Exemplo n.º 1
0
void readoption(int argc, char *argv[], bool *convertDir,
                QString *filename, QString *dir, QString *path)
{
    /* 1. CREATE AN OBJECT */
    AnyOption *opt = new AnyOption();

    /* 2. SET PREFERENCES  */
    //opt->noPOSIX(); /* do not check for POSIX style character options */
    //opt->setVerbose(); /* print warnings about unknown options */
    //opt->autoUsagePrint(true); /* print usage for bad options */

    /* 3. SET THE USAGE/HELP   */
    opt->addUsage( "" );
    opt->addUsage( "Usage: " );
    opt->addUsage( "" );
    opt->addUsage( " -h  --help               Prints this help " );
    opt->addUsage( " -f  --filename FILENAME  Filename to be converted " );
    opt->addUsage( " -d  --dir DIRECTORY      File dir to be converted " );
    opt->addUsage( " -p  --path PATH          Path where converted file saves " );
    opt->addUsage( "" );

    /* 4. SET THE OPTION STRINGS/CHARACTERS */

    /* by default all  options  will be checked on the command line and from option/resource file */
    opt->setFlag(  "help", 'h' );   /* a flag (takes no argument), supporting long and short form */
    opt->setOption(  "filename", 'f' ); /* an option (takes an argument), supporting long and short form */
    opt->setOption(  "dir", 'd' ); /* an option (takes an argument), supporting long and short form */
    opt->setOption(  "path", 'p' ); /* an option (takes an argument), supporting long and short form */

    /* 5. PROCESS THE COMMANDLINE AND RESOURCE FILE */

    /* go through the command line and get the options  */
    opt->processCommandArgs( argc, argv );

    if( ! opt->hasOptions()) { /* print usage if no options */
        opt->printUsage();
        delete opt;
        return;
    }

    /* 6. GET THE VALUES */
    if( opt->getFlag( "help" ) || opt->getFlag( 'h' ) )
        opt->printUsage();
    if( opt->getValue( 'f' ) != NULL  || opt->getValue( "filename" ) != NULL  ) {
        *convertDir = false;
        filename->append(QString(opt->getValue( 'f' )));
    }
    if( opt->getValue( 'd' ) != NULL  || opt->getValue( "dir" ) != NULL  ) {
        *convertDir = true;
        dir->append(QString(opt->getValue( 'd' )));
    }
    if( opt->getValue( 'p' ) != NULL  || opt->getValue( "path" ) != NULL  ) {
        path->append(QString(opt->getValue( 'p' )));
    }

    /* 8. DONE */
    delete opt;
}
Exemplo n.º 2
0
int main(int argc, char* argv[])
{
    AnyOption opt;

    // Usage
    opt.addUsage( "Example: " );
    opt.addUsage( "  cppbitmessage -p 8444" );
    opt.addUsage( " " );
    opt.addUsage( "Usage: " );
    opt.addUsage( "" );
    opt.addUsage( "  -p --port                 Port to listen on");
    opt.addUsage( "  -V --version              Show version number");
    opt.addUsage( "     --help                 Show help");
    opt.addUsage( "" );

    opt.setOption(  "port", 'p' );
    opt.setFlag(  "version", 'V' );
    opt.setFlag(  "help" );

    opt.processCommandArgs(argc, argv);

    if ((!opt.hasOptions()) || (opt.getFlag( "help" )))
    {
		// print usage if no options
        opt.printUsage();
        return 0;
	}

    if ((opt.getFlag("version")) || (opt.getFlag('V')))
    {
        std::cout << "Version " << VERSION << std::endl;
        return 0;
	}

	int port = 8444;
    if ((opt.getValue("port") != NULL) || (opt.getValue('p')))
    {
        std::stringstream ss;
        ss << opt.getValue("port");
        ss >> port;
	}	
Exemplo n.º 3
0
AnyOption *parseInputOptions( int argc, char **argv ) {
	
	
	// parse input options
	AnyOption *opt = new AnyOption();

	opt->addUsage( "Usage: " );
	opt->addUsage( "" );
	opt->addUsage( "The options below can be specified in a colon-separated file \"raytrace.2d.options\" or at the command line.  Command-line options override file options." );
	opt->addUsage( " --help -h                Print this message and exit" );
	//opt->addUsage( " --atmosout               Output the atmosphere and all its derivatives to atmospheric_profile.out");
	opt->addUsage( "" );
	opt->addUsage( "To use an arbitrary 1-D atmospheric profile in ASCII format (space or comma-separated) the following options apply:" );
	opt->addUsage( "REQUIRED (no default values):" );
	opt->addUsage( " --atmosfile  <filename>  Uses an ASCII atmosphere file" );
	opt->addUsage( " --atmosfileorder         The order of the (z,t,u,v,w,p,d) fields in the ASCII file (Ex: 'ztuvpd')" );
	opt->addUsage( " --elev                   Value in range (-90,90)" );
	opt->addUsage( " --azimuth                Value in range [0,360), clockwise from north" );
	opt->addUsage( " --maxraylength           Maximum ray length to calculate (km) [none]" );
	opt->addUsage( "OPTIONAL [defaults]:" );
	opt->addUsage( " --skiplines              Lines at the beginning of the ASCII file to skip [0]" );
	opt->addUsage( " --maxelev                Maximum elevation angle to calculate [--elev value]" );
	opt->addUsage( " --delev                  Elevation angle step [1]" );
	opt->addUsage( " --maxazimuth             Maximum azimuth to calculate [--azimuth value]" );
	opt->addUsage( " --dazimuth               Azimuth angle step [1]" );
	opt->addUsage( " --sourceheight           Height at which to begin raytrace [ground level]" );
	opt->addUsage( " --maxheight              Height at which to cut off calculation [150 km]" );
	opt->addUsage( " --maxrange               Maximum distance from origin to calculate (km) [no maximum]" );
	opt->addUsage( " --stepsize               Ray length step size for computation, km [0.01]" );
	opt->addUsage( " --skips                  Maximum number of skips to allow.  Use 0 for no limits.  [0]" );
	opt->addUsage( " --wind_units             Specify 'kmpersec' if the winds are given in km/s [mpersec]" );
	opt->addUsage( "FLAGS (no value required):" );
	opt->addUsage( " --partial                Report the final, incomplete raypath as well as the complete bounces." );
	opt->addUsage( "" );
/*
	
	opt->addUsage( "To use a set of ASCII files that form a 2-D slice of the atmosphere the following options apply:" );
	opt->addUsage( "REQUIRED (no default values):" );
	opt->addUsage( " --slicefile  <filename>  The name of the summary file describing the path (see documentation)" );
	opt->addUsage( " --elev                   Value in range (-90,90)" );
	opt->addUsage( " --maxraylength           Maximum ray length to calculate (km) [none]" );
	opt->addUsage( "OPTIONAL [defaults]:" );
	opt->addUsage( " --maxelev                Maximum elevation angle to calculate [--elev value]" );
	opt->addUsage( " --delev                  Elevation angle step [1]" );
	opt->addUsage( " --maxazimuth             Maximum azimuth to calculate [--azimuth value]" );
	opt->addUsage( " --dazimuth               Azimuth angle step [1]" );
	opt->addUsage( " --sourceheight           Height at which to begin raytrace [ground level]" );
	opt->addUsage( " --maxheight              Height at which to cut off calculation [150 km]" );
	opt->addUsage( " --maxrange               Maximum distance from origin to calculate (km) [no maximum]" );
	opt->addUsage( " --stepsize               Ray length step size for computation, km [0.01]" );
	opt->addUsage( " --skips                  Maximum number of skips to allow.  Use 0 for no limits.  [0]" );
	opt->addUsage( "FLAGS (no value required):" );
	opt->addUsage( " --partial                Report the final, incomplete raypath as well as the complete bounces." );
	opt->addUsage( "" );
	
	
	
	opt->addUsage( "To use an analytic profile with Gaussian wind jets the following options apply:" );
	opt->addUsage( "REQUIRED (no default values):" );
	opt->addUsage( " --jetfile  <filename>    The parameter file for the profile" );
	opt->addUsage( " --elev                   Value in range (-90,90)" );
	opt->addUsage( " --azimuth                Value in range [0,360), clockwise from north (optional for --envfile)" );
	opt->addUsage( " --maxraylength           Maximum ray length to calculate (km) [none]" );
	opt->addUsage( "OPTIONAL [defaults]:" );
	opt->addUsage( " --maxelev                Maximum elevation angle to calculate [--elev value]" );
	opt->addUsage( " --delev                  Elevation angle step [1]" );
	opt->addUsage( " --maxazimuth             Maximum azimuth to calculate [--azimuth value]" );
	opt->addUsage( " --dazimuth               Azimuth angle step [1]" );
	opt->addUsage( " --sourceheight           Height at which to begin raytrace [ground level]" );
	opt->addUsage( " --maxheight              Height at which to cut off calculation [150 km]" );
	opt->addUsage( " --maxrange               Maximum distance from origin to calculate (km) [no maximum]" );
	opt->addUsage( " --stepsize               Ray length step size for computation, km [0.1]" );
	opt->addUsage( " --skips                  Maximum number of skips to allow.  Use 0 for no limits.  [0]" );
	opt->addUsage( "FLAGS (no value required):" );
	opt->addUsage( " --partial                Report the final, incomplete raypath as well as the complete bounces." );
*/
	opt->addUsage( "" );
	opt->addUsage( "Examples (run from 'samples' directory):" );
	opt->addUsage( "../bin/raytrace.2d --azimuth 90 --elev 1 --delev 1 --maxelev 45 --skips 1 --atmosfile NCPA_canonical_profile_zuvwtdp.dat --atmosfileorder zuvwtdp --maxraylength 800 --maxheight 140" );
	opt->addUsage( "cat raypath_az090* > raypaths.2d.dat" );
	opt->addUsage( "rm raypath_az090*" );

	// Set up the actual flags and stuff
	opt->setFlag( "help", 'h' );
	opt->setFlag( "norange" );
	opt->setFlag( "atmosout" );
	opt->setFlag( "partial" );
	opt->setOption( "slicefile" );
	opt->setOption( "atmosfile" );
	opt->setOption( "jetfile" );
	opt->setOption( "elev" );
	opt->setOption( "azimuth" );
	opt->setOption( "maxraylength" );
	opt->setOption( "lat" );
	opt->setOption( "lon" );
	opt->setOption( "maxrange" );
	opt->setOption( "maxelev" );
	opt->setOption( "delev" );
	opt->setOption( "maxazimuth" );
	opt->setOption( "dazimuth" );
	opt->setOption( "sourceheight" );
	opt->setOption( "maxheight" );
	opt->setOption( "stepsize" );
	opt->setOption( "dZ" );
	opt->setOption( "dR" );
	opt->setOption( "atmosfileorder" );
	opt->setOption( "skiplines" );
	opt->setOption( "skips" );
	opt->setOption( "wind_units" );

	// Process the command-line arguments
	opt->processFile( "./raytrace.2d.options" );
	opt->processCommandArgs( argc, argv );
	
	if( ! opt->hasOptions()) { // print usage if no options
		opt->printUsage();
		delete opt;
		exit( 1 );
        }

	// Check to see if help text was requested
	if ( opt->getFlag( "help" ) || opt->getFlag( 'h' ) ) {
		opt->printUsage();
		exit( 1 );
	}

	return opt;
}
Exemplo n.º 4
0
int   main(int argc, char **argv)
{
    AnyOption *opt = new AnyOption();

    opt->addUsage("");
    opt->addUsage("Usage: ");
    opt->addUsage("");
    opt->addUsage(" -h  --help          Print usage ");
    opt->addUsage(" -L  --subsecLet     Letter of Subsector (A-P) to generate, if omitted will generate entire sector ");
    opt->addUsage(" -d  --detail       %|zero|rift|sparse|scattered|dense ");
    opt->addUsage(" -m  --maturity      Tech level, backwater|frontier|mature|cluster ");
    opt->addUsage(" -a  --ac            Two-letter system alignment code ");
    opt->addUsage(" -s  --secName       Name of sector. For default output file name and sectorName_names.txt file");
    opt->addUsage(" -p  --path          Path to sectorName_names.txt file ");
    opt->addUsage(" -o  --outFormat     1|2|3|4|5|6 : v1.0, v2.0, v2.1 v2.1b, v2.2, v2.5 ");
    opt->addUsage(" -u  --outPath       Path and name of output file ");
    opt->addUsage("");

    opt->setCommandFlag("main", 'm');
    opt->setCommandFlag("system", 'S');
    opt->setCommandFlag("sector", 's');
    opt->setCommandFlag("subsector", 'u');
    opt->setCommandFlag("help", 'h');
    opt->setCommandOption("", 'x');
    opt->setCommandOption("", 'y');
    opt->setCommandOption("", 'z');
    opt->setCommandOption("detail", 'd');
    opt->setCommandOption("seed");

    //opt->setVerbose(); /* print warnings about unknown options */
    //opt->autoUsagePrint(true); /* print usage for bad options */

    opt->processCommandArgs(argc, argv);
#if 0
    if(! opt->hasOptions()) {  /* print usage if no options */
        opt->printUsage();
        delete opt;
        return 0;
    }
#endif
    if(opt->getFlag("help") || opt->getFlag('h')) {
        opt->printUsage();
        delete opt;
        return 0;
    }
    //long seed = 12345;
    long x = 0;
    long y = 10;
    long z = 0;
    int detail = 3;
    if(opt->getValue('x') != NULL) {
        x = atol(opt->getValue('x'));
    }
    if(opt->getValue('y') != NULL) {
        y = atol(opt->getValue('y'));
    }
    if(opt->getValue('z') != NULL) {
        z = atol(opt->getValue('z'));
    }
    if(opt->getValue("seed") != NULL) {
        //seed = atol(opt->getValue("seed"));
    }
    if(opt->getValue("detail") != NULL) {
        detail = atol(opt->getValue("detail"));
    }

    long startX, startY, startZ;
    long endX, endY, endZ;
    long sectorX = 8 * 4;
    long sectorY = 10 * 4;
    long sectorZ = 1;
    if(opt->getFlag("sector")) {
        startX = x / sectorX;
        endX = startX + sectorX - 1;
        startY = y / sectorY;
        endY = startY + sectorY - 1;
        startZ = z / sectorZ;
        endZ = startZ + sectorZ - 1;
    } else {
        startX = x;
        endX = x;
        startY = y;
        endY = y;
        startZ = z;
        endZ = z;
    }

    for(int i = startX; i <= endX; i++) {
        for(int j = startY; j <= endY; j++) {
            for(int k = startZ; k <= endZ; k++) {
                printSystem(x, y, z, detail);
            }
        }
    }

}
Exemplo n.º 5
0
int main(int argc, char * argv[], MPI_Comm commWorld)
{
#else
int main(int argc, char * argv[])
{
 MPI_Comm commWorld;
#endif

  std::string fileName;
  int reduceDM    =  10;
  int reduceS=  1;
#ifndef PARTICLESRENDERER
  std::string fullScreenMode    = "";
  bool stereo     = false;
#endif
  int nmaxsample = 200000;
  std::string display;

  bool inSitu = false;
  bool quickSync = true;
  int sleeptime = 1;

  {
    AnyOption opt;

#define ADDUSAGE(line) {{std::stringstream oss; oss << line; opt.addUsage(oss.str());}}

    ADDUSAGE(" ");
    ADDUSAGE("Usage:");
    ADDUSAGE(" ");
    ADDUSAGE(" -h  --help             Prints this help ");
    ADDUSAGE(" -i  --infile #         Input snapshot filename ");
    ADDUSAGE(" -I  --insitu          Enable in-situ rendering ");
    ADDUSAGE("     --sleep  #        start up sleep in sec [1]  ");
    ADDUSAGE("     --noquicksync      disable syncing with simulation [enabled] ");
    ADDUSAGE("     --reduceDM    #    cut down DM dataset by # factor [10]. 0-disable DM");
    ADDUSAGE("     --reduceS     #    cut down stars dataset by # factor [1]. 0-disable S");
#ifndef PARTICLESRENDERER
    ADDUSAGE("     --fullscreen  #    set fullscreen mode string");
    ADDUSAGE("     --stereo           enable stereo rendering");
#endif
    ADDUSAGE(" -s  --nmaxsample   #   set max number of samples for DD [" << nmaxsample << "]");
    ADDUSAGE(" -D  --display      #   set DISPLAY=display, otherwise inherited from environment");


    opt.setFlag  ( "help" ,        'h');
    opt.setOption( "infile",       'i');
    opt.setFlag  ( "insitu",       'I');
    opt.setOption( "reduceDM");
    opt.setOption( "sleep");
    opt.setOption( "reduceS");
    opt.setOption( "fullscreen");
    opt.setFlag("stereo");
    opt.setOption("nmaxsample", 's');
    opt.setOption("display", 'D');
    opt.setFlag  ( "noquicksync");

    opt.processCommandArgs( argc, argv );


    if( ! opt.hasOptions() ||  opt.getFlag( "help" ) || opt.getFlag( 'h' ) )
    {
      /* print usage if no options or requested help */
      opt.printUsage();
      ::exit(0);
    }

    char *optarg = NULL;
    if (opt.getFlag("insitu"))  inSitu = true;
    if ((optarg = opt.getValue("infile")))       fileName           = std::string(optarg);
    if ((optarg = opt.getValue("reduceDM"))) reduceDM       = atoi(optarg);
    if ((optarg = opt.getValue("reduceS"))) reduceS       = atoi(optarg);
#ifndef PARTICLESRENDERER
    if ((optarg = opt.getValue("fullscreen")))	 fullScreenMode     = std::string(optarg);
    if (opt.getFlag("stereo"))  stereo = true;
#endif
    if ((optarg = opt.getValue("nmaxsample"))) nmaxsample = atoi(optarg);
    if ((optarg = opt.getValue("display"))) display = std::string(optarg);
    if ((optarg = opt.getValue("sleep"))) sleeptime = atoi(optarg);
    if (opt.getValue("noquicksync")) quickSync = false;

    if ((fileName.empty() && !inSitu) ||
        reduceDM < 0 || reduceS < 0)
    {
      opt.printUsage();
      ::exit(0);
    }

#undef ADDUSAGE
  }

  MPI_Comm comm = MPI_COMM_WORLD;
  int mpiInitialized = 0;
  MPI_Initialized(&mpiInitialized);
  if (!mpiInitialized)
    MPI_Init(&argc, &argv);
  else
    comm = commWorld;

  int nranks, rank;
  MPI_Comm_size(comm, &nranks);
  MPI_Comm_rank(comm, &rank);

  char processor_name[MPI_MAX_PROCESSOR_NAME];
  int namelen;
  MPI_Get_processor_name(processor_name,&namelen);
  fprintf(stderr, "bonsai_renderer:: Proc id: %d @ %s , total processes: %d (mpiInit) \n", rank, processor_name, nranks);

  if (rank == 0)
  {
    char hostname[256];
    gethostname(hostname,256);
    char * display = getenv("DISPLAY");
    fprintf(stderr, "root: %s  display: %s \n", hostname, display);
  }

  if (!display.empty())
  {
    std::string var="DISPLAY="+display;
    putenv((char*)var.c_str());
  }

  if (rank == 0)
    fprintf(stderr, " Sleeping for %d seconds \n", sleeptime);
  sleep(sleeptime);



  using BonsaiCatalystDataT = BonsaiCatalystData;
  BonsaiCatalystDataT *rDataPtr;
  if (inSitu)
  {
    rDataPtr = new BonsaiCatalystDataT(rank,nranks,comm);
  }
  else
  {
    if ((rDataPtr = readBonsai<BonsaiCatalystDataT>(rank, nranks, comm, fileName, reduceDM, reduceS)))
    {}
    else
    {
      if (rank == 0)
        fprintf(stderr, " I don't recognize the format ... please try again , or recompile to use with old tipsy if that is what you use ..\n");
      MPI_Finalize();
      ::exit(-1);
    }
    rDataPtr->computeMinMax();
    rDataPtr->setNewData();
  }

  assert(rDataPtr != 0);


  auto callbackFunc = [&](const int code) 
  {
    int quitL = (code == -1) || terminateRenderer;  /* exit code */
    int quitG;
    MPI_Allreduce(&quitL, &quitG, 1, MPI_INT, MPI_SUM, comm);
    if (quitG)
    {
      MPI_Finalize();
      ::exit(0);
    }

    if (inSitu )
      if (fetchSharedData(quickSync, *rDataPtr, rank, nranks, comm, reduceDM, reduceS))
      {
        rDataPtr->setNewData();
      }
  };

  bonsaistd::function<void(int)> callback = callbackFunc;
  callback(0);  /* init data set */

  renderer(
      argc, argv, 
      rank, nranks, comm,
      *rDataPtr,
      fullScreenMode.c_str(), 
      stereo,
      callback);

//  while(1) {}
  return 0;
}
Exemplo n.º 6
0
//
// Function to parse the input options (both command lines and in the options file ModessRD.options)
//
AnyOption *parseInputOptions( int argc, char **argv ) {

  // parse input options
  AnyOption *opt = new AnyOption();

  opt->addUsage( "----------------------------------------------------------------------------" );
  opt->addUsage( "|                             NCPA Infrasound                              |" );  
  opt->addUsage( "|               Normal Modes for Range-Dependent Environments              |" );
  opt->addUsage( "|                      Two-Way Coupled Mode Solution                       |" );  
  opt->addUsage( "|           Single Frequency: Effective Sound Speed Approximation          |" );
  opt->addUsage( "----------------------------------------------------------------------------" );	
  opt->addUsage( "Usage: " );
  opt->addUsage( "By default the program computes the 1D transmission loss (TL)" );
  opt->addUsage( "at the ground or the specified receiver height and saves the data to 2 files:" );
  opt->addUsage( "   file tloss_rd2wcm_1d.nm - considering attenuation in the atmosphere" );
  opt->addUsage( "   file tloss_rd2wcm_1d.lossless.nm  - no attenuation" );
	opt->addUsage( "Additionally, if the flag --write_2D_TLoss is present on the command line the 2D TL is saved to file tloss_rd_2d.nm" );
  opt->addUsage( "The options below can be specified in a colon-separated file \"Modess.options\" or at the command line.  Command-line options override file options." );
  opt->addUsage( " --help -h                Print this message and exit" );
  opt->addUsage( "" );
  opt->addUsage(  " The atmosphere can be specified from one of 2 different sources:");
  opt->addUsage( "    1. An .env file containing the atmospheric specifications at certain ranges:" );
  opt->addUsage( "       use option --g2senvfile <filename>" );
  opt->addUsage( "    2. Several ASCII files stored in a given directory:" );
  opt->addUsage( "       use option --use_1D_profiles_from_dir <mydirname>" );
  //opt->addUsage( "The program requires an .env file containing the atmospheric specifications at certain ranges" );
  opt->addUsage( "The following options apply:" );	
  opt->addUsage( "" );	
  opt->addUsage( "REQUIRED (no default values):" );
  //opt->addUsage( " --atmosfile  <filename>  Uses an ASCII atmosphere file" );
  opt->addUsage( " --g2senvfile <filename>  Uses an .env binary file containing multiple 1D profiles" );
  opt->addUsage( " --atmosfileorder         The order of the (z,t,u,v,w,p,d) fields in the ASCII file (Ex: 'ztuvpd')" );
  opt->addUsage( " --skiplines              Lines at the beginning of the ASCII file to skip" );
  opt->addUsage( " --azimuth                Degrees in range [0,360), clockwise from North" );
  opt->addUsage( " --freq                   Frequency [Hz]" );	
  opt->addUsage( "" );	
  opt->addUsage( "OPTIONAL [defaults]:" ); 
  opt->addUsage( " --maxheight_km           Calculation grid height in km above MSL [150 km]" );
  opt->addUsage( " --zground_km             Height of the ground level above MSL [0 km]" );  
  opt->addUsage( " --Nz_grid                Number of points on the z-grid from ground to maxheight [20000]" );  
  opt->addUsage( " --sourceheight_km        Source height in km Above Ground Level (AGL) [0]" );
  opt->addUsage( " --receiverheight_km      Receiver height in km AGL [0]" );
  opt->addUsage( " --maxrange_km            Maximum horizontal distance from origin to propagate [1000 km]" );
  opt->addUsage( " --Nrng_steps             Number of range steps to propagate [1000]" );  
  opt->addUsage( " --ground_impedance_model Name of the ground impedance models to be employed:" );
  opt->addUsage( "                          [rigid], others TBD" );
	opt->addUsage( " --Lamb_wave_BC           If ==1 it sets admittance = -1/2*dln(rho)/dz; [ 0 ]" );
	opt->addUsage( " --wind_units             Use it to specify 'kmpersec' if the winds are given in km/s [mpersec]" );
	opt->addUsage( " --use_attn_file          Use it to specify a file name containing user-provided" );
	opt->addUsage( "                          attenuation coefficients to be loaded instead of " );
	opt->addUsage( "                          the default Sutherland-Bass attenuation. " ); 
	opt->addUsage( "                          The text file should contain two columns: " );
	opt->addUsage( "                              height (km AGL) and " );
	opt->addUsage( "                              attenuation coefficients in np/m." );		
  opt->addUsage( "" );
  opt->addUsage( " --use_profile_ranges_km" );
  opt->addUsage( "                          e.g. --use_profile_ranges_km  0_20_50_80.5_300     " );   
  opt->addUsage( "                          The profiles at certain ranges specified by numbers" );
  opt->addUsage( "                          (in km) in a string such as 0_20_50_80.5_300 are");
  opt->addUsage( "                          requested in the propagation. Note that underscores" );
  opt->addUsage( "                          are necessary to separate the numbers." );
  opt->addUsage( "                          Note also that these are requested ranges;" );
  opt->addUsage( "                          however the left-closest profile available" );
  opt->addUsage( "                          in the .env file will actually be used; " );
  opt->addUsage( "                          for instance we request the profile at 300 km " );
  opt->addUsage( "                          but in the .env file the left-closest profile" );
  opt->addUsage( "                          may be available at 290 km and it is the one used." );
  opt->addUsage( "    Example: >>  ../bin/ModessRD2WCM --atmosfile g2sgcp2011012606L.jordan.env ");
  opt->addUsage( "                 --atmosfileorder zuvwtdp --azimuth 90 --freq 0.01 ");
  opt->addUsage( "                 --use_profiles_ranges_km 100_200_250 --maxrange_km 500 ");
  opt->addUsage( "" ); 
  opt->addUsage( " --use_profiles_at_steps_km" );
  opt->addUsage( "                          e.g. --use_profiles_at_steps_km 100" );
  opt->addUsage( "                          The profiles are requested at equidistant intervals " );
  opt->addUsage( "                          specified by this option [1000]" );
  opt->addUsage( "" );
  opt->addUsage( " --use_1D_profiles_from_dir" );
  opt->addUsage( "                          e.g. --use_1D_profiles_from_dir myprofiles" );
  opt->addUsage( "                          This option allows to use the ascii profiles stored in" );
  opt->addUsage( "                          the specified directory. The profiles must have names" );
  opt->addUsage( "                          'profiles0001', 'profiles0002', etc. and will be" );
  opt->addUsage( "                          used in alphabetical order at the provided ranges" );
  opt->addUsage( "                          e.g. in conjunction with either" );
  opt->addUsage( "                          option  '--use_profile_ranges_km' " );
  opt->addUsage( "                          or option '--use_profiles_at_steps_km'" );
  opt->addUsage( "                          If there are more requested ranges than existing" );
  opt->addUsage( "                          profiles then the last profile is used repeatedly" );
  opt->addUsage( "                          as necessary." );  
  opt->addUsage( "    Example: >> ../bin/ModessRD2WCM --atmosfileorder zuvwtdp --skiplines 1" );
  opt->addUsage( "                --azimuth 90 --freq 0.1 --use_1D_profiles_from_dir myprofiles" );
  opt->addUsage( "                --use_profile_ranges_km 0_100_300_500 " );                        
  opt->addUsage( "" );  
  opt->addUsage( "FLAGS (no value required):" );
  opt->addUsage( " --write_2D_TLoss         Outputs the 2D transmission loss to" );
  opt->addUsage( "                          default file: tloss_rd2wcm_2d.nm" );	
  opt->addUsage( "" );
  opt->addUsage( "" );
  opt->addUsage( " The format of the output files are as follows (column order):" );
  opt->addUsage( "  tloss_rd2wcm_1d.nm:           r, 4*PI*Re(P), 4*PI*Im(P), (incoherent TL)" );
  opt->addUsage( "  tloss_rd2wcm_1d.lossless.nm:" );
  opt->addUsage( "  tloss_rd2wcm_2d.nm:           r, z, 4*PI*Re(P), 4*PI*Im(P)" );   
  opt->addUsage( "" );
  opt->addUsage( "  Examples to run (in the 'samples' directory):" );
  opt->addUsage( "" );
  opt->addUsage( "    ../bin/ModessRD2WCM --use_1D_profiles_from_dir profiles --atmosfileorder zuvwtdp --skiplines 1 --azimuth 90 --freq 0.1 --use_profile_ranges_km 0_100_200_300 --maxrange_km 500" );
  opt->addUsage( "" );  
  opt->addUsage( "    ../bin/ModessRD2WCM --g2senvfile g2sgcp2011012606L.jordan.env --atmosfileorder zuvwtdp --skiplines 1 --azimuth 90 --freq 0.1 --use_profile_ranges_km 0_100_200_250 --maxrange_km 500" );
  opt->addUsage( "" );
  opt->addUsage( "    ../bin/ModessRD2WCM --use_1D_profiles_from_dir profiles --atmosfileorder zuvwtdp --skiplines 1 --azimuth 90 --freq 0.1 --maxrange_km 500" );
  opt->addUsage( "" ); 
  opt->addUsage( "    Note: if options --use_profile_ranges_km/--use_profiles_at_steps_km are not used then we fall back on the range-independent case using the first available atm. profile." );
  opt->addUsage( "" );

  // Set up the actual flags, etc.
  opt->setFlag( "help", 'h' );
  opt->setFlag( "write_2D_TLoss" );
  opt->setFlag( "plot" );

  opt->setOption( "atmosfile" );
  opt->setOption( "atmosfileorder" );
  opt->setOption( "g2senvfile" );
  opt->setOption( "wind_units" );  
  opt->setOption( "use_1D_profiles_from_dir" );
  opt->setOption( "slicefile" );  
  opt->setOption( "skiplines" );		
  opt->setOption( "azimuth" );
  opt->setOption( "freq" );
  opt->setOption( "maxrange_km" );
  opt->setOption( "sourceheight_km" );
  opt->setOption( "receiverheight_km" );
  opt->setOption( "maxheight_km" );
  opt->setOption( "zground_km" );  
  opt->setOption( "stepsize" );
  opt->setOption( "Nz_grid" );
  opt->setOption( "Nrng_steps" );
  opt->setOption( "ground_impedance_model" );
  opt->setOption( "Lamb_wave_BC" );
  opt->setOption( "use_profile_ranges_km" ); 
  opt->setOption( "use_profiles_at_steps_km" );
  opt->setOption( "use_attn_file" );

  // Process the command-line arguments
  opt->processFile( "./ModessRD2WCM.options" );
  opt->processCommandArgs( argc, argv );

  if( ! opt->hasOptions()) { // print usage if no options
		  opt->printUsage();
		  delete opt;
		  exit( 1 );
  }

  // Check to see if help text was requested
  if ( opt->getFlag( "help" ) || opt->getFlag( 'h' ) ) {
	  opt->printUsage();
	  exit( 1 );
  }

  return opt;
}
Exemplo n.º 7
0
AnyOption *parseInputOptions( int argc, char **argv ) {

  // parse input options
  AnyOption *opt = new AnyOption();

  opt->addUsage( "----------------------------------------------------------------------------" );
  opt->addUsage( "|                             NCPA Infrasound                              |" );  	
  opt->addUsage( "|                         Normal Modes Broadband                           |" );
  opt->addUsage( "|    Based on either: Effective Sound Speed Approximation - see ModESS     |" );
  opt->addUsage( "|                     Wide_Angle High-Mach code - see WMod                 |" );  
  opt->addUsage( "----------------------------------------------------------------------------" );	
  opt->addUsage( "Usage: " );
  opt->addUsage( "" );
  opt->addUsage( "The options below can be specified in a colon-separated file \"ModBB.options\"");
  opt->addUsage( "or at the command line.  Command-line options override file options." );
  opt->addUsage( "Be sure to precede all options with two minuses (--)." );
  opt->addUsage( " --help -h                Print this message and exit" );
  opt->addUsage( "" );
  opt->addUsage( "One of two algorithms can be used to perform pulse propagation." );
  opt->addUsage( "The first is based on the Effective Sound Speed Approximation (as in ModESS);" );
  opt->addUsage( "the second is based on the the Wide_Angle High-Mach solution ");
  opt->addUsage( "of the wave equation (see  implementation in WMod)." );
  opt->addUsage( "ModESS is faster but it is accurate for (launch) angles less than 30 deg and" );
  opt->addUsage( "low wind speeds. WMod extends the validity to higher angles" ); 
  opt->addUsage( "and high Mach numbers but it runs slower." );
  opt->addUsage( "Options --use_modess and --use_wmod allow the user to choose");
  opt->addUsage( "the desired algorithm when computing the dispersion data (see step 1 below)." );
  opt->addUsage( "" );
  opt->addUsage( "To propagate a pulse, 2 steps must be completed:");
  opt->addUsage( " 1. A dispersion file must be available or computed" );
  opt->addUsage( "     using the option --out_disp_src2rcv_file  ." );  
//  opt->addUsage( "     use either option --out_dispersion_files  or --out_disp_src2rcv_file" );
  opt->addUsage( " 2. Perform pulse propagation for one of several scenarios:");
  opt->addUsage( "    a. source-to-receiver at one range (option --pulse_prop_src2rcv)");	
  opt->addUsage( "    b. source-to-receiver at several equally spaced ranges " );
  opt->addUsage( "       (option --pulse_prop_src2rcv_grid)");
//  opt->addUsage( "    c. computing the whole 2D pressure field " );
//  opt->addUsage( "       (most expensive - option --pulse_prop_grid)" );
  opt->addUsage( "    The source type can be one of the following:" );
  opt->addUsage( "        delta function              -> see option --get_impulse_resp" );  
  opt->addUsage( "        built-in pulse choice 1     -> see option --use_builtin_pulse1" );
  opt->addUsage( "        built-in pulse choice 2     -> see option --use_builtin_pulse2" );
  opt->addUsage( "        user-provided spectrum file -> see option --src_spectrum_file" );
  opt->addUsage( "        user-provided waveform file -> see option --src_waveform_file" );
  opt->addUsage( "" );
//  opt->addUsage( "To compute a dispersion file: one of the following 2 options is REQUIRED:" );
  opt->addUsage( "To compute a dispersion file: the following option is REQUIRED:" );
  opt->addUsage( " --out_disp_src2rcv_file  <dispersion filename>");
  opt->addUsage( "                    Output dispersion curves and modal values for" );
  opt->addUsage( "                    source-to-receiver propagation to the specified file." );	
//  opt->addUsage( " --out_dispersion_files   <dispersion filename stub>");
//  opt->addUsage( "                    Output dispersion curves and modal values on a 2D grid" );
//  opt->addUsage( "                    to binary files at each frequency. The resulting filenames" );
//  opt->addUsage( "                    have the stub and frequency appended: " );
//  opt->addUsage( "                    e.g. <stub><freq>_nm.bin." );
//  opt->addUsage( "                    This option is computationally expensive." );
  opt->addUsage( "" );
//  opt->addUsage( " Examples (run in the 'samples' directory):" );
//  opt->addUsage( "" );
//  opt->addUsage( "   a. Compute dispersion file that will be used to compute the pressure pulse at 1 receiver. Assume that we want to end up with a pulse having a spectrum with a maximum frequency of f_max=0.5 Hz. Also assume that we want the pulse represented on a time record of T=512 seconds. The number of positive frequencies necessary for the calculation is T*f_max = 256 i.e.256 frequencies between 0 and 0.5 Hz. Thus we know f_max=0.5 Hz and f_step=f_max/256=0.001953125 Hz. The corresponding run command is:" );
  opt->addUsage( " Example (run in the 'samples' directory):" );
  opt->addUsage( "" );
  opt->addUsage( " Example to obtain a dispersion file that will be used to compute" );
  opt->addUsage( " the propagated pressure pulse at a distant receiver. " );
  opt->addUsage( " Assume that we want to end up with a pulse having a spectrum" );
  opt->addUsage( " with a maximum frequency of f_max=0.5 Hz. " );
  opt->addUsage( " Also assume that we want the pulse represented on a time record " );
  opt->addUsage( " of T=512 seconds. The number of positive frequencies necessary  " );
  opt->addUsage( " for the calculation is T*f_max = 256 i.e.256 frequencies " );
  opt->addUsage( " between f_min=f_step and 0.5 Hz. The step in frequency is  " );
  opt->addUsage( " f_step=f_max/256=0.001953125 Hz." );
  opt->addUsage( " The corresponding run command is:" );
  opt->addUsage( "" );
  opt->addUsage( "    >> ../bin/ModBB --out_disp_src2rcv_file myDispersionFile.dat " );
  opt->addUsage( "       --atmosfile NCPA_canonical_profile_zuvwtdp.dat --atmosfileorder zuvwtdp " );
  opt->addUsage( "       --skiplines 0 --azimuth 90 --f_step 0.001953125 --f_max 0.5 --use_modess" );
  opt->addUsage( "" );
  opt->addUsage( " Each line in this dispersion file has (4 + 4*n_modes) entries" );
  opt->addUsage( " in the following format:" );  
  opt->addUsage( " freq n_modes rho_src rho_rcv Re(k_pert_m) Im(k_pert_m) V_m(z_src) V_m(z_rcv)" );
  opt->addUsage( " where m varies from 1 to n_modes. k_pert_m, and V_m are" );
  opt->addUsage( " the m_th wavenumber and mode amplitude respectively." );  
  opt->addUsage( " z_src and z_rcv stand for source and receiver height respectively." );
  opt->addUsage( "" );
//  opt->addUsage( "   b. Compute dispersion files for propagation to all receivers on a 2D grid: for 256 frequencies from 0 to 0.5 Hz in steps of 0.5/256 Hz:" ); 
//  opt->addUsage( "" ); 
//  opt->addUsage( "    >> ../bin/ModBB --out_dispersion_files disprs --atmosfile NCPA_canonical_profile_zuvwtdp.dat --atmosfileorder zuvwtdp --skiplines 0 --azimuth 90 --f_step 0.001953125 --f_max 0.5 --use_modess" );
  opt->addUsage( "" );  
  opt->addUsage( "In addition the following options are REQUIRED:" );
  opt->addUsage( " --use_modess              Prompts the use of ModESS algorithm." );
  opt->addUsage( " --use_wmod                Prompts the use of WMod algorithm." );
  opt->addUsage( " Note that --use_modess and --use_wmod are mutually exclusive." );
  opt->addUsage( " --atmosfile  <filename>   Uses an ASCII atmosphere file" );
  opt->addUsage( "                           referenced to Mean Sea Level (MSL)." );  
  opt->addUsage( " --atmosfileorder          The order of the (z,t,u,v,w,p,d) fields in " );
  opt->addUsage( "                           the ASCII file (Ex: 'ztuvpd')" );
  opt->addUsage( " --skiplines               Lines at the beginning of the ASCII file to skip" );	
  opt->addUsage( " --azimuth                 Value in range [0,360), clockwise from North" );
  opt->addUsage( " --f_step                  The frequency step" );		
  opt->addUsage( " --f_max                   Maximum frequency to propagate" );
  opt->addUsage( "    Note that in this case the array of frequencies is [f_step:f_step:f_max]." );	  	
  opt->addUsage( "" );  
  opt->addUsage( "OPTIONAL [defaults]:" );
  opt->addUsage( " --f_min                   Minimum frequency [f_step Hz] " ); 
  opt->addUsage( " --maxheight_km            Calculation grid height in km above MSL [150 km]" );
  opt->addUsage( " --zground_km              Height of the ground level above MSL [0 km]" );  
  opt->addUsage( " --Nz_grid                 Number of points on the z-grid from the ground" );
  opt->addUsage( "                           to maxheight [20000]" );
  opt->addUsage( " --sourceheight_km         Source height in km Above Ground Level (AGL) [0]" );
  opt->addUsage( " --receiverheight_km       Receiver height in km AGL [0]" );   
  opt->addUsage( " --maxrange_km             Maximum horizontal distance from origin to propagate" );
  opt->addUsage( "                           [1000 km]" );
  opt->addUsage( " --ground_impedance_model  Name of the ground impedance models to be employed:" );
  opt->addUsage( "                           [rigid], TBD" );
  opt->addUsage( " --Lamb_wave_BC            For a rigid ground: if ==1 it sets" );
  opt->addUsage( "                           admittance= = -1/2*dln(rho)/dz; [ 0 ]" );
  opt->addUsage( " --wind_units              Use it to specify 'kmpersec' if the winds are given" );
  opt->addUsage( "                           in km/s [ mpersec ]" );
  opt->addUsage( " --use_attn_file           Option to specify a file name containing" );
  opt->addUsage( "                           user-provided attenuation coefficients " );
  opt->addUsage( "                           to be loaded instead of the default" );
  opt->addUsage( "                           Sutherland-Bass attenuation. " );
  opt->addUsage( "                           The text file should contain two columns: " );
  opt->addUsage( "                              height (km AGL) and " );
  opt->addUsage( "                              attenuation coefficients in np/m." );

  opt->addUsage( " --c_min                   Specify the minimum phase speed (in m/sec)." );
  opt->addUsage( "                           This is used in conjunction with the --wvnum_filter" );
  opt->addUsage( "                           flag which turns on wavenumber filtering by" );
  opt->addUsage( "                           phase speed. See also the --wvnum_filter flag" );
  opt->addUsage( "                           and the --c_max option." );
  opt->addUsage( " --c_max                   Specify the maximum phase speed (in m/sec)." );
	
  opt->addUsage( "" );
  opt->addUsage( "FLAGS (no value required after the flag itself):" );
  opt->addUsage( " --turnoff_WKB             Turn off the WKB least phase speed estimation," );
  opt->addUsage( "                           an approximation that speeds-up ground-to-ground" );
  opt->addUsage( "                           propagation. If either or both the source and " ); 
  opt->addUsage( "                           receiver are not on the ground [height=0] " );
  opt->addUsage( "                           the approximation is turned off by default" ); 
  opt->addUsage( "                           regardless whether the flag is mentioned" ); 
  opt->addUsage( "                           in the command line or not." ); 
  opt->addUsage( " --use_zero_attn           Set attenuation to zero.");
  opt->addUsage( "                           Reads the dispersion file and sets the");
  opt->addUsage( "                           imaginary part of the wavenumber to zero.");
  opt->addUsage( " --wvnum_filter            Applies wavenumber filtering by phase speed" );
  opt->addUsage( "                           and should be followed by specification of" ); 
  opt->addUsage( "                           the parameters:" );
  opt->addUsage( "                              --c_min   minimum phase speed (in m/sec)." );
  opt->addUsage( "                              --c_max   maximum phase speed (in m/sec)." );
  opt->addUsage( "" );
  opt->addUsage( "" );
  opt->addUsage( "Options for PULSE PROPAGATION:" );
  opt->addUsage( " --pulse_prop_src2rcv <dispersion filename> ");
  opt->addUsage( "                    Propagate pulse from source to 1 receiver");
  opt->addUsage( "                    at a distance specified by option --range_R_km; " );
  opt->addUsage( " --range_R_km       Propagate pulse to this range [km]" );
  opt->addUsage( " --waveform_out_file <waveform filename>   Name of the waveform output file" );
  opt->addUsage( "" );
  opt->addUsage( " --pulse_prop_src2rcv_grid <dispersion filename> ");
  opt->addUsage( "                    Propagate pulse from source to array of ");
  opt->addUsage( "                    horizontally equally-spaced receivers" );  
  opt->addUsage( "" );
  opt->addUsage( " REQUIRED additional options:" );
  opt->addUsage( " --f_center         The center frequency of the built-in pulse choices 1 and 2" );
  opt->addUsage( "                    (f_center<=f_max/5)" );
  opt->addUsage( " --R_start_km       Propagation from this range to R_end_km in DR_km steps." );
  opt->addUsage( " --R_end_km         Pulse is propagated from R_start_km to this range." );
  opt->addUsage( " --DR_km            Range step to propagate from R_start_km to R_end_km." );
  opt->addUsage( " --waveform_out_file <waveform filename> ");
  opt->addUsage( "                    Name of the waveform output file." );
  opt->addUsage( "" );
  opt->addUsage( " OPTIONAL [defaults]:" );
  opt->addUsage( " --max_celerity     Maximum celerity [340 m/s]." );
  opt->addUsage( " --nfft             Number of points used in the FFT computation. ");
  opt->addUsage( "                    Defaults to [4*f_max/f_step]." );		
  
  opt->addUsage( "" );	   
  opt->addUsage( "" );
  opt->addUsage( "SOURCE TYPE input options: Use one of the following 4 options" );
  opt->addUsage( "                           to specify the source type:" );  
  opt->addUsage( " --get_impulse_resp       Flag to use a delta function as source and" );
  opt->addUsage( "                          to output the impulse response." );
  opt->addUsage( " --use_builtin_pulse1     Flag to request the use of the built-in source pulse." );
  opt->addUsage( "                          Note: Use --f_center to request the central frequency" ); 
  opt->addUsage( "                          of the pulse. f_center is restricted to a maximum" );
  opt->addUsage( "                          value of fmax/5 where fmax is the maximum frequency" ); 
  opt->addUsage( "                          defined by the dispersion file." );
  opt->addUsage( "                          The input waveform and spectrum are also saved for the" );
  opt->addUsage( "                          user's reference such that:" ); 
  opt->addUsage( "                          The built-in source spectrum is outputted in the file." );
  opt->addUsage( "                           'source_spectrum_input.dat' with the format." );
  opt->addUsage( "                             | Freq (Hz) | Re(S) | Imag(S) |." );
  opt->addUsage( "                          The input source waveform is outputted in the file." );
  opt->addUsage( "                           'source_waveform_input.dat' with the format." );
  opt->addUsage( "                             | Time [s] | Amplitude |." );

  opt->addUsage( " --use_builtin_pulse2     Flag to request a second shape of built-in source pulse." );
  opt->addUsage( "                          The input waveform and spectrum are also saved for the" );
  opt->addUsage( "                          user's reference such that:" ); 
  opt->addUsage( "                          The built-in source spectrum is outputted in the file." );
  opt->addUsage( "                           'source_spectrum_input.dat' with the format." );
  opt->addUsage( "                             | Freq (Hz) | Re(S) | Imag(S) |." );
  opt->addUsage( "                          The input source waveform is outputted in the file." );
  opt->addUsage( "                           'source_waveform_input.dat' with the format." );
  opt->addUsage( "                             | Time [s] | Amplitude |." ); 
       
  opt->addUsage( " --src_spectrum_file      Specify the file name of the source spectrum");
  opt->addUsage( "                          at positive frequencies. The file must have 3 columns" );
  opt->addUsage( "                             | Freq | Real(Spectrum) | Imag(Spectrum) |" );
  opt->addUsage( "                          Note that the frequencies provided in the file" );
  opt->addUsage( "                          must match the frequencies in the dispersion file." );
  opt->addUsage( " --src_waveform_file      Specify the file name of the user-provided " );
  opt->addUsage( "                          source waveform. The file must have 2 columns" );
  opt->addUsage( "                             |Time | Amplitude |" ); 
  opt->addUsage( "   If none of then source type options are specified the delta function source");
  opt->addUsage( "   is the default i.e. the output is the impulse response." );  
  opt->addUsage( "" );
  opt->addUsage( " Example: Pulse propagation to a point on the ground at range_R_km" ); 
  opt->addUsage( "          and output the impulse response:" );
  opt->addUsage( "" );
  opt->addUsage( "    ../bin/ModBB --pulse_prop_src2rcv myDispersionFile.dat --range_R_km 240 " );
  opt->addUsage( "                 --waveform_out_file mywavf.dat --get_impulse_resp" );
  opt->addUsage( "" );
  opt->addUsage( " Example: Pulse propagation to a point on the ground at range_R_km" );
  opt->addUsage( "          and employ the user-provided source spectrum:" );
  opt->addUsage( "" );
  opt->addUsage( "   ../bin/ModBB --pulse_prop_src2rcv myDispersionFile.dat --range_R_km 240 " );
  opt->addUsage( "                --waveform_out_file mywavf.dat --max_celerity 300 " );
  opt->addUsage( "                --src_spectrum_file source_spectrum_example.dat" );    
  opt->addUsage( "" );
  opt->addUsage( " Example: Pulse propagation to several points on the ground 20 km apart" );
  opt->addUsage( "          and employ the user-provided source waveform:" );
  opt->addUsage( "" );
  opt->addUsage( "   ../bin/ModBB --pulse_prop_src2rcv_grid myDispersionFile.dat " );
  opt->addUsage( "                --R_start_km 240 --DR_km 20 --R_end_km 300 --waveform_out_file mywavf.dat " );
  opt->addUsage( "                --src_waveform_file source_waveform_input_example.dat" );
  opt->addUsage( "" );
  opt->addUsage( "" );
  
/*
// This functionality works but was disabled because of too long computation times.
  opt->addUsage( " To compute a 2D field:" );
  opt->addUsage( " --pulse_prop_grid <dispersion directory name> ");
  opt->addUsage( "                    Compute/view pulse on the 2D spatial x-z grid of 'height_km'");
  opt->addUsage( "                    and 'width_km' starting at 'R_start_km" );
  opt->addUsage( "" );
  opt->addUsage( "   --------------------------------------------------------------" );
  opt->addUsage( " height_km      |                                     |" );
  opt->addUsage( "                |  Pressure field computed within     |" );
  opt->addUsage( "                |  a 2D (width_km x height_km) grid   |" );
  opt->addUsage( "                |          'ntsteps' times            |" );
  opt->addUsage( "                |      every 'tmstep' seconds         |" );
  opt->addUsage( "                |                                     |" );  
  opt->addUsage( "                |                                     |" );	
  opt->addUsage( "   -------------x------------------------------------------------" );	
  opt->addUsage( "              R_start_km" );
  opt->addUsage( "" );
  opt->addUsage(" Additional parameters:" );
  opt->addUsage( " --R_start_km       The grid (viewing window) starts at R_start_km" );
  opt->addUsage( " --width_km         Grid width" );
  opt->addUsage( " --max_celerity     Reference speed [m/s]; in conjunction with R_start_km");
  opt->addUsage( "                    it is determining where inside the grid the field is at");
  opt->addUsage( "                    a time step; a value smaller than the speed of sound");
  opt->addUsage( "                    at the ground is suggested." );
  opt->addUsage( " --tmstep           2D pressure field is calculated at this specified time step." );
  opt->addUsage( " --ntsteps          Number of times the 2D pressure field is calculated");
  opt->addUsage( "                    'tmstep' seconds apart." );
  opt->addUsage( "" );
  opt->addUsage( " OPTIONAL [defaults]:" );
  opt->addUsage( " --height_km        The height of the 2D grid. [maximum height]" );
  opt->addUsage( " --frame_file_stub  Each 2D grid is saved into a file with the name");
  opt->addUsage( "                    frame_file_stub_<time_of_start>; Default:[Pressure2D]." );
  opt->addUsage( "" );
  opt->addUsage( " Example: >> ../bin/ModBB --pulse_prop_grid mydispersionFolder --R_start_km 220 --width_km 50 --height_km 25 --max_celerity 300 --tmstep 30 --ntsteps 5 --frame_file_stub myPressure --use_builtin_pulse" );  
  opt->addUsage( "" );
*/
  

    


  // Set up the actual flags, etc.
  opt->setFlag( "help", 'h' );
  opt->setFlag( "use_modess" );
  opt->setFlag( "use_wmod" );
  opt->setFlag( "get_impulse_resp" );
  opt->setFlag( "use_builtin_pulse1" );
  opt->setFlag( "use_builtin_pulse2" );
  opt->setFlag( "turnoff_WKB");
  opt->setFlag( "plot");
  opt->setFlag( "use_zero_attn");
  opt->setFlag( "wvnum_filter");
  
  opt->setOption( "atmosfile" );
  opt->setOption( "atmosfileorder" );
  opt->setOption( "wind_units" );
  opt->setOption( "skiplines" );		
  opt->setOption( "azimuth" );
  opt->setOption( "maxrange_km" );
  opt->setOption( "sourceheight_km" );
  opt->setOption( "receiverheight_km" );
  opt->setOption( "maxheight_km" );
  opt->setOption( "zground_km" );  
  opt->setOption( "stepsize" );
  opt->setOption( "Nz_grid" );
  opt->setOption( "Nrng_steps" );
  opt->setOption( "out_TL_2D" );
  opt->setOption( "ground_impedance_model" );
  opt->setOption( "Lamb_wave_BC" );
  opt->setOption( "f_min" );
  opt->setOption( "f_step" );	
  opt->setOption( "f_max" );
  opt->setOption( "f_center" );
  opt->setOption( "pulse_prop_grid" );
  opt->setOption( "pulse_prop_src2rcv" );
  opt->setOption( "pulse_prop_src2rcv_grid" );
  opt->setOption( "R_start_km" );
  opt->setOption( "R_end_km" );
  opt->setOption( "DR_km" );
  opt->setOption( "max_celerity" );
  opt->setOption( "range_R_km" );
  opt->setOption( "out_dispersion_files" );
  opt->setOption( "out_disp_src2rcv_file" );
  opt->setOption( "waveform_out_file" );
  opt->setOption( "width_km" );
  opt->setOption( "height_km" );
  opt->setOption( "tmstep" );
  opt->setOption( "ntsteps" );
  opt->setOption( "frame_file_stub" );
  opt->setOption( "disp_dirname" );
  opt->setOption( "src_spectrum_file" );
  opt->setOption( "src_waveform_file" );
  opt->setOption( "nfft" );
  opt->setOption( "use_attn_file" );
  opt->setOption( "c_min" );
  opt->setOption( "c_max" );

  // Process the command-line arguments
  opt->processFile( "./ModBB.options" );
  opt->processCommandArgs( argc, argv );

  if( ! opt->hasOptions()) { // print usage if no options
      opt->printUsage();
      delete opt;
      exit( 1 );
  }

  // Check to see if help text was requested
  if ( opt->getFlag( "help" ) || opt->getFlag( 'h' ) ) {
      opt->printUsage();
      exit( 1 );
  }

  return opt;
}