkStartArray[freeChunk] = nextBlockStart; cache->chunkNextArray[freeChunk] = chunkNext; cache->chunkTriangleArray[freeChunk] = chunkTriangle; cache->chunkNextArray[chunkToProcess] = freeChunk | CHUNKNEXT_BUSY_BIT; tailChunk = freeChunk; #ifdef INFO printf("[%d] Insert tail, tailChunk=%d, chunkNext=%d, chunkToProcess=%d\n", _SPUID, tailChunk, chunkNext, chunkToProcess); debug_render_tasks(cache); #endif } else { // we're gonna use freeChunk2 for the "in front" block, as we've not // used freeChunk, let's use it as it's more likely to have a free chunk freeChunk2 = freeChunk; tailChunk = chunkNext; } // mark region before as available if required and possible thisChunk = chunkToProcess; if (thisBlockStart > chunkStart) { if (freeChunk2 != 32) { // mark this region as busy cache->chunkStartArray[freeChunk2]=thisBlockStart; cache->chunkNextArray[freeChunk2]=tailChunk | CHUNKNEXT_BUSY_BIT; cache->chunkTriangleArray[freeChunk2]=chunkTriangle; // mark region before as available for processing cache->chunkNextArray[chunkToProcess]=freeChunk2; cache->chunkTriangleArray[chunkToProcess]=triangle->next_triangle; thisChunk = freeChunk2; #ifdef INFO printf("[%d] Insert new head, tailChunk=%d, chunkNext=%d, thisChunk=%d\n", _SPUID, tailChunk, chunkNext, thisChunk); debug_render_tasks(cache); #endif } else { // need to keep whole block, update info and mark bust cache->chunkTriangleArray[chunkToProcess]=chunkTriangle; cache->chunkNextArray[chunkToProcess]=tailChunk | CHUNKNEXT_BUSY_BIT; realBlockStart = chunkStart; printf("[%d] Keep whole block, tailChunk=%d, chunkNext=%d, thisChunk=%d\n", _SPUID, tailChunk, chunkNext, thisChunk); debug_render_tasks(cache); #ifdef INFO #endif sleep(); } } // merge chunks merge_cache_blocks(cache); // write the cache line back spu_mfcdma64(cache, mfc_ea2h(cache_ea), mfc_ea2l(cache_ea), 128, 0, MFC_PUTLLC_CMD); } while (spu_readch(MFC_RdAtomicStat) & MFC_PUTLLC_STATUS); // finally after the write succeeded, update the variables chunkNext = tailChunk; chunkToProcess = thisChunk; chunkStart = firstTile; //thisBlockStart; chunkLength = nextBlockStart - firstTile; chunkEnd = chunkStart + chunkLength - 1; freeChunk = 32; // now we can process the block up to endTriangle initTileBuffers(thisBlockStart, chunkEnd); int ok=0; while (chunkTriangle != endTriangle) { #ifdef INFO printf("[%d] Processing chunk %d at %4d len %4d, triangle %04x first=%d tbs=%d\n", _SPUID, chunkToProcess, chunkStart, chunkLength, chunkTriangle, firstTile, thisBlockStart); #endif // and actually process that triangle on these chunks processTriangleChunks(triangle, cache, thisBlockStart, chunkEnd, chunkTriangle, ok); ok=1; #ifdef PAUSE sleep(); #endif // and advance to the next-triangle chunkTriangle = triangle->next_triangle; // this should only ever happen if we're running really low on cache line slots // basically, if we pick up a block with more than NUMBER_OF_TILES_PER_CHUNK and // there's no slot to store the pre-NUMBER_OF_TILES_PER_CHUNK tiles. // in this case, we process from thisBlockStart only (because we know that from // chunkStart to there has no result) and then we only process one triangle if (chunkStart != realBlockStart) { /* printf("[%d] chunkStart=%d != realBlockStart %d, chunkEnd=%d, " "firstTile=%d chunk=%d\n", _SPUID, chunkStart, realBlockStart, chunkEnd, firstTile, chunkToProcess); debug_render_tasks(cache); */ // abort the while loop break; } // read the next triangle unsigned int extra = chunkTriangle & 127; unsigned long long trianglebuffer_ea = cache_ea + TRIANGLE_OFFSET_FROM_CACHE_LINE + (chunkTriangle & ~127); triangle = (Triangle*) (trianglebuffer+extra); unsigned int length = (extra + TRIANGLE_MAX_SIZE + 127) & ~127; // ensure DMA slot available do {} while (!spu_readchcnt(MFC_Cmd)); spu_mfcdma64(trianglebuffer, mfc_ea2h(trianglebuffer_ea), mfc_ea2l(trianglebuffer_ea), length, 0, MFC_GET_CMD); mfc_write_tag_mask(1<<0); mfc_read_tag_status_all(); } // until chunkTriangle == endTriangle // flush any output buffers flushTileBuffers(thisBlockStart, chunkEnd); } // firstTile>=0
void MinMaxBinFindBest3SIMD(minmaxbin_t *mmb, kdbuffer_t *result) { int i; for(i=1; i < mmb->numbins; i++) { int j = mmb->numbins - i - 1; vector float *min = (vector float *)mmb->minbins[i].b; vector float *max = (vector float *)mmb->maxbins[j].b; min[0] = spu_add(min[0], min[-1]); max[0] = spu_add(max[0], max[1]); } vector float *vmax = (vector float*)result->baabb.max; vector float *vmin = (vector float*)result->baabb.min; vector float vwidth = spu_abs( spu_sub(*vmax, *vmin) ); vector float vnumbins = spu_splats(1/(float)mmb->numbins); vector float vdelta = spu_mul(vwidth, vnumbins); vector float vx = spu_add(*vmin, vdelta); vector float vside = { vwidth[1] * vwidth[2], vwidth[0] * vwidth[2], vwidth[0] * vwidth[1], 0 }; vector float invarea = spu_splats( 1/(vwidth[0] * vside[0])); vector float vctravers = spu_splats(2.0f); vector float vbestcost = spu_splats(mmb->bestcost); vector int vbesti = spu_splats(0); vector float vbestx = vx; for(i=0; i < mmb->numbins-1; i++) { vector float aleft, aright; AreaLeftRight(*vmin, *vmax, vside, vx, &aleft, &aright); vector float *vminbin = (vector float *)mmb->minbins[i].b; vector float *vmaxbin = (vector float *)mmb->maxbins[i+1].b; vector float cost = SAHCostSIMD(invarea, vctravers, *vminbin, aleft, *vmaxbin, aright); vector unsigned int cmp = spu_cmpgt(cost, vbestcost); vbestcost = spu_sel(cost, vbestcost, cmp); vbesti = spu_sel(spu_splats(i), vbesti, cmp); vbestx = spu_sel(vx, vbestx, cmp); vx = spu_add(vx, vdelta); } int axis = 0; float bestcost = vbestcost[axis]; if(vbestcost[1] < bestcost) { axis = 1; bestcost = vbestcost[1]; } if(vbestcost[2] < bestcost) { axis = 2; bestcost = vbestcost[2]; } int index = vbesti[axis]; result->plane = vbestx[axis]; result->axis = axis; result->left_size = (int)mmb->minbins[ index ].b[axis]; result->right_size = (int)mmb->maxbins[ index+1 ].b[axis]; mmb->bestcost = vbestcost[axis]; }
void _compute( unsigned int bs, unsigned int k, unsigned int row, vector float *BKJ, float *B, float *A ) { vector float *BIJ, aik; unsigned int i; // BIJ = (vector float*)B; // pfv(BIJ); for( ; k < 64 ; k++ ) { aik = spu_splats( A[k*64+row] ); BIJ = (vector float*)( B + ( k * 64 ) ); BIJ[0] = spu_sub( BIJ[0], spu_mul( BKJ[0], aik ) ); BIJ[1] = spu_sub( BIJ[1], spu_mul( BKJ[1], aik ) ); BIJ[2] = spu_sub( BIJ[2], spu_mul( BKJ[2], aik ) ); BIJ[3] = spu_sub( BIJ[3], spu_mul( BKJ[3], aik ) ); BIJ[4] = spu_sub( BIJ[4], spu_mul( BKJ[4], aik ) ); BIJ[5] = spu_sub( BIJ[5], spu_mul( BKJ[5], aik ) ); BIJ[6] = spu_sub( BIJ[6], spu_mul( BKJ[6], aik ) ); BIJ[7] = spu_sub( BIJ[7], spu_mul( BKJ[7], aik ) ); BIJ[8] = spu_sub( BIJ[8], spu_mul( BKJ[8], aik ) ); BIJ[9] = spu_sub( BIJ[9], spu_mul( BKJ[9], aik ) ); BIJ[10] = spu_sub( BIJ[10], spu_mul( BKJ[10], aik ) ); BIJ[11] = spu_sub( BIJ[11], spu_mul( BKJ[11], aik ) ); BIJ[12] = spu_sub( BIJ[12], spu_mul( BKJ[12], aik ) ); BIJ[13] = spu_sub( BIJ[13], spu_mul( BKJ[13], aik ) ); BIJ[14] = spu_sub( BIJ[14], spu_mul( BKJ[14], aik ) ); BIJ[15] = spu_sub( BIJ[15], spu_mul( BKJ[15], aik ) ); } }