Exemplo n.º 1
0
/**
 * @brief Write imgage.
 * @details Write compostied image to the file system.
 */
void writeImage() {

  // Transfer to something OpenImageIO understands
     oiioPixels.resize(newWidth*newHeight*4*sizeof(float));

     for (int row = 0; row < newHeight; row++)
         for (int col = 0; col < newWidth; col++){
          oiioPixels[(row*newWidth+col)*4 + 0] = warppedPixels[row][col].r;
          oiioPixels[(row*newWidth+col)*4 + 1] = warppedPixels[row][col].g;
          oiioPixels[(row*newWidth+col)*4 + 2] = warppedPixels[row][col].b;
          oiioPixels[(row*newWidth+col)*4 + 3] = warppedPixels[row][col].a;
        }

  // Create output image
    ImageOutput *out = ImageOutput::create(outImage);

    // Error handeling
    if (!out) {
        printf("Error writing image: %s\n", geterror().c_str());
        exit(EXIT_FAILURE);
    }

    // Create output image spec
    ImageSpec spec (newWidth, newHeight, 4, TypeDesc::FLOAT);

    // Open output image file
    out->open(outImage, spec);

    // Write output image to disk and close
    out->write_image(TypeDesc::FLOAT, &oiioPixels[0]);
    out->close();
    delete out;
}
 void Ibl::Simulate(std::string const& filename)
 {
     auto width = 2000U;
     auto height = 1000U;
     
     
     std::vector<float> data(width * height);
     std::fill(data.begin(), data.end(), 0.f);
     
     for (int i = 0; i < 100000; ++i)
     {
         auto xy = SampleCoord(RadeonRays::float2(RadeonRays::rand_float(), RadeonRays::rand_float()));
         data[xy.y * width + xy.x] += 1.f;
     }
     
     using namespace OpenImageIO;
     
     ImageOutput* out = ImageOutput::create(filename);
     
     if (!out)
     {
         throw std::runtime_error("Can't create image file on disk");
     }
     
     ImageSpec spec(width, height, 1, TypeDesc::UINT8);
     
     out->open(filename, spec);
     out->write_image(TypeDesc::FLOAT, &data[0]);
     out->close();
     
     delete out;
 }
Exemplo n.º 3
0
void lux::writeOIIOImage( const char* fname, Image& img, const map<string,string>& labels, float displayBrightness, float displayGamma )
{
   float* imagedata = new float[ img.Width()* img.Height() * 3 ];

   // fill image with the contents of img

   long index = 0;
   for( int j=0;j<img.Height();j++ )
   {
      for( int i=0;i<img.Width();i++ )
      {
         vector<float> pix = img.pixel(i,img.Height() - j - 1);
	 for( size_t c=0;c<3;c++ )
         {
            pix[c] = imagePlaneValue( pix[c], displayGamma, displayBrightness );
	    imagedata[index++] = pix[c];
         }
      }
   }

   ImageOutput *out = ImageOutput::create (fname); 
   if( !out )
   {
      cout << "Not able to write an image to file " << fname << endl;
   }
   else
   {
      ImageSpec spec (img.Width(), img.Height(), 3, TypeDesc::FLOAT); 
      spec.attribute("user", "imageTools");
      spec.attribute("writer", "OIIOFiles" );
      if( labels.size() > 0 )
      {
         map<string,string>::const_iterator lab = labels.begin();
	 while( lab != labels.end() )
	 {
	    const string& name = lab->first;
	    const string& value = lab->second;
	    spec.attribute( name, value );
	    lab++;
	 }
      }
      out->open (fname, spec);
      out->write_image (TypeDesc::FLOAT, imagedata); 
      out->close (); 
	cout <<endl<<endl<< "File " << fname << " written to file"<< endl;
      delete out;
   }
   delete[] imagedata;
}
Exemplo n.º 4
0
void SaveFrameBuffer(std::string const& name, float3 const* data)
{
	OIIO_NAMESPACE_USING;

	std::vector<float3> tempbuf(g_window_width * g_window_height);
	tempbuf.assign(data, data + g_window_width*g_window_height);

	ImageOutput* out = ImageOutput::create(name);

	if (!out)
	{
		throw std::runtime_error("Can't create image file on disk");
	}

	ImageSpec spec(g_window_width, g_window_height, 3, TypeDesc::FLOAT);

	out->open(name, spec);
	out->write_image(TypeDesc::FLOAT, &tempbuf[0], sizeof(float3));
	out->close();
}
 void Ibl::DumpPdf(std::string const& filename)
 {
     auto width = 2000U;
     auto height = 1000U;
     
     
     std::vector<float> data(width * height);
     
     for (auto x = 0U; x < width; ++x)
         for (auto y = 0U; y < height; ++y)
         {
             data[y * width + x] = GetPdf(RadeonRays::float2((float)x / m_width, (float)y / m_height));
         }
     
     auto max = std::max_element(data.cbegin(), data.cend());
     
     std::for_each(data.begin(), data.end(), [=](float& v)
                   {
                       v /= *max;
                   });
     
     using namespace OpenImageIO;
     
     ImageOutput* out = ImageOutput::create(filename);
     
     if (!out)
     {
         throw std::runtime_error("Can't create image file on disk");
     }
     
     ImageSpec spec(width, height, 1, TypeDesc::UINT8);
     
     out->open(filename, spec);
     out->write_image(TypeDesc::FLOAT, &data[0]);
     out->close();
     
     delete out;
 }
Exemplo n.º 6
0
int main (int argc, const char *argv[]) {
    Timer timer;

    // Create a new shading system.  We pass it the RendererServices
    // object that services callbacks from the shading system, NULL for
    // the TextureSystem (which will create a default OIIO one), and
    // an error handler.
    shadingsys = new ShadingSystem (&rend, NULL, &errhandler);

    // Register the layout of all closures known to this renderer
    // Any closure used by the shader which is not registered, or
    // registered with a different number of arguments will lead
    // to a runtime error.
    register_closures(shadingsys);

    // Remember that each shader parameter may optionally have a
    // metadata hint [[int lockgeom=...]], where 0 indicates that the
    // parameter may be overridden by the geometry itself, for example
    // with data interpolated from the mesh vertices, and a value of 1
    // means that it is "locked" with respect to the geometry (i.e. it
    // will not be overridden with interpolated or
    // per-geometric-primitive data).
    // 
    // In order to most fully optimize shader, we typically want any
    // shader parameter not explicitly specified to default to being
    // locked (i.e. no per-geometry override):
    shadingsys->attribute("lockgeom", 1);

    // Read command line arguments
    getargs (argc, argv);

    // Setup common attributes
    shadingsys->attribute ("debug", debug2 ? 2 : (debug ? 1 : 0));
    shadingsys->attribute ("compile_report", debug|debug2);
    const char *opt_env = getenv ("TESTSHADE_OPT");  // overrides opt
    if (opt_env)
        shadingsys->attribute ("optimize", atoi(opt_env));
    else if (O0 || O1 || O2)
        shadingsys->attribute ("optimize", O2 ? 2 : (O1 ? 1 : 0));
    shadingsys->attribute ("debugnan", debugnan);

    // Loads a scene, creating camera, geometry and assigning shaders
    parse_scene();

    // validate options
    if (aa < 1) aa = 1;
    if (num_threads < 1)
        num_threads = boost::thread::hardware_concurrency();

    // prepare background importance table (if requested)
    if (backgroundResolution > 0 && backgroundShaderID >= 0) {
        // get a context so we can make several background shader calls
        OSL::PerThreadInfo *thread_info = shadingsys->create_thread_info();
        ShadingContext *ctx = shadingsys->get_context (thread_info);

        // build importance table to optimize background sampling
        background.prepare(backgroundResolution, eval_background, ctx);

        // release context
        shadingsys->release_context (ctx);
        shadingsys->destroy_thread_info(thread_info);
    } else {
        // we aren't directly evaluating the background
        backgroundResolution = 0;
    }

    double setuptime = timer.lap ();

    std::vector<Color3> pixels(xres * yres, Color3(0,0,0));

    // Create shared counter to iterate over one scanline at a time
    Counter scanline_counter(errhandler, yres, "Rendering");
    // launch a scanline worker for each thread
    boost::thread_group workers;
    for (int i = 0; i < num_threads; i++)
        workers.add_thread(new boost::thread(scanline_worker, boost::ref(scanline_counter), boost::ref(pixels)));
    workers.join_all();

    // Write image to disk
    ImageOutput* out = ImageOutput::create(imagefile);
    ImageSpec spec(xres, yres, 3, TypeDesc::HALF);
    if (out && out->open(imagefile, spec)) {
        out->write_image(TypeDesc::TypeFloat, &pixels[0]);
    } else {
        errhandler.error("Unable to write output image");
    }
    delete out;

    // Print some debugging info
    if (debug || stats) {
        double runtime = timer.lap();
        std::cout << "\n";
        std::cout << "Setup: " << OIIO::Strutil::timeintervalformat (setuptime,2) << "\n";
        std::cout << "Run  : " << OIIO::Strutil::timeintervalformat (runtime,2) << "\n";
        std::cout << "\n";
        std::cout << shadingsys->getstats (5) << "\n";
        OIIO::TextureSystem *texturesys = shadingsys->texturesys();
        if (texturesys)
            std::cout << texturesys->getstats (5) << "\n";
        std::cout << ustring::getstats() << "\n";
    }

    // We're done with the shading system now, destroy it
    shaders.clear ();  // Must release the group refs first
    delete shadingsys;

    return EXIT_SUCCESS;
}
Exemplo n.º 7
0
bool
SMT::save()
{
	// Make sure we have some source images before continuing
	if( sourceFiles.size() == 0) {
		if( !quiet )cout << "ERROR: No source images to convert" << endl;
		return true;
	}

	// Build SMT Header //
	//////////////////////
	char filename[256];
	sprintf(filename, "%s.smt", outPrefix.c_str());

	if( verbose ) printf("\nINFO: Creating %s\n", filename );
	fstream smt( filename, ios::binary | ios::out );
	if( !smt.good() ) {
		cout << "ERROR: fstream error." << endl;
		return true;
	}

	SMTHeader header;
	header.tileRes = tileRes;
	header.tileType = tileType;
	if( verbose ) {
		cout << "    Version: " << header.version << endl;
		cout << "    nTiles: n/a\n";
		printf( "    tileRes: (%i,%i)%i.\n", tileRes, tileRes, 4);
		cout << "    tileType: ";
		if( tileType == DXT1 ) cout << "DXT1" << endl;
		cout << "    tileSize: " << tileSize << " bytes" << endl;
	}

	smt.write( (char *)&header, sizeof(SMTHeader) );
	smt.close();

	// setup size for index dimensions
	int tcx = width * 16; // tile count x
	int tcz = length * 16; // tile count z
	unsigned int *indexPixels = new unsigned int[tcx * tcz];

	// Load source image
	if( verbose )cout << "INFO: Loading Source Image(s)\n";
	ImageBuf *bigBuf = buildBig();
	ImageSpec bigSpec = bigBuf->spec();

	// Process decals
	if( !decalFile.empty() ) {
		if( verbose )cout << "INFO: Processing decals\n";
		pasteDecals( bigBuf );
	}

	// Swizzle channels
	if( verbose )cout << "INFO: Swizzling channels\n";
	ImageBuf fixBuf;
	int map[] = { 2, 1, 0, 3 };
	ImageBufAlgo::channels( fixBuf, *bigBuf, 4, map );
	bigBuf->copy( fixBuf );
	fixBuf.clear();

	// Process Tiles
	if( verbose )cout << "INFO: Processing tiles\n";

	// Time reporting vars
	timeval t1, t2;
    double elapsedTime;
	deque<double> readings;
	double averageTime = 0;
	double intervalTime = 0;

	// Loop vars
	int totalTiles = tcx * tcz;
	int currentTile;

	// Tile Vars
	ROI roi;
	ImageSpec tileSpec(tileRes, tileRes, 4, TypeDesc::UINT8 );

	// Comparison vars
	bool match;
	bool yee = false;
	unsigned int i;
	string hash;
	vector<string> hashTable;
	TileBufListEntry *listEntry;
	deque<TileBufListEntry *> tileList;

	// Open smt file for writing tiles
	smt.open(filename, ios::binary | ios::out | ios::app );

	// loop through tile columns
	for ( int z = 0; z < tcz; z++) {
		// loop through tile rows
		for ( int x = 0; x < tcx; x++) {
			currentTile = z * tcx + x + 1;
    		gettimeofday(&t1, NULL);

			// pull a region of the big image to use as a tile.
			roi.xbegin = x * tileRes;
			roi.xend = x * tileRes + tileRes;
			roi.ybegin = z * tileRes;
			roi.yend = z * tileRes + tileRes;
			roi.zbegin = 0;
			roi.zend = 1;
			roi.chbegin = 0;
			roi.chend = 4;

			ImageBuf tempBuf;
			ImageBufAlgo::crop( tempBuf, *bigBuf, roi );
			ImageBuf *tileBuf = new ImageBuf( filename, tileSpec, tempBuf.localpixels() );

			// reset match variables
			match = false;
			i = nTiles;

			if( cnum < 0)  {
				// no attempt at reducing tile sizes
				i = nTiles;
			} else if( cnum == 0) {
				// only exact matches will be referenced.
				hash = ImageBufAlgo::computePixelHashSHA1( *tileBuf );
				for( i = 0; i < hashTable.size(); ++i ) {
					if( !hashTable[i].compare( hash ) ) {
						match = true;
						break;
					} 
				}
				if( !match ) hashTable.push_back( hash );

			} else if( !yee ) {
				//Comparison based on numerical differences of pixels
				listEntry = new TileBufListEntry;
				listEntry->image.copy(*tileBuf);
				listEntry->tileNum = nTiles;

				ImageBufAlgo::CompareResults result;
				deque< TileBufListEntry * >::iterator it;

				for(it = tileList.begin(); it != tileList.end(); it++ ) {
					TileBufListEntry *listEntry2 = *it;
					ImageBufAlgo::compare( *tileBuf, listEntry2->image,
							cpet, 1.0f, result);
					//TODO give control on tweaking matching
					if((int)result.nfail < cnet) {
						match = true;
						i = listEntry2->tileNum;
						delete listEntry;
						break;
					}
				}
				if( !match ) {
					tileList.push_back(listEntry);
					if((int)tileList.size() > cnum) {
						delete tileList[0];
						tileList.pop_front();
					}
				}
			} else {
			//FIXME uncomment when OpenImageIO gets upgraded to v3
/*				listEntry = new TileBufListEntry;
				listEntry->image.copy(*tileBuf);
				listEntry->tileNum = nTiles;

				ImageBufAlgo::CompareResults result;
				deque< TileBufListEntry * >::iterator it;

				for(it = tileList.begin(); it != tileList.end(); it++ ) {
					TileBufListEntry *listEntry2 = *it;
					ImageBufAlgo::compare_yee( *tileBuf, listEntry2->image,
							result, 1.0f, 1.0f );
					if(result.nfail == 0) {
						match = true;
						i = listEntry2->tileNum;
						break;
					}
				}
				if( !match ) {
					tileList.push_back(listEntry);
					if((int)tileList.size() > 32) tileList.pop_front();
				}*/
			}

			// write tile to file.
			if( !match ) {
				unsigned char *std = (unsigned char *)tileBuf->localpixels();
				// process into dds
				NVTTOutputHandler *nvttHandler = new NVTTOutputHandler(tileSize);

				nvtt::InputOptions inputOptions;
				inputOptions.setTextureLayout( nvtt::TextureType_2D, tileRes, tileRes );
				inputOptions.setMipmapData( std, tileRes, tileRes );

				nvtt::CompressionOptions compressionOptions;
				compressionOptions.setFormat(nvtt::Format_DXT1a);

				nvtt::OutputOptions outputOptions;
				outputOptions.setOutputHeader(false);
				outputOptions.setOutputHandler( nvttHandler );

				nvtt::Compressor compressor;
				if( slow_dxt1 ) compressionOptions.setQuality(nvtt::Quality_Normal); 
				else           compressionOptions.setQuality(nvtt::Quality_Fastest); 
				compressor.process(inputOptions, compressionOptions, outputOptions);

				smt.write( nvttHandler->buffer, tileSize );
				delete nvttHandler;
				nTiles +=1;
			}
			delete tileBuf;
			// Write index to tilemap
			indexPixels[currentTile-1] = i;

    		gettimeofday(&t2, NULL);
			// compute and print the elapsed time in millisec
	    	elapsedTime = (t2.tv_sec - t1.tv_sec) * 1000.0;      // sec to ms
	    	elapsedTime += (t2.tv_usec - t1.tv_usec) / 1000.0;   // us to ms
			readings.push_back(elapsedTime);
			if(readings.size() > 1000)readings.pop_front();
			intervalTime += elapsedTime;
			if( verbose && intervalTime > 1 ) {
				for(unsigned int i = 0; i < readings.size(); ++i)
					averageTime+= readings[i];
				averageTime /= readings.size();
				intervalTime = 0;
			   	printf("\033[0G    %i of %i %%%0.1f complete | %%%0.1f savings | %0.1fs remaining.",
				currentTile, totalTiles,
				(float)currentTile / totalTiles * 100,
				(float)(1 - (float)nTiles / (float)currentTile) * 100,
			    averageTime * (totalTiles - currentTile) / 1000);
			}
		}
	}
	hashTable.clear();
	if( verbose ) cout << endl;
	smt.close();

	// retroactively fix up the tile count.
	smt.open(filename, ios::binary | ios::in | ios::out );
	smt.seekp( 20);
	smt.write( (char *)&nTiles, 4);
	smt.close();

	// Save tileindex
	ImageOutput *imageOutput;
	sprintf( filename, "%s_tilemap.exr", outPrefix.c_str() );
	
	imageOutput = ImageOutput::create(filename);
	if( !imageOutput ) {
		delete [] indexPixels;
		return true;
	}

	ImageSpec tilemapSpec( tcx, tcz, 1, TypeDesc::UINT);
	imageOutput->open( filename, tilemapSpec );
	imageOutput->write_image( TypeDesc::UINT, indexPixels );
	imageOutput->close();

	delete imageOutput;
	delete [] indexPixels;

	return false;

}
Exemplo n.º 8
0
// Function to write an image using OpenImageIO that reads and stores the pixel bein    g displayed on screen using OpenGL
void writeImage() {
 
  // Store the Output File Type in outfiletype, example .ppm or .jpg
  string outfiletype = outfilename.substr(outfilename.find("."));

  // Create ImageOutput instance using the outfilename & exit if error in creating
  ImageOutput *out = ImageOutput::create(outfilename);
  if (!out) {
    cerr << "Could not create an ImageOutput for " 
         << outfilename << "\nError: "
         << geterror()<<endl;
    exit(-1);
  }

  // Set outputchannels to 3 if outputfiletype is either ppm/pnm/pgm/pbm/hdr/rgbe else let it be equal to the number of channels of the input image (either 3 or 4)
  int outputchannels = (outfiletype==".ppm" || outfiletype==".pnm" || outfiletype==".pgm" || outfiletype==".pbm" || outfiletype==".hdr" || outfiletype==".rgbe" ? 3 : channels1 );

  // Allocate memory based on the number of channels
  unsigned char *oiio_pixels = new unsigned char[xresWarped*yresWarped*outputchannels];
  // Check if memory has been allocated successfully
  if (oiio_pixels==0) {
    // Memory not allocated successfully! Display message and Exit
    cout<<"Couldn't allocate memory. Exiting!"<<endl;
    exit(-1);
    delete out;
  }
 
  // If number of channels is 4 then read in RGBA format using GL_RGBA
  if(outputchannels==4) {
    for(int i=0, k=0; i<yresWarped && k<(xresWarped*yresWarped*outputchannels); i++) {
      for(int j=0; j<xresWarped; j++, k+=4) {
        oiio_pixels[k] = pixmapWarped[i][j].red;
        oiio_pixels[k+1] = pixmapWarped[i][j].green;
        oiio_pixels[k+2] = pixmapWarped[i][j].blue;
        oiio_pixels[k+3] = pixmapWarped[i][j].alpha;
      }
    }
  }
 
  // If number of channels is 3 then read in RGB format using GL_RGB
  else if(outputchannels==3) {
    for(int i=0, k=0; i<yresWarped && k<(xresWarped*yresWarped*outputchannels); i++) {
      for(int j=0; j<xresWarped; j++, k+=3) {
        oiio_pixels[k] = pixmapWarped[i][j].red;
        oiio_pixels[k+1] = pixmapWarped[i][j].green;
        oiio_pixels[k+2] = pixmapWarped[i][j].blue;
      }
    }
  }

  // Create ImageSpec for the output image with name outfile
  ImageSpec spec(xresWarped,yresWarped,outputchannels,TypeDesc::UINT8);
  if (! out->open (outfilename, spec)) {
    cerr << "Could not open " 
         << outfilename << "\nError: "
         << out->geterror()<< endl;
    delete out;
    delete [] oiio_pixels;
    exit(-1);
  }

  // This particular call to write flips the image for us
  int scanlinesize = xresWarped * outputchannels * sizeof(oiio_pixels[0]);
  if(! out->write_image (TypeDesc::UINT8, (unsigned char*)oiio_pixels+(yresWarped-1)*scanlinesize, AutoStride, -scanlinesize, AutoStride)) {
     cerr << "Could not write pixels to " 
          << outfilename << "\nError: "
          << out->geterror()<< endl;
     delete out;
     delete [] oiio_pixels;
     exit(-1);
   }

  // Close the output file
  if(! out->close ()) {
    std::cerr << "Error closing " 
              << outfilename << "\nError: " 
              << out->geterror() << endl;
    delete out;
    delete [] oiio_pixels;
    exit(-1);
  }
  delete out;
  delete [] oiio_pixels;
}
Exemplo n.º 9
0
static bool
convert_file (const std::string &in_filename, const std::string &out_filename)
{
    if (noclobber && Filesystem::exists(out_filename)) {
        std::cerr << "iconvert ERROR: Output file already exists \""
                  << out_filename << "\"\n";
        return false;
    }

    if (verbose)
        std::cout << "Converting " << in_filename << " to " << out_filename << "\n";

    std::string tempname = out_filename;
    if (tempname == in_filename) {
        tempname = out_filename + ".tmp"
                    + Filesystem::extension (out_filename);
    }

    // Find an ImageIO plugin that can open the input file, and open it.
    ImageInput *in = ImageInput::open (in_filename.c_str());
    if (! in) {
        std::string err = geterror();
        std::cerr << "iconvert ERROR: " 
                  << (err.length() ? err : Strutil::format("Could not open \"%s\"", in_filename))
                  << "\n";
        delete in;
        return false;
    }
    ImageSpec inspec = in->spec();
    std::string metadatatime = inspec.get_string_attribute ("DateTime");

    // Find an ImageIO plugin that can open the output file, and open it
    ImageOutput *out = ImageOutput::create (tempname.c_str());
    if (! out) {
        std::cerr 
            << "iconvert ERROR: Could not find an ImageIO plugin to write \"" 
            << out_filename << "\" :" << geterror() << "\n";
        delete in;
        return false;
    }

    // In order to deal with formats that support subimages, but not
    // subimage appending, we gather them all first.
    std::vector<ImageSpec> subimagespecs;
    if (out->supports("multiimage") && !out->supports("appendsubimage")) {
        ImageCache *imagecache = ImageCache::create ();
        int nsubimages = 0;
        ustring ufilename (in_filename);
        imagecache->get_image_info (ufilename, 0, 0, ustring("subimages"),
                                    TypeDesc::TypeInt, &nsubimages);
        if (nsubimages > 1) {
            subimagespecs.resize (nsubimages);
            for (int i = 0;  i < nsubimages;  ++i) {
                ImageSpec inspec = *imagecache->imagespec (ufilename, i, 0,
                                                           true /*native*/);
                subimagespecs[i] = inspec;
                adjust_spec (in, out, inspec, subimagespecs[i]);
            }
        }
        ImageCache::destroy (imagecache);
    }

    bool ok = true;
    bool mip_to_subimage_warning = false;
    for (int subimage = 0;
           ok && in->seek_subimage(subimage,0,inspec);
           ++subimage) {

        if (subimage > 0 &&  !out->supports ("multiimage")) {
            std::cerr << "iconvert WARNING: " << out->format_name()
                      << " does not support multiple subimages.\n";
            std::cerr << "\tOnly the first subimage has been copied.\n";
            break;  // we're done
        }

        int miplevel = 0;
        do {
            // Copy the spec, with possible change in format
            ImageSpec outspec = inspec;
            bool nocopy = adjust_spec (in, out, inspec, outspec);
        
            if (miplevel > 0) {
                // Moving to next MIP level
                ImageOutput::OpenMode mode;
                if (out->supports ("mipmap"))
                    mode = ImageOutput::AppendMIPLevel;
                else if (out->supports ("multiimage") &&
                         out->supports ("appendsubimage")) {
                    mode = ImageOutput::AppendSubimage; // use if we must
                    if (! mip_to_subimage_warning
                        && strcmp(out->format_name(),"tiff")) {
                        std::cerr << "iconvert WARNING: " << out->format_name()
                                  << " does not support MIPmaps.\n";
                        std::cerr << "\tStoring the MIPmap levels in subimages.\n";
                    }
                    mip_to_subimage_warning = true;
                } else {
                    std::cerr << "iconvert WARNING: " << out->format_name()
                              << " does not support MIPmaps.\n";
                    std::cerr << "\tOnly the first level has been copied.\n";
                    break;  // on to the next subimage
                }
                ok = out->open (tempname.c_str(), outspec, mode);
            } else if (subimage > 0) {
                // Moving to next subimage
                ok = out->open (tempname.c_str(), outspec,
                                ImageOutput::AppendSubimage);
            } else {
                // First time opening
                if (subimagespecs.size())
                    ok = out->open (tempname.c_str(), int(subimagespecs.size()),
                                    &subimagespecs[0]);
                else
                    ok = out->open (tempname.c_str(), outspec, ImageOutput::Create);
            }
            if (! ok) {
                std::string err = out->geterror();
                std::cerr << "iconvert ERROR: " 
                          << (err.length() ? err : Strutil::format("Could not open \"%s\"", out_filename))
                          << "\n";
                ok = false;
                break;
            }

            if (! nocopy) {
                ok = out->copy_image (in);
                if (! ok)
                    std::cerr << "iconvert ERROR copying \"" << in_filename 
                              << "\" to \"" << out_filename << "\" :\n\t" 
                              << out->geterror() << "\n";
            } else {
                // Need to do it by hand for some reason.  Future expansion in which
                // only a subset of channels are copied, or some such.
                std::vector<char> pixels ((size_t)outspec.image_bytes(true));
                ok = in->read_image (outspec.format, &pixels[0]);
                if (! ok) {
                    std::cerr << "iconvert ERROR reading \"" << in_filename 
                              << "\" : " << in->geterror() << "\n";
                } else {
                    ok = out->write_image (outspec.format, &pixels[0]);
                    if (! ok)
                        std::cerr << "iconvert ERROR writing \"" << out_filename 
                                  << "\" : " << out->geterror() << "\n";
                }
            }
        
            ++miplevel;
        } while (ok && in->seek_subimage(subimage,miplevel,inspec));
    }

    out->close ();
    delete out;
    in->close ();
    delete in;

    // Figure out a time for the input file -- either one supplied by
    // the metadata, or the actual time stamp of the input file.
    std::time_t in_time;
    if (metadatatime.empty() ||
           ! DateTime_to_time_t (metadatatime.c_str(), in_time))
        in_time = Filesystem::last_write_time (in_filename);

    if (out_filename != tempname) {
        if (ok) {
            Filesystem::remove (out_filename);
            Filesystem::rename (tempname, out_filename);
        }
        else
            Filesystem::remove (tempname);
    }

    // If user requested, try to adjust the file's modification time to
    // the creation time indicated by the file's DateTime metadata.
    if (ok && adjust_time)
        Filesystem::last_write_time (out_filename, in_time);

    return ok;
}
Exemplo n.º 10
0
OIIO_NAMESPACE_USING

#include <algorithm>

#include "Perlin.h"

int main(int argc, char* argv[])
{
	try
	{
		options_description desc("Allowed options");
		desc.add_options()
			("help,h", "produce help message")
			("xres,x", value<int>()->default_value(255),
				"x resolution")
			("yres,y", value<int>()->default_value(255),
				"y resolution")
			("sample-size,s", value<int>()->default_value(256),
				"sample size")
			("seed,r", value<int>()->default_value(0),
				"psuedo-random seed")
			("persistence,p", value<float>()->default_value(0.5f),
				"persistence value")
			("octaves,o", value<int>()->default_value(2),
				"number of octaves")
		;

		options_description hidden("Hidden options");
		hidden.add_options()
			("output-file", value<string>()->required(), "output file")
		;

		options_description all("Allowed options");
		all.add(desc).add(hidden);

		positional_options_description p;
		p.add("output-file", 1);

		variables_map vm;
		store(command_line_parser(argc, argv).options(all)
			.positional(p).run(), vm);

		if (vm.count("help"))
		{
			cout << "Usage: " << argv[0] << " [options] output-file" << endl;
			cout << desc << endl;
			return 0;
		}

		notify(vm);

		string outputfile = vm["output-file"].as<string>();
		ImageOutput* out = ImageOutput::create(outputfile);
		if (!out)
		{
			cerr << "Could not create an ImageOutput for "
				<< outputfile << ", error = "
				<< OpenImageIO::geterror() << endl;
			return 0;
		}

		const int xres = vm["xres"].as<int>();
		const int yres = vm["yres"].as<int>();
		const int channels = 3; // RGB
		ImageSpec outspec(xres, yres, channels, TypeDesc::UINT8);

		if (!out->open(outputfile, outspec))
		{
			cerr << "Could not open " << outputfile
				<< ", error = " << out->geterror() << endl;
			ImageOutput::destroy(out);
			return 0;
		}

		const int sample_size = vm["sample-size"].as<int>();
		const int seed = vm["seed"].as<int>();
		Perlin perlin(sample_size, seed);

		float persistence = vm["persistence"].as<float>();
		int octaves = vm["octaves"].as<int>();

		unsigned char pixels[xres * yres * channels];
		for (int y = 0; y < yres; y++)
		{
			for (int x = 0; x < xres; x++)
			{
				float frequency, amplitude;
				float total = 0.0f;

				for (int i = 1; i <= octaves; ++i)
				{
					frequency = pow(2.0f, i);
					amplitude = pow(persistence, i);

					total += (perlin.Noise2(frequency * x / sample_size,
						frequency * y / sample_size) + 1)/ 2.0f * amplitude;
				}
	
				total = min<float>(1.0f, max<float>(0.0f, total));
				unsigned int noise = (unsigned int) (total * 255);

				pixels[y * xres * channels + x * channels] = noise;
				pixels[y * xres * channels + x * channels + 1] = noise;
				pixels[y * xres * channels + x * channels + 2] = noise;
			}
		}

		if (!out->write_image(TypeDesc::UINT8, pixels))
		{
			cerr << "Could not write pixels to " << outputfile
				<< ", error = " << out->geterror() << endl;
			ImageOutput::destroy(out);
			return 0;
		}

		ImageOutput::destroy(out);
	}
	catch (exception& e)
	{
		cerr << e.what() << endl;
	}
}