Exemplo n.º 1
0
Angle 
LunarArcOfLight( double julianDay )
{
    shared_ptr< JPLEphemeris > spEphemeris
            = JPLEphemeris::GetEphemeris( julianDay );
    if ( spEphemeris == 0 )
        return Angle( 0. ); //!!!
    Point3D earthBarycentric;
    Vector3D earthBarycentricVelocity;
    Matrix3D nutAndPrecMatrix;
#ifdef DEBUG
    bool earthRslt =
#endif
            GetEarthBarycentric( julianDay, &earthBarycentric,
                                 &earthBarycentricVelocity, spEphemeris );
    Assert( earthRslt );
#ifdef DEBUG
    bool oblRslt =
#endif
            GetNutPrecAndObliquity( julianDay, &nutAndPrecMatrix,
                                    0, spEphemeris );
    Assert( oblRslt );
    Equatorial solarPos = SolarEquatorialPosition( julianDay,
                                                   earthBarycentric,
                                                   earthBarycentricVelocity,
                                                   nutAndPrecMatrix,
                                                   spEphemeris );
    Equatorial lunarPos = LunarEquatorialPosition( julianDay,
                                                   nutAndPrecMatrix,
                                                   spEphemeris );
    Angle diffRA = lunarPos.RightAscension() - solarPos.RightAscension();
    Angle diffDec = lunarPos.Declination() - solarPos.Declination();
    return ArcCos( diffRA.Cos( ) * diffDec.Cos( ) );
}
Matrix3D 
HorizontalToEquatorialMatrix( Angle localSiderealTime,
                              Angle geographicLatitude )
{
    // This is equivalent to
    // Matrix3D( 2, -lst ) * Matrix3D( 1,0,0, 0,-1,0, 0,0,1 )
    //  * Matrix3D( 1, lat - pi/2 ) * Matrix3D( 2, pi ).
    double sinLST = localSiderealTime.Sin( );
    double cosLST = localSiderealTime.Cos( );
    double sinLat = geographicLatitude.Sin( );
    double cosLat = geographicLatitude.Cos( );
    return Matrix3D( - cosLST * sinLat,  - sinLST,  cosLST * cosLat,
                     - sinLST * sinLat,  cosLST,    sinLST * cosLat,
                     cosLat,             0,         sinLat );
}
Point3D 
Geodetic::Rectangular( ) const
{
    double sinLat = m_latitude.Sin( );
    double cosLat = m_latitude.Cos( );
    double sinLong = m_longitude.Sin( );
    double cosLong = m_longitude.Cos( );
    double eccentricity = std::sqrt( 2 * flattening
                                     -  flattening * flattening );
    double eccentSqr = eccentricity * eccentricity;
    double radCurv = radius
            / sqrt( 1.  -  eccentSqr * sinLat * sinLat );
    return Point3D( (radCurv + m_height) * cosLat * cosLong,
                    (radCurv + m_height) * cosLat * sinLong,
                    ((1 + eccentSqr) * radCurv  +  m_height) * sinLat );
}
Horizontal 
EquatorialToHorizontal( const Equatorial & equatorial,
                        Angle localSiderealTime, Angle geographicLatitude )
{
    Angle hourAngle = localSiderealTime - equatorial.RightAscension();
    double sinHA = hourAngle.Sin( );
    double cosHA = hourAngle.Cos( );
    double sinDec = equatorial.Declination().Sin( );
    double cosDec = equatorial.Declination().Cos( );
    double tanDec = (cosDec == 0.)  ?  infinity  :  sinDec / cosDec;
    double sinLat = geographicLatitude.Sin( );
    double cosLat = geographicLatitude.Cos( );
    Angle az = ArcTan( sinHA,  cosHA * sinLat  -  tanDec * cosLat );
    az += Angle( M_PI );
    az.NormalizePositive( );
    Angle alt = ArcSin( sinDec * sinLat  +  cosHA * cosDec * cosLat );
    return Horizontal( az, alt, equatorial.Distance() );
}
Equatorial 
HorizontalToEquatorial( const Horizontal & horizontal,
                        Angle localSiderealTime, Angle geographicLatitude )
{
    Angle az = horizontal.Azimuth() - Angle( M_PI );
    double sinAz = az.Sin( );
    double cosAz = az.Cos( );
    double sinAlt = horizontal.Altitude().Sin( );
    double cosAlt = horizontal.Altitude().Cos( );
    double tanAlt = (cosAlt == 0.)  ?  infinity  :  sinAlt / cosAlt;
    double sinLat = geographicLatitude.Sin( );
    double cosLat = geographicLatitude.Cos( );
    // (Meeus has an error here, which I've corrected.)
    Angle hourAngle = ArcTan( sinAz,  cosAz * sinLat  +  tanAlt * cosLat );
    Angle ra = localSiderealTime - hourAngle;
    ra.NormalizePositive( );
    Angle dec = ArcSin( sinAlt * sinLat  -  cosAz * cosAlt * cosLat );
    return Equatorial( ra, dec, horizontal.Distance() );
}
Angle 
EclipticalLongitude( const Point3D & equatorialRect, Angle obliquity )
{
    double x = equatorialRect.X();
    double y = obliquity.Cos() * equatorialRect.Y()
            +  obliquity.Sin() * equatorialRect.Z();
    if ( (x == 0.) && (y == 0.) )
        return Angle( 0. );
    else
        return ArcTan( y, x );
}
void 
Geodetic::Set( const Point3D & rectangular )
{
    //Explanatory Supplement (4.22-11 to 4.22-24)
    double X = rectangular.X();
    double Y = rectangular.Y();
    double Z = rectangular.Z();
    double a = radius;
    double b = a  -  flattening * a;
    if ( Z < 0.)
        b = -b;

    if ( (X == 0.) && (Y == 0.) )
    {
        m_longitude.Set( 0. );
        m_latitude.Set( 0. );
        m_height = Z - b;
        if ( m_height < 0. )
            m_height = - m_height;
        return;
    }
    else
        m_longitude = ArcTan( Y, X );
    if ( Z == 0.)
    {
        m_latitude.Set( 0. );
        m_height.Set( r - radius );
        return;
    }

    double r = std::sqrt( X * X  +  Y * Y );
    double aSqr = a * a;
    double bSqr = b * b;
    double E = (b * Z  -  (aSqr - bSqr)) / (a * r);
    double ESqr = E * E;
    double F = (b * Z  +  (aSqr + bSqr)) / (a * r);
    double P = (4./3.) * (E * F  +  1.);
    double Q = 2. * (ESqr  -  F * F);
    double D = P * P * P  +  Q * Q;
    double sqrtD = std::sqrt( D );
    double v = std::pow( (sqrtD - Q), (1./3.) )
            -  std::pow( (sqrtD + Q), (1./3.) );
    const double epsilon = 1.0;
    if ( (std::fabs( Z ) < epsilon ) || (std::fabs( r ) < epsilon) )
        v = - (v * v * v  +  2. * Q) / (3. * P);
    double G = 0.5 * (std::sqrt( ESqr + v )  +  E);
    double t = std::sqrt( G * G  +  (F - v * G) / (G + G - E) )  -  G;
    m_latitude = ArcTan( (a * (1. - t * t)), (2. * b * t) );
    m_height = (r - a * t) * m_latitude.Cos( )
            +  (Z - b) * m_latitude.Sin( );
}
Ecliptical 
EquatorialToEcliptical( const Equatorial & equatorial, Angle obliquity )
{
    double sinRA = equatorial.RightAscension().Sin( );
    double cosRA = equatorial.RightAscension().Cos( );
    double sinDec = equatorial.Declination().Sin( );
    double cosDec = equatorial.Declination().Cos( );
    double tanDec = (cosDec == 0.)  ?  infinity  :  sinDec / cosDec;
    double sinObl = obliquity.Sin( );
    double cosObl = obliquity.Cos( );
    Angle lng = ArcTan( sinRA * cosObl  +  tanDec * sinObl,  cosRA );
    lng.NormalizePositive( );
    Angle lat = ArcSin( sinDec * cosObl  -  sinRA * cosDec * sinObl );
    return Ecliptical( lng, lat, equatorial.Distance() );
}
Equatorial 
EclipticalToEquatorial( const Ecliptical & ecliptical, Angle obliquity )
{
    double sinLong = ecliptical.Longitude().Sin( );
    double cosLong = ecliptical.Longitude().Cos( );
    double sinLat = ecliptical.Latitude().Sin( );
    double cosLat = ecliptical.Latitude().Cos( );
    double tanLat = (cosLat == 0.)  ?  infinity  :  sinLat / cosLat;
    double sinObl = obliquity.Sin( );
    double cosObl = obliquity.Cos( );
    Angle ra = ArcTan( sinLong * cosObl  -  tanLat * sinObl,  cosLong );
    ra.NormalizePositive( );
    Angle dec = ArcSin( sinLat * cosObl  +  sinLong * cosLat * sinObl );
    return Equatorial( ra, dec, ecliptical.Distance() );
}
Exemplo n.º 10
0
void 
Matrix3<T>::Set( int axis, const Angle & angle )
{
    if ( (axis < 0) || (axis >= 3) )
        throw  std::out_of_range( "Matrix3: out_of_range error" );
    static const int indices[3][3]
            = { { 0, 1, 2 }, { 1, 2, 0 }, { 2, 0, 1 } };
    const int i0 = indices[ axis ][ 0 ];
    const int i1 = indices[ axis ][ 1 ];
    const int i2 = indices[ axis ][ 2 ];
    const T cos = static_cast< T >( angle.Cos( ) );
    const T sin = static_cast< T >( angle.Sin( ) );
    m_elements[ i0 ][ i0 ] = 1.;
    m_elements[ i0 ][ i1 ] = m_elements[ i0 ][ i2 ] = m_elements[ i1 ][ i0 ]
            = m_elements[ i2 ][ i0 ] = 0.;
    m_elements[ i1 ][ i1 ] = m_elements[ i2 ][ i2 ] = cos;
    m_elements[ i2 ][ i1 ] = - sin;
    m_elements[ i1 ][ i2 ] = sin;
}
Equatorial 
GalacticToEquatorial( const Galactic & galactic )
{
    Angle galNorthRAAdj( 192.25 - 180., Angle::Degree );
    Angle galNorthDec( 27.4, Angle::Degree );
    Angle longOffset( 33. + 90., Angle::Degree );
    Angle adjLong = galactic.Longitude() - longOffset;
    double sinAdjLong = adjLong.Sin( );
    double cosAdjLong = adjLong.Cos( );
    double sinLat = galactic.Latitude().Sin( );
    double cosLat = galactic.Latitude().Cos( );
    double tanLat = (cosLat == 0.)  ?  infinity  :  sinLat / cosLat;
    double sinNDec = galNorthDec.Sin( );
    double cosNDec = galNorthDec.Cos( );
    Angle y = ArcTan( sinAdjLong,  cosAdjLong * sinNDec  -  tanLat * cosNDec );
    Angle ra = y + galNorthRAAdj;
    ra.NormalizePositive( );
    Angle dec = ArcSin( sinLat * sinNDec  +  cosAdjLong * cosLat * cosNDec );
    return Equatorial( ra, dec, galactic.Distance() );
}
Galactic 
EquatorialToGalactic( const Equatorial & equatorial )
{
    Angle galNorthRA( 192.25, Angle::Degree );
    Angle galNorthDec( 27.4, Angle::Degree );
    Angle longOffset( 33. + 270., Angle::Degree );
    Angle adjRA = galNorthRA  - equatorial.RightAscension();
    double sinAdjRA = adjRA.Sin( );
    double cosAdjRA = adjRA.Cos( );
    double sinDec = equatorial.Declination().Sin( );
    double cosDec = equatorial.Declination().Cos( );
    double tanDec = (cosDec == 0.)  ?  infinity  :  sinDec / cosDec;
    double sinNDec = galNorthDec.Sin( );
    double cosNDec = galNorthDec.Cos( );
    Angle x = ArcTan( sinAdjRA,  cosAdjRA * sinNDec  -  tanDec * cosNDec );
    Angle lng = longOffset - x;
    lng.NormalizePositive( );
    Angle lat = ArcSin( sinDec * sinNDec  +  cosAdjRA * cosDec * cosNDec );
    return Galactic( lng, lat, equatorial.Distance() );
}
Exemplo n.º 13
0
void 
Matrix3<T>::Set( const AxisAngle<T> & axisAngle )
{
    Angle angle = axisAngle.GetAngle( );
    const Vector3<T> & axis = axisAngle.Axis( );
    const T cc = static_cast<T>( 1. - angle.Cos( ) );
    const T s = static_cast<T>( angle.Sin( ) );
    const T a00 = axis[0] * axis[0];
    const T a01 = axis[0] * axis[1];
    const T a02 = axis[0] * axis[2];
    const T a11 = axis[1] * axis[1];
    const T a12 = axis[1] * axis[2];
    const T a22 = axis[2] * axis[2];
    m_elements[0][0] = static_cast<T>( 1. - cc * (a11 + a22) );
    m_elements[1][0] = static_cast<T>( -s * axis[2] + cc * a01  );
    m_elements[2][0] = static_cast<T>(  s * axis[1] + cc * a02  );
    m_elements[0][1] = static_cast<T>(  s * axis[2] + cc * a01 );
    m_elements[1][1] = static_cast<T>( 1. - cc * (a00 + a22) );
    m_elements[2][1] = static_cast<T>( -s * axis[0] + cc * a12 );
    m_elements[0][2] = static_cast<T>( -s * axis[1] + cc * a02 );
    m_elements[1][2] = static_cast<T>(  s * axis[0] + cc * a12 );
    m_elements[2][2] = static_cast<T>( 1. - cc * (a00 + a11) );
}