Exemplo n.º 1
0
  IdentifierModel<Adapter>::IdentifierModel( 
    const RCP<const Adapter> &ia,
    const RCP<const Environment> &env,
    const RCP<const Comm<int> > &comm,
    modelFlag_t &modelFlags):
      numGlobalIdentifiers_(), env_(env), comm_(comm),
      gids_(), nUserWeights_(0), weights_()
{
  // Get the local and global problem size
  size_t nLocalIds = ia->getLocalNumIDs();
  gno_t lsum = nLocalIds;
  reduceAll<int, gno_t>(*comm_, Teuchos::REDUCE_SUM, 1, &lsum,
    &numGlobalIdentifiers_);

  // Get the number of weights
  // Use max number of weights over all processes as nUserWeights_
  int tmp = ia->getNumWeightsPerID();
  Teuchos::reduceAll<int, int>(*comm, Teuchos::REDUCE_MAX, 1,
      &tmp, &nUserWeights_);

  // Prepare to store views from input adapter
  // TODO:  Do we have to store these views, or can we get them on an 
  // TODO:  as-needed basis?
  Array<const scalar_t *> wgts(nUserWeights_, (const scalar_t *)NULL);
  Array<int> wgtStrides(nUserWeights_, 0);

  if (nUserWeights_ > 0){
    input_t *w = new input_t [nUserWeights_];
    weights_ = arcp<input_t>(w, 0, nUserWeights_);
  }

  const gno_t *gids=NULL;
  
  // Get the input adapter's views
  try{
    ia->getIDsView(gids);
    for (int idx=0; idx < nUserWeights_; idx++)
      ia->getWeightsView(wgts[idx], wgtStrides[idx], idx);
  }
  Z2_FORWARD_EXCEPTIONS;

  if (nLocalIds){
    gids_ = arcp(gids, 0, nLocalIds, false);

    if (nUserWeights_ > 0){
      for (int idx=0; idx < nUserWeights_; idx++){
        ArrayRCP<const scalar_t> wgtArray(wgts[idx], 0,
                                          nLocalIds*wgtStrides[idx], false);
        weights_[idx] = input_t(wgtArray, wgtStrides[idx]);
      }
    }
  }

  env_->memory("After construction of identifier model");
}
Exemplo n.º 2
0
LDFE_quad::LDFE_quad(int param) {
    
    /* Calculate number of LDFE ranges */
    order = param;                    // Quadrature order
    int num_LDFE = 2 * pow(2, order); // Number of LDFE regions
    
    /* Calculate quadrature directions */
    double delta_gamma = (pi / num_LDFE) / 4.0;            // Gamma from node to nearest LDFE edge
    double gamma_current = 0.0;
    mat gamma(num_LDFE, 2);
    for (int i=0; i<num_LDFE; i++) {
        gamma(i, 0) = gamma_current + delta_gamma;         // Left node gamma
        gamma(i, 1) = gamma(i, 0) + 2.0 * delta_gamma;     // Right node gamma
        gamma_current = gamma_current + 4.0 * delta_gamma;
    }
    
    /* Solve the basis functions of each LDFE range */
    mat A = mat(2, 2);
    mat B = eye<mat>(2, 2);
    mat C = mat(3, 3);
    vec wgt = vec(2);
    wgts.set_size(num_LDFE, 2);          // Resize matrix storing all LDFE range weights
    dirs.set_size(num_LDFE, 2);          // Resize matrix storing all LDFE range directions
    basis.resize(num_LDFE);              // Resize vector storing all LDFE basis functions
    for (int i=0; i<num_LDFE; i++){
        for (int j=0; j<2; j++){
            A(j, 0) = 1.0;
            A(j, 1) = cos(gamma(i, j));
        }
        C = solve(A, B);                 // Solve for the basis functions

        /* Solve for the weights of each LDFE range */
        double gamma_max = gamma(i, 1) + delta_gamma;
        double gamma_min = gamma(i, 0) - delta_gamma;
        for (int j=0; j<2; j++){
            wgt(j) = C(0, j) * (gamma_max - gamma_min) + \
                     C(1, j) * (sin(gamma_max) - sin(gamma_min));
        }

        /* Store quadrature directions, weights and basis functions */
        for (int j=0; j<2; j++) {
            dirs(i, j) = cos(gamma(i, j));
            wgts(i, j) = wgt(j) / pi * 2.0;
        }
        basis[i] = C;
    }
}
Exemplo n.º 3
0
LDFE_quad_eq::LDFE_quad_eq(int param) {
    
    /* Calculate number of LDFE ranges */
    order = param;                    // Quadrature order
    int num_LDFE = 2 * pow(2, order); // Number of LDFE regions
    
    /* Calculate even quadrature weights */
    double delta_gamma = pi / num_LDFE;
    double wgt_even = delta_gamma / 2.0;
    
    /* Initialize common parameters */
    double gamma_current = 0.0;
    double gamma_min;
    double gamma_max;
    double gamma_center;
    vec dir = vec(2);
    mat A = mat(2, 2);
    mat B = eye<mat>(2, 2);
    mat C = mat(3, 3);
    vec wgt = vec(2);
    wgts.set_size(num_LDFE, 2);   // Resize matrix storing all LDFE range weights
    dirs.set_size(num_LDFE, 2);   // Resize matrix storing all LDFE range directions
    basis.resize(num_LDFE);       // Resize vector storing all LDFE basis functions
    double RE_old;
    double RE_new;
    double ratio_old;
    double ratio_new;
    double ratio_temp;
    int converged;
    int iter_counter;
    double delta;
    for (int r=0; r<num_LDFE; r++) {
        
        /* First quadrature direction guess */
        gamma_min = gamma_current;
        gamma_max = gamma_current + delta_gamma;
        gamma_current = gamma_max;
        gamma_center = (gamma_max + gamma_min) / 2.0;
        ratio_old = 0.5;
        dir(0) = gamma_center - ratio_old * delta_gamma / 2.0;
        dir(1) = gamma_center + ratio_old * delta_gamma / 2.0;
        
        /* Solve for basis functions */
        for (int j=0; j<2; j++){
            A(j, 0) = 1.0;
            A(j, 1) = cos(dir(j));
        }
        C = solve(A, B); // Solve for the basis functions
        
        /* Solve for weights */
        for (int j=0; j<2; j++){
            wgt(j) = C(0, j) * (gamma_max - gamma_min) + \
                     C(1, j) * (sin(gamma_max) - sin(gamma_min));
        }
        
        /* Calculate relative error using first direction guess */
        RE_old = (wgt(0) - wgt_even) / wgt_even;
        
        /* Second ratio guess */
        ratio_new = 0.75;
        
        /* Iterate until weights are equal */
        converged = 0;
        iter_counter = 0;
        while (converged == 0 && iter_counter < 100) {
            
            /* New quadrature directions */
            dir(0) = gamma_center - ratio_new * delta_gamma / 2.0;
            dir(1) = gamma_center + ratio_new * delta_gamma / 2.0;
            
            /* New quadrature basis functions */
            for (int j=0; j<2; j++){
                A(j, 0) = 1.0;
                A(j, 1) = cos(dir(j));
            }
            C = solve(A, B); // Solve for the basis functions
            
            /* New quadrature weights */
            for (int j=0; j<2; j++){
                wgt(j) = C(0, j) * (gamma_max - gamma_min) + \
                         C(1, j) * (sin(gamma_max) - sin(gamma_min));
            }
            
            /* Calculate new relative error */
            RE_new = (wgt(0) - wgt_even) / wgt_even;
            
            /* Calculate next direction guess */
            if (RE_old == RE_new && iter_counter == 1) {
                ratio_temp = ratio_new;
                ratio_new = (ratio_old + ratio_new) / 2.0;
                ratio_old = ratio_temp;
                iter_counter++;
            }
            else {
                delta = ((ratio_new - ratio_old) / (RE_new - RE_old)) * RE_new;
                
                /* Check for convergence */
                if (abs(delta) < 1.e-12) {
                    converged = 1;
                }
                else {
                    RE_old = RE_new;
                    ratio_old = ratio_new;
                    ratio_new = ratio_new - delta;
                    iter_counter++;
                }
            }
        }
        
        /* Store quadrature directions, weights and basis functions */
        for (int j=0; j<2; j++) {
            dirs(r, j) = cos(dir(j));
            wgts(r, j) = wgt(j) / pi * 2.0;
        }
        basis[r] = C;
    }
}
Exemplo n.º 4
0
  IdentifierModel<IdentifierInput<User> >::IdentifierModel( 
    const IdentifierInput<User> *ia,
    const RCP<const Environment> &env, const RCP<const Comm<int> > &comm,
    modelFlag_t &modelFlags):
      gnosAreGids_(false), numGlobalIdentifiers_(), env_(env), comm_(comm),
      gids_(), userWeightDim_(0), weights_(), gnos_(), gnosConst_()
{
  userWeightDim_ = ia->getNumberOfWeights();
  size_t nLocalIds = ia->getLocalNumberOfIdentifiers();

  Model<IdentifierInput<User> >::maxCount(*comm, userWeightDim_);

  Array<const scalar_t *> wgts(userWeightDim_, (const scalar_t *)NULL);
  Array<int> wgtStrides(userWeightDim_, 0);
  Array<lno_t> weightArrayLengths(userWeightDim_, 0);

  if (userWeightDim_ > 0){
    input_t *w = new input_t [userWeightDim_];
    weights_ = arcp<input_t>(w, 0, userWeightDim_);
  }

  const gid_t *gids=NULL;

  try{
    ia->getIdentifierList(gids);
    for (int dim=0; dim < userWeightDim_; dim++)
      ia->getIdentifierWeights(dim, wgts[dim], wgtStrides[dim]);
  }
  Z2_FORWARD_EXCEPTIONS;

  if (nLocalIds){
    gids_ = arcp(gids, 0, nLocalIds, false);

    if (userWeightDim_ > 0){
      for (int i=0; i < userWeightDim_; i++){
        if (wgts[i] != NULL){
          ArrayRCP<const scalar_t> wgtArray(
            wgts[i], 0, nLocalIds*wgtStrides[i], false);
          weights_[i] = input_t(wgtArray, wgtStrides[i]);
          weightArrayLengths[i] = nLocalIds;
        }
      }
    }
  }

  this->setWeightArrayLengths(weightArrayLengths, *comm_);

  RCP<const idmap_t> idMap;

  try{
    if (modelFlags.test(IDS_MUST_BE_GLOBALLY_CONSECUTIVE))
      idMap = rcp(new idmap_t(env_, comm_, gids_, true));
    else
      idMap = rcp(new idmap_t(env_, comm_, gids_, false));
  }
  Z2_FORWARD_EXCEPTIONS;

  gnosAreGids_ = idMap->gnosAreGids();

  this->setIdentifierMap(idMap);

  gno_t lsum = nLocalIds;
  reduceAll<int, gno_t>(*comm_, Teuchos::REDUCE_SUM, 1, &lsum,
    &numGlobalIdentifiers_);

  if (!gnosAreGids_ && nLocalIds>0){
    gno_t *tmpGno = new gno_t [nLocalIds];
    env_->localMemoryAssertion(__FILE__, __LINE__, nLocalIds, tmpGno);
    gnos_ = arcp(tmpGno, 0, nLocalIds);

    try{
      ArrayRCP<gid_t> gidsNonConst = arcp_const_cast<gid_t>(gids_);
      idMap->gidTranslate( gidsNonConst(0,nLocalIds),  gnos_(0,nLocalIds),
        TRANSLATE_APP_TO_LIB);
    }
    Z2_FORWARD_EXCEPTIONS;
  }
Exemplo n.º 5
0
// All-purpose routine for computing the L2-projection
// of various functions onto the gradient of the Legendre basis
//     (Unstructured grid version)
//
void L2ProjectGrad_Unst(
    const dTensor2* vel_vec,
    const int istart, 
    const int iend, 
    const int QuadOrder, 
    const int BasisOrder_qin,
    const int BasisOrder_auxin,
    const int BasisOrder_fout,
    const mesh& Mesh, 
    const dTensor3* qin, 
    const dTensor3* auxin, 
    dTensor3* fout, 
    void (*Func)(const dTensor2* vel_vec,
        const dTensor2&,const dTensor2&,
        const dTensor2&,dTensor3&))
{
    // starting and ending indeces
    const int   NumElems = Mesh.get_NumElems();
    assert_ge(istart,1);
    assert_le(iend,NumElems);

    // qin variable
    assert_eq(NumElems,qin->getsize(1));
    const int     meqn = qin->getsize(2);
    const int kmax_qin = qin->getsize(3);
    assert_eq(kmax_qin,(BasisOrder_qin*(BasisOrder_qin+1))/2);

    // auxin variable
    assert_eq(NumElems,auxin->getsize(1));
    const int       maux = auxin->getsize(2);
    const int kmax_auxin = auxin->getsize(3);
    assert_eq(kmax_auxin,(BasisOrder_auxin*(BasisOrder_auxin+1))/2);

    // fout variables
    assert_eq(NumElems,fout->getsize(1));
    const int mcomps_out = fout->getsize(2);
    const int  kmax_fout = fout->getsize(3);
    assert_eq(kmax_fout,(BasisOrder_fout*(BasisOrder_fout+1))/2);

    // number of quadrature points
    assert_ge(QuadOrder,1);
    assert_le(QuadOrder,5);
    int mpoints;
    switch ( QuadOrder )
    {
        case 1:
            mpoints = 0;
            break;

        case 2:
            mpoints = 1;
            break;

        case 3:
            mpoints = 6;
            break;

        case 4:
            mpoints = 7;
            break;

        case 5:	     
            mpoints = 16;
            break;
    }

    // trivial case
    if ( QuadOrder==1 )
    {
        for (int i=istart; i<=iend; i++)
        for (int m=1; m<=mcomps_out; m++) 
        for (int k=1; k<=kmax_fout; k++) 
        {  fout->set(i,m,k, 0.0 );  }
    }
    else
    {
        const int kmax = iMax(iMax(kmax_qin,kmax_auxin),kmax_fout);
        dTensor2    spts(mpoints,2);
        dTensor1    wgts(mpoints);
        dTensor2    xpts(mpoints,2);
        dTensor2   qvals(mpoints,meqn);
        dTensor2 auxvals(mpoints,maux);
        dTensor3   fvals(mpoints,mcomps_out,2);
        dTensor2      mu(mpoints,kmax); // monomial basis (non-orthogonal)
        dTensor2     phi(mpoints,kmax); // Legendre basis (orthogonal)
        dTensor2   mu_xi(mpoints,kmax_fout);   //  xi-derivative of monomial basis (non-orthogonal)
        dTensor2  mu_eta(mpoints,kmax_fout);   // eta-derivative of monomial basis (non-orthogonal)
        dTensor2  phi_xi(mpoints,kmax_fout);   //  xi-derivative of Legendre basis (orthogonal)
        dTensor2 phi_eta(mpoints,kmax_fout);   // eta-derivative of Legendre basis (orthogonal)
        dTensor2   phi_x(mpoints,kmax_fout);   //   x-derivative of Legendre basis (orthogonal)
        dTensor2   phi_y(mpoints,kmax_fout);   //   y-derivative of Legendre basis (orthogonal)

        switch ( QuadOrder )
        {
            case 2:
                spts.set(1,1, 0.0 );
                spts.set(1,2, 0.0 );

                wgts.set(1, 0.5 );
                break;

            case 3:
                spts.set(1,1,  0.112615157582632 );
                spts.set(1,2,  0.112615157582632 );

                spts.set(2,1, -0.225230315165263 );
                spts.set(2,2,  0.112615157582632 );

                spts.set(3,1,  0.112615157582632 );
                spts.set(3,2, -0.225230315165263 );

                spts.set(4,1, -0.241757119823562 );
                spts.set(4,2, -0.241757119823562 );

                spts.set(5,1,  0.483514239647126 );
                spts.set(5,2, -0.241757119823562 );

                spts.set(6,1, -0.241757119823562 );
                spts.set(6,2,  0.483514239647126 );

                wgts.set(1, 0.1116907948390055 );
                wgts.set(2, 0.1116907948390055 );
                wgts.set(3, 0.1116907948390055 );
                wgts.set(4, 0.0549758718276610 );
                wgts.set(5, 0.0549758718276610 );
                wgts.set(6, 0.0549758718276610 );
                break;

            case 4:
                spts.set(1,1,   0.000000000000000 );
                spts.set(1,2,   0.000000000000000 );

                spts.set(2,1,   0.136808730771782 );
                spts.set(2,2,   0.136808730771782 );

                spts.set(3,1,  -0.273617461543563 );
                spts.set(3,2,   0.136808730771782 );

                spts.set(4,1,   0.136808730771782 );
                spts.set(4,2,  -0.273617461543563 );

                spts.set(5,1,  -0.232046826009877 );
                spts.set(5,2,  -0.232046826009877 );

                spts.set(6,1,   0.464093652019754 );
                spts.set(6,2,  -0.232046826009877 );

                spts.set(7,1,  -0.232046826009877 );
                spts.set(7,2,   0.464093652019754 );	 

                wgts.set(1,  0.1125000000000000 );
                wgts.set(2,  0.0661970763942530 );
                wgts.set(3,  0.0661970763942530 );
                wgts.set(4,  0.0661970763942530 );
                wgts.set(5,  0.0629695902724135 );
                wgts.set(6,  0.0629695902724135 );
                wgts.set(7,  0.0629695902724135 );
                break;

            case 5:
                spts.set(1,1,   0.000000000000000 );
                spts.set(1,2,   0.000000000000000 );

                spts.set(2,1,   0.125959254959390 );
                spts.set(2,2,   0.125959254959390 );

                spts.set(3,1,  -0.251918509918779 );
                spts.set(3,2,   0.125959254959390 );

                spts.set(4,1,   0.125959254959390 );
                spts.set(4,2,  -0.251918509918779 );

                spts.set(5,1,  -0.162764025581573 );
                spts.set(5,2,  -0.162764025581573 );

                spts.set(6,1,   0.325528051163147 );
                spts.set(6,2,  -0.162764025581573 );

                spts.set(7,1,  -0.162764025581573 );
                spts.set(7,2,   0.325528051163147 );

                spts.set(8,1,  -0.282786105016302 );
                spts.set(8,2,  -0.282786105016302 );

                spts.set(9,1,   0.565572210032605 );
                spts.set(9,2,  -0.282786105016302 );

                spts.set(10,1, -0.282786105016302 );
                spts.set(10,2,  0.565572210032605 );

                spts.set(11,1, -0.324938555923375 );
                spts.set(11,2, -0.070220503698695 );

                spts.set(12,1, -0.324938555923375 );
                spts.set(12,2,  0.395159059622071 );

                spts.set(13,1, -0.070220503698695 );
                spts.set(13,2, -0.324938555923375 );

                spts.set(14,1, -0.070220503698695 );
                spts.set(14,2,  0.395159059622071 );

                spts.set(15,1,  0.395159059622071 );
                spts.set(15,2, -0.324938555923375 );

                spts.set(16,1,  0.395159059622071 );
                spts.set(16,2, -0.070220503698695 );

                wgts.set(1,  0.0721578038388935 );
                wgts.set(2,  0.0475458171336425 );
                wgts.set(3,  0.0475458171336425 );
                wgts.set(4,  0.0475458171336425 );
                wgts.set(5,  0.0516086852673590 );
                wgts.set(6,  0.0516086852673590 );
                wgts.set(7,  0.0516086852673590 );
                wgts.set(8,  0.0162292488115990 );
                wgts.set(9,  0.0162292488115990 );
                wgts.set(10, 0.0162292488115990 );
                wgts.set(11, 0.0136151570872175 );
                wgts.set(12, 0.0136151570872175 );
                wgts.set(13, 0.0136151570872175 );
                wgts.set(14, 0.0136151570872175 );
                wgts.set(15, 0.0136151570872175 );
                wgts.set(16, 0.0136151570872175 );
                break;
        }

        // Loop over each quadrature point and construct monomial polys
        for (int m=1; m<=mpoints; m++)
        {
            // coordinates
            const double xi   = spts.get(m,1);      
            const double xi2  = xi*xi;
            const double xi3  = xi2*xi;
            const double xi4  = xi3*xi;
            const double eta  = spts.get(m,2);
            const double eta2 = eta*eta;
            const double eta3 = eta2*eta;
            const double eta4 = eta3*eta;      

            // monomial basis functions at each gaussian quadrature point
            switch( kmax )
            {
                case 15:  // fifth order		    		    
                    mu.set(m, 15, eta4     );
                    mu.set(m, 14, xi4      );
                    mu.set(m, 13, xi2*eta2 );
                    mu.set(m, 12, eta3*xi  );
                    mu.set(m, 11, xi3*eta  );

                case 10:  // fourth order
                    mu.set(m, 10, eta3     );
                    mu.set(m, 9,  xi3      );
                    mu.set(m, 8,  xi*eta2  );
                    mu.set(m, 7,  eta*xi2  );

                case 6:  // third order
                    mu.set(m, 6,  eta2     );
                    mu.set(m, 5,  xi2      );
                    mu.set(m, 4,  xi*eta   );		    

                case 3:  // second order		    
                    mu.set(m, 3, eta       );
                    mu.set(m, 2, xi        );

                case 1:  // first order
                    mu.set(m, 1, 1.0       );

                    break;		    
            }

            // Loop over each quadrature point and construct Legendre polys
            for (int i=1; i<=kmax; i++)
            {
                double tmp = 0.0;
                for (int j=1; j<=i; j++)
                {  tmp = tmp + Mmat[i-1][j-1]*mu.get(m,j);  }

                phi.set(m,i, tmp );
            }	

            // Gradient of monomial basis functions at each gaussian quadrature point
            switch( kmax_fout )
            {
                case 15:  // fifth order
                    mu_xi.set( m,15,  0.0         );
                    mu_xi.set( m,14,  4.0*xi3     );
                    mu_xi.set( m,13,  2.0*xi*eta2 );
                    mu_xi.set( m,12,  eta3        );
                    mu_xi.set( m,11,  3.0*xi2*eta );

                    mu_eta.set( m,15, 4.0*eta3    );
                    mu_eta.set( m,14, 0.0         );
                    mu_eta.set( m,13, 2.0*xi2*eta );
                    mu_eta.set( m,12, 3.0*eta2*xi );
                    mu_eta.set( m,11, xi3 );

                case 10:  // fourth order
                    mu_xi.set( m,10,  0.0        );
                    mu_xi.set( m,9,   3.0*xi2    );			
                    mu_xi.set( m,8,   eta2       );
                    mu_xi.set( m,7,   2.0*eta*xi );

                    mu_eta.set( m,10, 3.0*eta2   );
                    mu_eta.set( m,9,  0.0        );
                    mu_eta.set( m,8,  2.0*eta*xi );
                    mu_eta.set( m,7,  xi2        );

                case 6:  // third order
                    mu_xi.set( m,6,  0.0      );
                    mu_xi.set( m,5,  2.0*xi   );			
                    mu_xi.set( m,4,  eta      );

                    mu_eta.set( m,6,  2.0*eta );			
                    mu_eta.set( m,5,  0.0     );
                    mu_eta.set( m,4,  xi      );

                case 3:  // second order
                    mu_xi.set( m,3,  0.0 );
                    mu_xi.set( m,2,  1.0 );

                    mu_eta.set( m,3, 1.0 );
                    mu_eta.set( m,2, 0.0 );

                case 1:  // first order
                    mu_xi.set( m,1,  0.0 );

                    mu_eta.set( m,1, 0.0 );
                    break;
            }

            // Loop over each quadrature point and construct Legendre polys
            for (int i=1; i<=kmax_fout; i++)
            {
                double tmp1 = 0.0;
                double tmp2 = 0.0;
                for (int j=1; j<=i; j++)
                {  
                    tmp1 = tmp1 + Mmat[i-1][j-1]*mu_xi.get(m,j);  
                    tmp2 = tmp2 + Mmat[i-1][j-1]*mu_eta.get(m,j);
                }

                phi_xi.set(m,i,  tmp1 );
                phi_eta.set(m,i, tmp2 );
            }
        }

        // -------------------------------------------------------------
        // Loop over every grid cell indexed by user supplied parameters
        // described by istart...iend
        // -------------------------------------------------------------
#pragma omp parallel for
        for (int i=istart; i<=iend; i++)
        {	  
            // Find center of current cell
            const int i1 = Mesh.get_tnode(i,1);
            const int i2 = Mesh.get_tnode(i,2);
            const int i3 = Mesh.get_tnode(i,3);
            const double x1 = Mesh.get_node(i1,1);
            const double y1 = Mesh.get_node(i1,2);
            const double x2 = Mesh.get_node(i2,1);
            const double y2 = Mesh.get_node(i2,2);
            const double x3 = Mesh.get_node(i3,1);
            const double y3 = Mesh.get_node(i3,2);

            const double xc = (x1+x2+x3)/3.0;
            const double yc = (y1+y2+y3)/3.0;

            // Compute q, aux and fvals at each Gaussian Quadrature point
            // for this current cell indexed by (i,j)
            // Save results into dTensor2 qvals, auxvals and fvals.
            for (int m=1; m<=mpoints; m++)
            {
                // convert phi_xi and phi_eta derivatives
                // to phi_x and phi_y derivatives through Jacobian
                for (int k=1; k<=kmax_fout; k++)
                {
                    phi_x.set(m,k, Mesh.get_jmat(i,1,1)*phi_xi.get(m,k)
                            + Mesh.get_jmat(i,1,2)*phi_eta.get(m,k) );
                    phi_y.set(m,k, Mesh.get_jmat(i,2,1)*phi_xi.get(m,k)
                            + Mesh.get_jmat(i,2,2)*phi_eta.get(m,k) );
                }

                // point on the unit triangle
                const double s = spts.get(m,1);
                const double t = spts.get(m,2);

                // point on the physical triangle
                xpts.set(m,1, xc + (x2-x1)*s + (x3-x1)*t );
                xpts.set(m,2, yc + (y2-y1)*s + (y3-y1)*t );

                // Solution values (q) at each grid point
                for (int me=1; me<=meqn; me++)
                {
                    qvals.set(m,me, 0.0 );

                    for (int k=1; k<=kmax_qin; k++)
                    {
                        qvals.set(m,me, qvals.get(m,me) 
                                + phi.get(m,k) * qin->get(i,me,k) );
                    }
                }

                // Auxiliary values (aux) at each grid point
                for (int ma=1; ma<=maux; ma++)
                {
                    auxvals.set(m,ma, 0.0 );

                    for (int k=1; k<=kmax_auxin; k++)
                    {
                        auxvals.set(m,ma, auxvals.get(m,ma) 
                                + phi.get(m,k) * auxin->get(i,ma,k) );
                    }
                } 
            }

            // Call user-supplied function to set fvals
            Func(vel_vec, xpts, qvals, auxvals, fvals);

            // Evaluate integral on current cell (project onto Legendre basis) 
            // using Gaussian Quadrature for the integration
            for (int m1=1; m1<=mcomps_out; m1++)		
            for (int m2=1; m2<=kmax_fout; m2++)
            {
                double tmp = 0.0;
                for (int k=1; k<=mpoints; k++)
                {
                    tmp = tmp + wgts.get(k)*
                        ( fvals.get(k,m1,1)*phi_x.get(k,m2) +
                          fvals.get(k,m1,2)*phi_y.get(k,m2) );
                }
                fout->set(i, m1, m2,  2.0*tmp );
            }

        }
    }
}
Exemplo n.º 6
0
void ConstructA_CG2(const mesh& Mesh, FullMatrix& A)
{
  const int NumPhysElems = Mesh.get_NumPhysElems();
  const int NumBndNodes  = Mesh.get_SubNumBndNodes();
  const int Asize = Mesh.get_SubNumPhysNodes();

  assert_eq(Asize,A.get_NumRows());
  assert_eq(Asize,A.get_NumCols());
  
  dTensor1 A1(6);
  dTensor1 A2(6);
  dTensor1 A3(6);
  dTensor1 A4(6);
  dTensor1 A5(6);
  dTensor1 A6(6);

  A1.set(1, -oneninth     );
  A1.set(2,  4.0*oneninth );
  A1.set(3, -oneninth     );
  A1.set(4,  4.0*oneninth );
  A1.set(5,  4.0*oneninth );
  A1.set(6, -oneninth     );
  
  A2.set(1, -onethird     );
  A2.set(2,  0.0          );
  A2.set(3,  onethird     );
  A2.set(4, -4.0*onethird );
  A2.set(5,  4.0*onethird );
  A2.set(6,  0.0          );
  
  A3.set(1, -onethird     );
  A3.set(2, -4.0*onethird );
  A3.set(3,  0.0          );
  A3.set(4,  0.0          );
  A3.set(5,  4.0*onethird );
  A3.set(6,  onethird     );
  
  A4.set(1,  4.0          );
  A4.set(2, -4.0          );
  A4.set(3,  0.0          );
  A4.set(4, -4.0          );
  A4.set(5,  4.0          );
  A4.set(6,  0.0          );

  A5.set(1,  2.0          );
  A5.set(2, -4.0          );
  A5.set(3,  2.0          );
  A5.set(4,  0.0          );
  A5.set(5,  0.0          );
  A5.set(6,  0.0          );
  
  A6.set(1,  2.0          );
  A6.set(2,  0.0          );
  A6.set(3,  0.0          );
  A6.set(4, -4.0          );
  A6.set(5,  0.0          );
  A6.set(6,  2.0          );

  dTensor2 spts(3,2);
  spts.set(1,1,  1.0/3.0 );
  spts.set(1,2, -1.0/6.0 );
  
  spts.set(2,1, -1.0/6.0 );
  spts.set(2,2, -1.0/6.0 );
  
  spts.set(3,1, -1.0/6.0 );
  spts.set(3,2,  1.0/3.0 );
  
  dTensor1 wgts(3);
  wgts.set(1, 1.0/6.0 );
  wgts.set(2, 1.0/6.0 );
  wgts.set(3, 1.0/6.0 );
  
  // Loop over all elements in the mesh
  for (int i=1; i<=NumPhysElems; i++)
    {
      // Information for element i
      iTensor1 tt(6);
      for (int k=1; k<=6; k++)
	{  tt.set(k, Mesh.get_node_subs(i,k) );  }
      
      // Evaluate gradients of the Lagrange polynomials on Gauss quadrature points      
      dTensor2 gpx(6,3);
      dTensor2 gpy(6,3);
      
      for (int m=1; m<=3; m++)
	{
	  double  xi = spts.get(m,1);
	  double eta = spts.get(m,2);
	  
	  for (int k=1; k<=6; k++)
	    {
	      double gp_xi  = A2.get(k) + 2.0*A5.get(k)*xi + A4.get(k)*eta;
	      double gp_eta = A3.get(k) + A4.get(k)*xi + 2.0*A6.get(k)*eta;

	      gpx.set(k,m, Mesh.get_jmat(i,1,1)*gp_xi
		         + Mesh.get_jmat(i,1,2)*gp_eta );
	      gpy.set(k,m, Mesh.get_jmat(i,2,1)*gp_xi
		         + Mesh.get_jmat(i,2,2)*gp_eta );
	    }
	}

      // Entries of the stiffness matrix A
      double Area = Mesh.get_area_prim(i);
      for (int j=1; j<=6; j++)
	for (int k=1; k<=6; k++)
	  {
	    double tmp = A.get(tt.get(j),tt.get(k));
	    for (int m=1; m<=3; m++)
	      {
		tmp = tmp + 2.0*Area*wgts.get(m)*(gpx.get(j,m)*gpx.get(k,m)+gpy.get(j,m)*gpy.get(k,m));
	      }
	    A.set(tt.get(j),tt.get(k), tmp );
	  }
    }

  // Replace boundary node equations by Dirichlet boundary condition enforcement
  for (int i=1; i<=NumBndNodes; i++)
    {
      const int j=Mesh.get_sub_bnd_node(i);
      
      for (int k=1; k<=A.get_NumCols(); k++)
	{
	  A.set(j,k, 0.0 );	  
	}
      for (int k=1; k<=A.get_NumRows(); k++)
	{
	  A.set(k,j, 0.0 );
	}
      A.set(j,j, 1.0 );
    }

  // Get sparse structure representation
  A.Sparsify();
  
}
Exemplo n.º 7
0
// Modified version of the all purpose routine L2Project specifically written
// for projecting the "time-averaged" flux function onto the basis function.
//
// This routine also returns the coefficients of the Lax Wendroff Flux
// Function when expanded with legendre basis functions, and therefore the
// basis expansions produced by this routine can be used for all of the
// Riemann solves.
//
// ---------------------------------------------------------------------
// Inputs should have the following sizes:   
//           TODO - document the inputs here
// ---------------------------------------------------------------------
void L2ProjectLxW_Unst( const int mterms,
        const double alpha, const double beta_dt, const double charlie_dt,
        const int istart, const int iend,               // Start-stop indices
        const int QuadOrder,
        const int BasisOrder_qin,
        const int BasisOrder_auxin,
        const int BasisOrder_fout,
        const mesh& Mesh, 
        const dTensor3* qin, const dTensor3* auxin,     // state vector
        dTensor3* F, dTensor3* G,                       // time-averaged Flux function
        void FluxFunc (const dTensor2& xpts, 
            const dTensor2& Q, const dTensor2& Aux, dTensor3& flux),
        void DFluxFunc (const dTensor2& xpts, 
            const dTensor2& Q, const dTensor2& aux, dTensor4& Dflux),
        void D2FluxFunc (const dTensor2& xpts, 
            const dTensor2& Q, const dTensor2& aux, dTensor5& D2flux) )
{    

    if( fabs( alpha ) < 1e-14 && fabs( beta_dt ) < 1e-14 && fabs( charlie_dt ) < 1e-14 )
    {
        F->setall(0.);
        G->setall(0.);
        return;
    }

    // starting and ending indices 
    const int   NumElems = Mesh.get_NumElems();
    assert_ge(istart,1);
    assert_le(iend,NumElems);

    // qin variable
    assert_eq(NumElems,qin->getsize(1));
    const int     meqn = qin->getsize(2);
    const int kmax_qin = qin->getsize(3);
    assert_eq(kmax_qin,(BasisOrder_qin*(BasisOrder_qin+1))/2);

    // auxin variable
    assert_eq(NumElems,auxin->getsize(1));
    const int       maux = auxin->getsize(2);
    const int kmax_auxin = auxin->getsize(3);
    assert_eq(kmax_auxin,(BasisOrder_auxin*(BasisOrder_auxin+1))/2);

    // fout variables
    assert_eq(NumElems,    F->getsize(1));
    const int mcomps_out = F->getsize(2);
    const int  kmax_fout = F->getsize(3);
    assert_eq(kmax_fout, (BasisOrder_fout*(BasisOrder_fout+1))/2 );

    // number of quadrature points
    assert_ge(QuadOrder, 1);
    assert_le(QuadOrder, 5);

    // Number of quadrature points
    int mpoints;
    switch( QuadOrder )
    {
        case 1:
            mpoints = 1;
            break;

        case 2:
            mpoints = 3;
            break;

        case 3:
            mpoints = 6;
            break;

        case 4:
            mpoints = 12;
            break;

        case 5:	     
            mpoints = 16;
            break;
    }

    const int kmax = iMax(iMax(kmax_qin, kmax_auxin), kmax_fout);
    dTensor2  phi(mpoints, kmax); // Legendre basis (orthogonal)
    dTensor2 spts(mpoints, 2);    // List of quadrature points
    dTensor1 wgts(mpoints);       // List of quadrature weights

    setQuadPoints_Unst( QuadOrder, wgts, spts );

    // ---------------------------------------------------------------------- //
    // Evaluate the basis functions at each point
    SetLegendreAtPoints_Unst(spts, phi);
    // ---------------------------------------------------------------------- //

    // ---------------------------------------------------------------------- //
    // First-order derivatives
    dTensor2 phi_xi (mpoints, kmax );
    dTensor2 phi_eta(mpoints, kmax );
    SetLegendreGrad_Unst( spts, phi_xi, phi_eta );
    // ---------------------------------------------------------------------- //

    // ---------------------------------------------------------------------- //
    // Second-order derivatives
    dTensor2 phi_xi2  (mpoints, kmax );
    dTensor2 phi_xieta(mpoints, kmax );
    dTensor2 phi_eta2 (mpoints, kmax );
    LegendreDiff2_Unst(spts, &phi_xi2, &phi_xieta, &phi_eta2 );
    // ---------------------------------------------------------------------- //

    // ------------------------------------------------------------- //
    // Loop over every grid cell indexed by user supplied parameters //
    // described by istart...iend, jstart...jend                     // 
    // ------------------------------------------------------------- //
#pragma omp parallel for
    for (int i=istart; i<=iend; i++)
    {

        // These need to be defined locally.  Each mesh element carries its
        // own change of basis matrix, so these need to be recomputed for
        // each element.  The canonical derivatives, phi_xi, and phi_eta can
        // be computed and shared for each element.

        // First-order derivatives
        dTensor2   phi_x(mpoints, kmax_fout);   //   x-derivative of Legendre basis (orthogonal)
        dTensor2   phi_y(mpoints, kmax_fout);   //   y-derivative of Legendre basis (orthogonal)

        // Second-order derivatives
        dTensor2   phi_xx(mpoints, kmax_fout);   //   xx-derivative of Legendre basis (orthogonal)
        dTensor2   phi_xy(mpoints, kmax_fout);   //   xy-derivative of Legendre basis (orthogonal)
        dTensor2   phi_yy(mpoints, kmax_fout);   //   yy-derivative of Legendre basis (orthogonal)

        //find center of current cell
        const int    i1 = Mesh.get_tnode(i,1);
        const int    i2 = Mesh.get_tnode(i,2);
        const int    i3 = Mesh.get_tnode(i,3);

        // Corners:
        const double x1 = Mesh.get_node(i1,1);
        const double y1 = Mesh.get_node(i1,2);
        const double x2 = Mesh.get_node(i2,1);
        const double y2 = Mesh.get_node(i2,2);
        const double x3 = Mesh.get_node(i3,1);
        const double y3 = Mesh.get_node(i3,2);

        // Center of current cell:
        const double xc = (x1+x2+x3)/3.0;
        const double yc = (y1+y2+y3)/3.0;

        // Variables that need to be written to, and therefore are 
        // created for each thread
        dTensor2 xpts   (mpoints, 2);
        dTensor2 qvals  (mpoints, meqn);
        dTensor2 auxvals(mpoints, maux);

        // local storage for Flux function its Jacobian, and the Hessian:
        dTensor3    fvals(mpoints,             meqn, 2);  // flux function (vector)
        dTensor4        A(mpoints,       meqn, meqn, 2);  // Jacobian of flux
        dTensor5        H(mpoints, meqn, meqn, meqn, 2);  // Hessian of flux

        // Compute q, aux and fvals at each Gaussian Quadrature point
        // for this current cell indexed by (i,j)
        // Save results into dTensor2 qvals, auxvals and fvals.
        for (int m=1; m<= mpoints; m++)
        {

            // convert phi_xi and phi_eta derivatives
            // to phi_x and phi_y derivatives through Jacobian
            //
            // Note that: 
            //
            //     pd_x = J11 pd_xi + J12 pd_eta and
            //     pd_y = J21 pd_xi + J22 pd_eta.
            //
            // Squaring these operators yields the second derivatives.
            for (int k=1; k<=kmax_fout; k++)
            {
                phi_x.set(m,k, Mesh.get_jmat(i,1,1)*phi_xi.get(m,k)
                             + Mesh.get_jmat(i,1,2)*phi_eta.get(m,k) );
                phi_y.set(m,k, Mesh.get_jmat(i,2,1)*phi_xi.get(m,k)
                             + Mesh.get_jmat(i,2,2)*phi_eta.get(m,k) );

                phi_xx.set(m,k, Mesh.get_jmat(i,1,1)*Mesh.get_jmat(i,1,1)*phi_xi2.get(m,k)
                              + Mesh.get_jmat(i,1,1)*Mesh.get_jmat(i,1,2)*phi_xieta.get(m,k)
                              + Mesh.get_jmat(i,1,2)*Mesh.get_jmat(i,1,2)*phi_eta2.get(m,k)
                           );

                phi_xy.set(m,k, Mesh.get_jmat(i,1,1)*Mesh.get_jmat(i,2,1)*phi_xi2.get(m,k)
                             +(Mesh.get_jmat(i,1,2)*Mesh.get_jmat(i,2,1)
                             + Mesh.get_jmat(i,1,1)*Mesh.get_jmat(i,2,2))*phi_xieta.get(m,k)
                             + Mesh.get_jmat(i,1,2)*Mesh.get_jmat(i,2,2)*phi_eta2.get(m,k)
                           );

                phi_yy.set(m,k, Mesh.get_jmat(i,2,1)*Mesh.get_jmat(i,2,1)*phi_xi2.get(m,k)
                              + Mesh.get_jmat(i,2,1)*Mesh.get_jmat(i,2,2)*phi_xieta.get(m,k)
                              + Mesh.get_jmat(i,2,2)*Mesh.get_jmat(i,2,2)*phi_eta2.get(m,k)
                           );
            }

            // point on the unit triangle
            const double s = spts.get(m,1);
            const double t = spts.get(m,2);

            // point on the physical triangle
            xpts.set(m,1, xc + (x2-x1)*s + (x3-x1)*t );
            xpts.set(m,2, yc + (y2-y1)*s + (y3-y1)*t );

            // Solution values (q) at each grid point
            for (int me=1; me<=meqn; me++)
            {
                qvals.set(m,me, 0.0 );
                for (int k=1; k<=kmax_qin; k++)
                {
                    qvals.set(m,me, qvals.get(m,me) 
                            + phi.get(m,k) * qin->get(i,me,k) );
                }
            }

            // Auxiliary values (aux) at each grid point
            for (int ma=1; ma<=maux; ma++)
            {
                auxvals.set(m,ma, 0.0 );
                for (int k=1; k<=kmax_auxin; k++)
                {
                    auxvals.set(m,ma, auxvals.get(m,ma) 
                            + phi.get(m,k) * auxin->get(i,ma,k) );
                }
            } 
        }

        // ----------------------------------------------------------------- //
        //
        // Part I:
        //
        // Project the flux function onto the basis 
        // functions.  This is the term of order O( 1 ) in the
        // "time-averaged" Taylor expansion of f and g.
        //
        // ----------------------------------------------------------------- //

        // Call user-supplied function to set fvals
        FluxFunc(xpts, qvals, auxvals, fvals);

        // Evaluate integral on current cell (project onto Legendre basis) 
        // using Gaussian Quadrature for the integration
        //
        // TODO - do we want to optimize this by looking into using transposes,
        // as has been done in the 2d/cart code? (5/14/2014) -DS
        for (int me=1; me<=mcomps_out; me++)		
        for (int k=1; k<=kmax; k++)
        {
            double tmp1 = 0.0;
            double tmp2 = 0.0;
            for (int mp=1; mp <= mpoints; mp++)
            {
                tmp1 += wgts.get(mp)*fvals.get(mp, me, 1)*phi.get(mp, k);
                tmp2 += wgts.get(mp)*fvals.get(mp, me, 2)*phi.get(mp, k);
            }
            F->set(i, me, k,  2.0*tmp1 );
            G->set(i, me, k,  2.0*tmp2 );
        }

        // ----------------------------------------------------------------- //
        //
        // Part II:
        //
        // Project the derivative of the flux function onto the basis 
        // functions.  This is the term of order O( \dt ) in the
        // "time-averaged" Taylor expansion of f and g.
        //
        // ----------------------------------------------------------------- //

        // ----------------------------------------------------------------- //
        // Compute pointwise values for fx+gy:
        //
        // We can't multiply fvals of f, and g,
        // by alpha, otherwise we compute the wrong derivative here!
        //
        dTensor2 fx_plus_gy( mpoints, meqn ); fx_plus_gy.setall(0.);
        for( int mp=1; mp <= mpoints; mp++ )
        for( int me=1; me <= meqn; me++ )
        {
            double tmp = 0.;
            for( int k=2; k <= kmax; k++ )                
            {
                tmp += F->get( i, me, k ) * phi_x.get( mp, k );
                tmp += G->get( i, me, k ) * phi_y.get( mp, k );
            }
            fx_plus_gy.set( mp, me, tmp );
        }

        // Call user-supplied Jacobian to set f'(q) and g'(q):
        DFluxFunc( xpts, qvals, auxvals, A );

        // place-holders for point values of
        // f'(q)( fx + gy ) and g'(q)( fx + gy ):
        dTensor2 dt_times_fdot( mpoints, meqn );
        dTensor2 dt_times_gdot( mpoints, meqn );

        // Compute point values for f'(q) * (fx+gy) and g'(q) * (fx+gy):
        for( int mp=1; mp <= mpoints; mp++ )
        for( int m1=1; m1 <= meqn; m1++ )
        {
            double tmp1 = 0.;
            double tmp2 = 0.;
            for( int m2=1; m2 <= meqn; m2++ )
            {
                tmp1 += A.get(mp, m1, m2, 1 ) * fx_plus_gy.get(mp, m2);
                tmp2 += A.get(mp, m1, m2, 2 ) * fx_plus_gy.get(mp, m2);
            }
            dt_times_fdot.set( mp, m1, -beta_dt*tmp1 );
            dt_times_gdot.set( mp, m1, -beta_dt*tmp2 );
        }

        // ---  Third-order terms --- //
        //
        // These are the terms that are O( \dt^2 ) in the "time-averaged"
        // flux function.
        dTensor2 f_tt( mpoints, meqn );   f_tt.setall(0.);
        dTensor2 g_tt( mpoints, meqn );   g_tt.setall(0.);
        if( mterms > 2 )
        {

            // Construct the Hessian at each (quadrature) point
            D2FluxFunc( xpts, qvals, auxvals, H );

            // Second-order derivative terms
            dTensor2 qx_vals (mpoints, meqn);   qx_vals.setall(0.);
            dTensor2 qy_vals (mpoints, meqn);   qy_vals.setall(0.);

            dTensor2 fxx_vals(mpoints, meqn);   fxx_vals.setall(0.);
            dTensor2 gxx_vals(mpoints, meqn);   gxx_vals.setall(0.);

            dTensor2 fxy_vals(mpoints, meqn);   fxy_vals.setall(0.);
            dTensor2 gxy_vals(mpoints, meqn);   gxy_vals.setall(0.);

            dTensor2 fyy_vals(mpoints, meqn);   fyy_vals.setall(0.);
            dTensor2 gyy_vals(mpoints, meqn);   gyy_vals.setall(0.);

            for( int m=1; m <= mpoints; m++ )
            for( int me=1; me <= meqn; me++ )
            {
                // Can start at k=1, because derivative of a constant is
                // zero.
                double tmp_qx = 0.;
                double tmp_qy = 0.;
                for( int  k=2; k <= kmax; k++   )
                {
                    tmp_qx += phi_x.get(m,k) * qin->get(i,me,k);
                    tmp_qy += phi_y.get(m,k) * qin->get(i,me,k);
                }
                qx_vals.set(m,me, tmp_qx );
                qy_vals.set(m,me, tmp_qy );

                // First non-zero terms start at third-order.
                for( int  k=4; k <= kmax; k++   )
                {
                    fxx_vals.set(m,me, fxx_vals.get(m,me) + phi_xx.get(m,k)*F->get(i,me,k) );
                    gxx_vals.set(m,me, gxx_vals.get(m,me) + phi_xx.get(m,k)*G->get(i,me,k) );

                    fxy_vals.set(m,me, fxy_vals.get(m,me) + phi_xy.get(m,k)*F->get(i,me,k) );
                    gxy_vals.set(m,me, gxy_vals.get(m,me) + phi_xy.get(m,k)*G->get(i,me,k) );

                    fyy_vals.set(m,me, fyy_vals.get(m,me) + phi_yy.get(m,k)*F->get(i,me,k) );
                    gyy_vals.set(m,me, gyy_vals.get(m,me) + phi_yy.get(m,k)*G->get(i,me,k) );
                }

            }

            // ----------------------------------- //
            // Part I: Compute (f_x + g_y)_{,t}
            // ----------------------------------- //

            // Compute terms that get multiplied by \pd2{ f }{ q } and \pd2{ g }{ q }.
            dTensor2 fx_plus_gy_t( mpoints, meqn );
            for( int  m = 1;  m <= mpoints; m++ )
            for( int me = 1; me <= meqn; me++   )
            {

                double tmp = 0.;

                // Terms that get multiplied by the Hessian:
                for( int m1=1; m1 <= meqn; m1++ )
                for( int m2=1; m2 <= meqn; m2++ )
                {

                    tmp += H.get(m,me,m1,m2,1)*qx_vals.get(m,m1)*fx_plus_gy.get(m,m2);
                    tmp += H.get(m,me,m1,m2,2)*qy_vals.get(m,m1)*fx_plus_gy.get(m,m2);
                }

                // Terms that get multiplied by f'(q) and g'(q):
                for( int m1=1; m1 <= meqn; m1++ )
                {

                    tmp += A.get(m,me,m1,1)*( fxx_vals.get(m,m1)+gxy_vals.get(m,m1) );
                    tmp += A.get(m,me,m1,2)*( fxy_vals.get(m,m1)+gyy_vals.get(m,m1) );
                }

                fx_plus_gy_t.set( m, me, tmp );
            }

            // ----------------------------------- //
            // Part II: Compute 
            //      f'(q) * fx_plus_gy_t and 
            //      g'(q) * fx_plus_gy_t
            // ----------------------------------- //

            // Add in the third term that gets multiplied by A:
            for( int m=1; m <= mpoints; m++ )
            for( int m1=1; m1 <= meqn; m1++ )
            {
                double tmp1 = 0.;
                double tmp2 = 0.;
                for( int m2=1; m2 <= meqn; m2++ )
                {
                    tmp1 += A.get(m,m1,m2,1)*fx_plus_gy_t.get(m,m2);
                    tmp2 += A.get(m,m1,m2,2)*fx_plus_gy_t.get(m,m2);
                }
                f_tt.set( m, m1, tmp1 );
                g_tt.set( m, m1, tmp2 );
            }

            // ----------------------------------------------- //
            // Part III: Add in contributions from
            //      f''(q) * (fx_plus_gy, fx_plus_gy ) and 
            //      g''(q) * (fx_plus_gy, fx_plus_gy ).
            // ----------------------------------------------- //
            for( int m =1; m <= mpoints; m++ )
            for( int me =1; me <= meqn; me++ )
            {
                double tmp1 = 0.;
                double tmp2 = 0.;

                // Terms that get multiplied by the Hessian:
                for( int m1=1; m1 <= meqn; m1++ )
                for( int m2=1; m2 <= meqn; m2++ )
                {
                    tmp1 += H.get(m,me,m1,m2,1)*fx_plus_gy.get(m,m1)*fx_plus_gy.get(m,m2);
                    tmp2 += H.get(m,me,m1,m2,2)*fx_plus_gy.get(m,m1)*fx_plus_gy.get(m,m2);
                }

                f_tt.set( m, me, f_tt.get(m,me) + tmp1 );
                g_tt.set( m, me, g_tt.get(m,me) + tmp2 );
            }

        } // End of computing "third"-order terms

        // ---------------------------------------------------------- //
        // 
        // Construct basis coefficients (integrate_on_current_cell)
        //
        // ---------------------------------------------------------- //
        for (int me=1; me<=mcomps_out; me++)		
        for (int k=1; k<=kmax; k++)
        {

            double tmp1 = 0.0;
            double tmp2 = 0.0;
            for (int mp=1; mp<=mpoints; mp++)
            {
                tmp1 += wgts.get(mp)*phi.get(mp,k)*(
                    dt_times_fdot.get(mp, me) + charlie_dt*f_tt.get(mp, me) );
                tmp2 += wgts.get(mp)*phi.get(mp,k)*(
                    dt_times_gdot.get(mp, me) + charlie_dt*g_tt.get(mp, me) );
            }
            F->set(i,me,k,  F->get(i,me,k) + 2.0*tmp1 );
            G->set(i,me,k,  G->get(i,me,k) + 2.0*tmp2 );

        }

    }

}
Exemplo n.º 8
0
    bool ParMetisPartitioner::partition(map<int, double>& elemWeights,
                                        PartitionMode mode)
    {
      FUNCNAME("ParMetisPartitioner::partition()");

      int mpiSize = mpiComm->Get_size();


      // === Create parmetis mesh ===

      if (parMetisMesh)
        delete parMetisMesh;

      TEST_EXIT_DBG(elementInRank.size() != 0)("Should not happen!\n");

      parMetisMesh = new ParMetisMesh(mesh, mpiComm, elementInRank, mapLocalGlobal);

      int nElements = parMetisMesh->getNumElements();


      // === Create weight array ===

      vector<int> wgts(nElements);
      vector<float> floatWgts(nElements);
      unsigned int floatWgtsPos = 0;
      float maxWgt = 0.0;

      TraverseStack stack;
      ElInfo* elInfo = stack.traverseFirst(mesh, 0, Mesh::CALL_EL_LEVEL);
      while (elInfo)
      {
        int index = elInfo->getElement()->getIndex();

        if (elementInRank[index])
        {
          // get weight
          float wgt = static_cast<float>(elemWeights[index]);
          maxWgt = std::max(wgt, maxWgt);

          // write float weight
          TEST_EXIT_DBG(floatWgtsPos < floatWgts.size())("Should not happen!\n");
          floatWgts[floatWgtsPos++] = wgt;
        }
        elInfo = stack.traverseNext(elInfo);
      }

      TEST_EXIT_DBG(floatWgtsPos == floatWgts.size())("Should not happen!\n");

      float tmp;
      mpiComm->Allreduce(&maxWgt, &tmp, 1, MPI_FLOAT, MPI_MAX);
      maxWgt = tmp;


      // === Create dual graph ===

      ParMetisGraph parMetisGraph(parMetisMesh, mpiComm);


      // === Partitioning of dual graph ===

      int wgtflag = 2; // weights at vertices only!
      int numflag = 0; // c numbering style!
      int ncon = 1; // one weight at each vertex!
      int nparts = mpiSize; // number of partitions

      vector<double> tpwgts(mpiSize);
      double ubvec = 1.05;
      int options[4] = {0, 0, 15, PARMETIS_PSR_COUPLED}; // default options
      int edgecut = -1;
      vector<int> part(nElements);

      // set tpwgts
      for (int i = 0; i < mpiSize; i++)
        tpwgts[i] = 1.0 / static_cast<double>(nparts);

      //     float scale = 10000.0 / maxWgt;
      for (int i = 0; i < nElements; i++)
        wgts[i] = floatWgts[i];
      //      wgts[i] = static_cast<int>(floatWgts[i] * scale);


      // === Start ParMETIS. ===

      MPI_Comm tmpComm = MPI_Comm(*mpiComm);

      switch (mode)
      {
      case INITIAL:
        ParMETIS_V3_PartKway(parMetisMesh->getElementDist(),
                             parMetisGraph.getXAdj(),
                             parMetisGraph.getAdjncy(),
                             &(wgts[0]),
                             NULL,
                             &wgtflag,
                             &numflag,
                             &ncon,
                             &nparts,
                             &(tpwgts[0]),
                             &ubvec,
                             options,
                             &edgecut,
                             &(part[0]),
                             &tmpComm);
        break;
      case ADAPTIVE_REPART:
      {
        vector<int> vsize(nElements);
        for (int i = 0; i < nElements; i++)
          vsize[i] = static_cast<int>(floatWgts[i]);

        ParMETIS_V3_AdaptiveRepart(parMetisMesh->getElementDist(),
                                   parMetisGraph.getXAdj(),
                                   parMetisGraph.getAdjncy(),
                                   &(wgts[0]),
                                   NULL,
                                   &(vsize[0]),
                                   &wgtflag,
                                   &numflag,
                                   &ncon,
                                   &nparts,
                                   &(tpwgts[0]),
                                   &ubvec,
                                   &itr,
                                   options,
                                   &edgecut,
                                   &(part[0]),
                                   &tmpComm);
      }
      break;
      case REFINE_PART:
        ParMETIS_V3_RefineKway(parMetisMesh->getElementDist(),
                               parMetisGraph.getXAdj(),
                               parMetisGraph.getAdjncy(),
                               &(wgts[0]),
                               NULL,
                               &wgtflag,
                               &numflag,
                               &ncon,
                               &nparts,
                               &(tpwgts[0]),
                               &ubvec,
                               options,
                               &edgecut,
                               &(part[0]),
                               &tmpComm);

        break;
      default:
        ERROR_EXIT("unknown partitioning mode\n");
      }


      // === Distribute new partition data. ===

      return distributePartitioning(&(part[0]));
    }
void CartCellDoubleQuadraticRefine::refine(Patch<NDIM>& fine,
                                           const Patch<NDIM>& coarse,
                                           const int dst_component,
                                           const int src_component,
                                           const Box<NDIM>& fine_box,
                                           const IntVector<NDIM>& ratio) const
{
    // Get the patch data.
    Pointer<CellData<NDIM, double> > fdata = fine.getPatchData(dst_component);
    Pointer<CellData<NDIM, double> > cdata = coarse.getPatchData(src_component);
#if !defined(NDEBUG)
    TBOX_ASSERT(fdata);
    TBOX_ASSERT(cdata);
    TBOX_ASSERT(fdata->getDepth() == cdata->getDepth());
#endif
    const int data_depth = fdata->getDepth();

    const Box<NDIM>& patch_box_fine = fine.getBox();
    const Index<NDIM>& patch_lower_fine = patch_box_fine.lower();
    Pointer<CartesianPatchGeometry<NDIM> > pgeom_fine = fine.getPatchGeometry();
    const double* const XLower_fine = pgeom_fine->getXLower();
    const double* const dx_fine = pgeom_fine->getDx();

    const Box<NDIM>& patch_box_crse = coarse.getBox();
    const Index<NDIM>& patch_lower_crse = patch_box_crse.lower();
    Pointer<CartesianPatchGeometry<NDIM> > pgeom_crse = coarse.getPatchGeometry();
    const double* const XLower_crse = pgeom_crse->getXLower();
    const double* const dx_crse = pgeom_crse->getDx();

    // Set all values in the fine box via quadratic interpolation from the
    // overlying coarse grid data.
    for (Box<NDIM>::Iterator b(fine_box); b; b++)
    {
        const Index<NDIM>& i_fine = b();
        const Index<NDIM> i_crse = coarsen(i_fine, ratio);

        // Determine the interpolation stencil in the coarse index space.
        Box<NDIM> stencil_box_crse(i_crse, i_crse);
        stencil_box_crse.grow(IntVector<NDIM>(1));

        // Determine the interpolation weights.
        static const int degree = 2;
        boost::array<boost::array<double, degree + 1>, NDIM> wgts(
            array_constant<boost::array<double, degree + 1>, NDIM>(
                boost::array<double, degree + 1>(array_constant<double, degree + 1>(0.0))));
        for (unsigned int axis = 0; axis < NDIM; ++axis)
        {
            const double X =
                XLower_fine[axis] + dx_fine[axis] * (static_cast<double>(i_fine(axis) - patch_lower_fine(axis)) + 0.5);
            std::vector<double> X_crse(degree + 1, 0.0);
            for (int i_crse = stencil_box_crse.lower()(axis), k = 0; i_crse <= stencil_box_crse.upper()(axis);
                 ++i_crse, ++k)
            {
                X_crse[k] =
                    XLower_crse[axis] + dx_crse[axis] * (static_cast<double>(i_crse - patch_lower_crse(axis)) + 0.5);
            }
            wgts[axis][0] = ((X - X_crse[1]) * (X - X_crse[2])) / ((X_crse[0] - X_crse[1]) * (X_crse[0] - X_crse[2]));
            wgts[axis][1] = ((X - X_crse[0]) * (X - X_crse[2])) / ((X_crse[1] - X_crse[0]) * (X_crse[1] - X_crse[2]));
            wgts[axis][2] = ((X - X_crse[0]) * (X - X_crse[1])) / ((X_crse[2] - X_crse[0]) * (X_crse[2] - X_crse[1]));
        }

        // Interpolate from the coarse grid to the fine grid.
        Index<NDIM> i_intrp;
        for (int d = 0; d < data_depth; ++d)
        {
            (*fdata)(i_fine, d) = 0.0;
#if (NDIM > 2)
            for (int i2 = 0; i2 <= degree; ++i2)
            {
                const double& wgt2 = wgts[2][i2];
                i_intrp(2) = stencil_box_crse.lower()(2) + i2;
#else
            const double wgt2 = 1.0;
#endif
#if (NDIM > 1)
                for (int i1 = 0; i1 <= degree; ++i1)
                {
                    const double& wgt1 = wgts[1][i1];
                    i_intrp(1) = stencil_box_crse.lower()(1) + i1;
#else
            const double wgt1 = 1.0;
#endif
                    for (int i0 = 0; i0 <= degree; ++i0)
                    {
                        const double& wgt0 = wgts[0][i0];
                        i_intrp(0) = stencil_box_crse.lower()(0) + i0;

                        (*fdata)(i_fine, d) += wgt0 * wgt1 * wgt2 * (*cdata)(i_intrp, d);
                    }
#if (NDIM > 1)
                }
#endif
#if (NDIM > 2)
            }
#endif
        }
    }
    return;
} // refine