/** * @brief Write imgage. * @details Write compostied image to the file system. */ void writeImage() { // Transfer to something OpenImageIO understands oiioPixels.resize(newWidth*newHeight*4*sizeof(float)); for (int row = 0; row < newHeight; row++) for (int col = 0; col < newWidth; col++){ oiioPixels[(row*newWidth+col)*4 + 0] = warppedPixels[row][col].r; oiioPixels[(row*newWidth+col)*4 + 1] = warppedPixels[row][col].g; oiioPixels[(row*newWidth+col)*4 + 2] = warppedPixels[row][col].b; oiioPixels[(row*newWidth+col)*4 + 3] = warppedPixels[row][col].a; } // Create output image ImageOutput *out = ImageOutput::create(outImage); // Error handeling if (!out) { printf("Error writing image: %s\n", geterror().c_str()); exit(EXIT_FAILURE); } // Create output image spec ImageSpec spec (newWidth, newHeight, 4, TypeDesc::FLOAT); // Open output image file out->open(outImage, spec); // Write output image to disk and close out->write_image(TypeDesc::FLOAT, &oiioPixels[0]); out->close(); delete out; }
void Ibl::Simulate(std::string const& filename) { auto width = 2000U; auto height = 1000U; std::vector<float> data(width * height); std::fill(data.begin(), data.end(), 0.f); for (int i = 0; i < 100000; ++i) { auto xy = SampleCoord(RadeonRays::float2(RadeonRays::rand_float(), RadeonRays::rand_float())); data[xy.y * width + xy.x] += 1.f; } using namespace OpenImageIO; ImageOutput* out = ImageOutput::create(filename); if (!out) { throw std::runtime_error("Can't create image file on disk"); } ImageSpec spec(width, height, 1, TypeDesc::UINT8); out->open(filename, spec); out->write_image(TypeDesc::FLOAT, &data[0]); out->close(); delete out; }
void lux::writeOIIOImage( const char* fname, Image& img, const map<string,string>& labels, float displayBrightness, float displayGamma ) { float* imagedata = new float[ img.Width()* img.Height() * 3 ]; // fill image with the contents of img long index = 0; for( int j=0;j<img.Height();j++ ) { for( int i=0;i<img.Width();i++ ) { vector<float> pix = img.pixel(i,img.Height() - j - 1); for( size_t c=0;c<3;c++ ) { pix[c] = imagePlaneValue( pix[c], displayGamma, displayBrightness ); imagedata[index++] = pix[c]; } } } ImageOutput *out = ImageOutput::create (fname); if( !out ) { cout << "Not able to write an image to file " << fname << endl; } else { ImageSpec spec (img.Width(), img.Height(), 3, TypeDesc::FLOAT); spec.attribute("user", "imageTools"); spec.attribute("writer", "OIIOFiles" ); if( labels.size() > 0 ) { map<string,string>::const_iterator lab = labels.begin(); while( lab != labels.end() ) { const string& name = lab->first; const string& value = lab->second; spec.attribute( name, value ); lab++; } } out->open (fname, spec); out->write_image (TypeDesc::FLOAT, imagedata); out->close (); cout <<endl<<endl<< "File " << fname << " written to file"<< endl; delete out; } delete[] imagedata; }
void SaveFrameBuffer(std::string const& name, float3 const* data) { OIIO_NAMESPACE_USING; std::vector<float3> tempbuf(g_window_width * g_window_height); tempbuf.assign(data, data + g_window_width*g_window_height); ImageOutput* out = ImageOutput::create(name); if (!out) { throw std::runtime_error("Can't create image file on disk"); } ImageSpec spec(g_window_width, g_window_height, 3, TypeDesc::FLOAT); out->open(name, spec); out->write_image(TypeDesc::FLOAT, &tempbuf[0], sizeof(float3)); out->close(); }
void Ibl::DumpPdf(std::string const& filename) { auto width = 2000U; auto height = 1000U; std::vector<float> data(width * height); for (auto x = 0U; x < width; ++x) for (auto y = 0U; y < height; ++y) { data[y * width + x] = GetPdf(RadeonRays::float2((float)x / m_width, (float)y / m_height)); } auto max = std::max_element(data.cbegin(), data.cend()); std::for_each(data.begin(), data.end(), [=](float& v) { v /= *max; }); using namespace OpenImageIO; ImageOutput* out = ImageOutput::create(filename); if (!out) { throw std::runtime_error("Can't create image file on disk"); } ImageSpec spec(width, height, 1, TypeDesc::UINT8); out->open(filename, spec); out->write_image(TypeDesc::FLOAT, &data[0]); out->close(); delete out; }
int main (int argc, const char *argv[]) { Timer timer; // Create a new shading system. We pass it the RendererServices // object that services callbacks from the shading system, NULL for // the TextureSystem (which will create a default OIIO one), and // an error handler. shadingsys = new ShadingSystem (&rend, NULL, &errhandler); // Register the layout of all closures known to this renderer // Any closure used by the shader which is not registered, or // registered with a different number of arguments will lead // to a runtime error. register_closures(shadingsys); // Remember that each shader parameter may optionally have a // metadata hint [[int lockgeom=...]], where 0 indicates that the // parameter may be overridden by the geometry itself, for example // with data interpolated from the mesh vertices, and a value of 1 // means that it is "locked" with respect to the geometry (i.e. it // will not be overridden with interpolated or // per-geometric-primitive data). // // In order to most fully optimize shader, we typically want any // shader parameter not explicitly specified to default to being // locked (i.e. no per-geometry override): shadingsys->attribute("lockgeom", 1); // Read command line arguments getargs (argc, argv); // Setup common attributes shadingsys->attribute ("debug", debug2 ? 2 : (debug ? 1 : 0)); shadingsys->attribute ("compile_report", debug|debug2); const char *opt_env = getenv ("TESTSHADE_OPT"); // overrides opt if (opt_env) shadingsys->attribute ("optimize", atoi(opt_env)); else if (O0 || O1 || O2) shadingsys->attribute ("optimize", O2 ? 2 : (O1 ? 1 : 0)); shadingsys->attribute ("debugnan", debugnan); // Loads a scene, creating camera, geometry and assigning shaders parse_scene(); // validate options if (aa < 1) aa = 1; if (num_threads < 1) num_threads = boost::thread::hardware_concurrency(); // prepare background importance table (if requested) if (backgroundResolution > 0 && backgroundShaderID >= 0) { // get a context so we can make several background shader calls OSL::PerThreadInfo *thread_info = shadingsys->create_thread_info(); ShadingContext *ctx = shadingsys->get_context (thread_info); // build importance table to optimize background sampling background.prepare(backgroundResolution, eval_background, ctx); // release context shadingsys->release_context (ctx); shadingsys->destroy_thread_info(thread_info); } else { // we aren't directly evaluating the background backgroundResolution = 0; } double setuptime = timer.lap (); std::vector<Color3> pixels(xres * yres, Color3(0,0,0)); // Create shared counter to iterate over one scanline at a time Counter scanline_counter(errhandler, yres, "Rendering"); // launch a scanline worker for each thread boost::thread_group workers; for (int i = 0; i < num_threads; i++) workers.add_thread(new boost::thread(scanline_worker, boost::ref(scanline_counter), boost::ref(pixels))); workers.join_all(); // Write image to disk ImageOutput* out = ImageOutput::create(imagefile); ImageSpec spec(xres, yres, 3, TypeDesc::HALF); if (out && out->open(imagefile, spec)) { out->write_image(TypeDesc::TypeFloat, &pixels[0]); } else { errhandler.error("Unable to write output image"); } delete out; // Print some debugging info if (debug || stats) { double runtime = timer.lap(); std::cout << "\n"; std::cout << "Setup: " << OIIO::Strutil::timeintervalformat (setuptime,2) << "\n"; std::cout << "Run : " << OIIO::Strutil::timeintervalformat (runtime,2) << "\n"; std::cout << "\n"; std::cout << shadingsys->getstats (5) << "\n"; OIIO::TextureSystem *texturesys = shadingsys->texturesys(); if (texturesys) std::cout << texturesys->getstats (5) << "\n"; std::cout << ustring::getstats() << "\n"; } // We're done with the shading system now, destroy it shaders.clear (); // Must release the group refs first delete shadingsys; return EXIT_SUCCESS; }
bool SMT::save() { // Make sure we have some source images before continuing if( sourceFiles.size() == 0) { if( !quiet )cout << "ERROR: No source images to convert" << endl; return true; } // Build SMT Header // ////////////////////// char filename[256]; sprintf(filename, "%s.smt", outPrefix.c_str()); if( verbose ) printf("\nINFO: Creating %s\n", filename ); fstream smt( filename, ios::binary | ios::out ); if( !smt.good() ) { cout << "ERROR: fstream error." << endl; return true; } SMTHeader header; header.tileRes = tileRes; header.tileType = tileType; if( verbose ) { cout << " Version: " << header.version << endl; cout << " nTiles: n/a\n"; printf( " tileRes: (%i,%i)%i.\n", tileRes, tileRes, 4); cout << " tileType: "; if( tileType == DXT1 ) cout << "DXT1" << endl; cout << " tileSize: " << tileSize << " bytes" << endl; } smt.write( (char *)&header, sizeof(SMTHeader) ); smt.close(); // setup size for index dimensions int tcx = width * 16; // tile count x int tcz = length * 16; // tile count z unsigned int *indexPixels = new unsigned int[tcx * tcz]; // Load source image if( verbose )cout << "INFO: Loading Source Image(s)\n"; ImageBuf *bigBuf = buildBig(); ImageSpec bigSpec = bigBuf->spec(); // Process decals if( !decalFile.empty() ) { if( verbose )cout << "INFO: Processing decals\n"; pasteDecals( bigBuf ); } // Swizzle channels if( verbose )cout << "INFO: Swizzling channels\n"; ImageBuf fixBuf; int map[] = { 2, 1, 0, 3 }; ImageBufAlgo::channels( fixBuf, *bigBuf, 4, map ); bigBuf->copy( fixBuf ); fixBuf.clear(); // Process Tiles if( verbose )cout << "INFO: Processing tiles\n"; // Time reporting vars timeval t1, t2; double elapsedTime; deque<double> readings; double averageTime = 0; double intervalTime = 0; // Loop vars int totalTiles = tcx * tcz; int currentTile; // Tile Vars ROI roi; ImageSpec tileSpec(tileRes, tileRes, 4, TypeDesc::UINT8 ); // Comparison vars bool match; bool yee = false; unsigned int i; string hash; vector<string> hashTable; TileBufListEntry *listEntry; deque<TileBufListEntry *> tileList; // Open smt file for writing tiles smt.open(filename, ios::binary | ios::out | ios::app ); // loop through tile columns for ( int z = 0; z < tcz; z++) { // loop through tile rows for ( int x = 0; x < tcx; x++) { currentTile = z * tcx + x + 1; gettimeofday(&t1, NULL); // pull a region of the big image to use as a tile. roi.xbegin = x * tileRes; roi.xend = x * tileRes + tileRes; roi.ybegin = z * tileRes; roi.yend = z * tileRes + tileRes; roi.zbegin = 0; roi.zend = 1; roi.chbegin = 0; roi.chend = 4; ImageBuf tempBuf; ImageBufAlgo::crop( tempBuf, *bigBuf, roi ); ImageBuf *tileBuf = new ImageBuf( filename, tileSpec, tempBuf.localpixels() ); // reset match variables match = false; i = nTiles; if( cnum < 0) { // no attempt at reducing tile sizes i = nTiles; } else if( cnum == 0) { // only exact matches will be referenced. hash = ImageBufAlgo::computePixelHashSHA1( *tileBuf ); for( i = 0; i < hashTable.size(); ++i ) { if( !hashTable[i].compare( hash ) ) { match = true; break; } } if( !match ) hashTable.push_back( hash ); } else if( !yee ) { //Comparison based on numerical differences of pixels listEntry = new TileBufListEntry; listEntry->image.copy(*tileBuf); listEntry->tileNum = nTiles; ImageBufAlgo::CompareResults result; deque< TileBufListEntry * >::iterator it; for(it = tileList.begin(); it != tileList.end(); it++ ) { TileBufListEntry *listEntry2 = *it; ImageBufAlgo::compare( *tileBuf, listEntry2->image, cpet, 1.0f, result); //TODO give control on tweaking matching if((int)result.nfail < cnet) { match = true; i = listEntry2->tileNum; delete listEntry; break; } } if( !match ) { tileList.push_back(listEntry); if((int)tileList.size() > cnum) { delete tileList[0]; tileList.pop_front(); } } } else { //FIXME uncomment when OpenImageIO gets upgraded to v3 /* listEntry = new TileBufListEntry; listEntry->image.copy(*tileBuf); listEntry->tileNum = nTiles; ImageBufAlgo::CompareResults result; deque< TileBufListEntry * >::iterator it; for(it = tileList.begin(); it != tileList.end(); it++ ) { TileBufListEntry *listEntry2 = *it; ImageBufAlgo::compare_yee( *tileBuf, listEntry2->image, result, 1.0f, 1.0f ); if(result.nfail == 0) { match = true; i = listEntry2->tileNum; break; } } if( !match ) { tileList.push_back(listEntry); if((int)tileList.size() > 32) tileList.pop_front(); }*/ } // write tile to file. if( !match ) { unsigned char *std = (unsigned char *)tileBuf->localpixels(); // process into dds NVTTOutputHandler *nvttHandler = new NVTTOutputHandler(tileSize); nvtt::InputOptions inputOptions; inputOptions.setTextureLayout( nvtt::TextureType_2D, tileRes, tileRes ); inputOptions.setMipmapData( std, tileRes, tileRes ); nvtt::CompressionOptions compressionOptions; compressionOptions.setFormat(nvtt::Format_DXT1a); nvtt::OutputOptions outputOptions; outputOptions.setOutputHeader(false); outputOptions.setOutputHandler( nvttHandler ); nvtt::Compressor compressor; if( slow_dxt1 ) compressionOptions.setQuality(nvtt::Quality_Normal); else compressionOptions.setQuality(nvtt::Quality_Fastest); compressor.process(inputOptions, compressionOptions, outputOptions); smt.write( nvttHandler->buffer, tileSize ); delete nvttHandler; nTiles +=1; } delete tileBuf; // Write index to tilemap indexPixels[currentTile-1] = i; gettimeofday(&t2, NULL); // compute and print the elapsed time in millisec elapsedTime = (t2.tv_sec - t1.tv_sec) * 1000.0; // sec to ms elapsedTime += (t2.tv_usec - t1.tv_usec) / 1000.0; // us to ms readings.push_back(elapsedTime); if(readings.size() > 1000)readings.pop_front(); intervalTime += elapsedTime; if( verbose && intervalTime > 1 ) { for(unsigned int i = 0; i < readings.size(); ++i) averageTime+= readings[i]; averageTime /= readings.size(); intervalTime = 0; printf("\033[0G %i of %i %%%0.1f complete | %%%0.1f savings | %0.1fs remaining.", currentTile, totalTiles, (float)currentTile / totalTiles * 100, (float)(1 - (float)nTiles / (float)currentTile) * 100, averageTime * (totalTiles - currentTile) / 1000); } } } hashTable.clear(); if( verbose ) cout << endl; smt.close(); // retroactively fix up the tile count. smt.open(filename, ios::binary | ios::in | ios::out ); smt.seekp( 20); smt.write( (char *)&nTiles, 4); smt.close(); // Save tileindex ImageOutput *imageOutput; sprintf( filename, "%s_tilemap.exr", outPrefix.c_str() ); imageOutput = ImageOutput::create(filename); if( !imageOutput ) { delete [] indexPixels; return true; } ImageSpec tilemapSpec( tcx, tcz, 1, TypeDesc::UINT); imageOutput->open( filename, tilemapSpec ); imageOutput->write_image( TypeDesc::UINT, indexPixels ); imageOutput->close(); delete imageOutput; delete [] indexPixels; return false; }
// Function to write an image using OpenImageIO that reads and stores the pixel bein g displayed on screen using OpenGL void writeImage() { // Store the Output File Type in outfiletype, example .ppm or .jpg string outfiletype = outfilename.substr(outfilename.find(".")); // Create ImageOutput instance using the outfilename & exit if error in creating ImageOutput *out = ImageOutput::create(outfilename); if (!out) { cerr << "Could not create an ImageOutput for " << outfilename << "\nError: " << geterror()<<endl; exit(-1); } // Set outputchannels to 3 if outputfiletype is either ppm/pnm/pgm/pbm/hdr/rgbe else let it be equal to the number of channels of the input image (either 3 or 4) int outputchannels = (outfiletype==".ppm" || outfiletype==".pnm" || outfiletype==".pgm" || outfiletype==".pbm" || outfiletype==".hdr" || outfiletype==".rgbe" ? 3 : channels1 ); // Allocate memory based on the number of channels unsigned char *oiio_pixels = new unsigned char[xresWarped*yresWarped*outputchannels]; // Check if memory has been allocated successfully if (oiio_pixels==0) { // Memory not allocated successfully! Display message and Exit cout<<"Couldn't allocate memory. Exiting!"<<endl; exit(-1); delete out; } // If number of channels is 4 then read in RGBA format using GL_RGBA if(outputchannels==4) { for(int i=0, k=0; i<yresWarped && k<(xresWarped*yresWarped*outputchannels); i++) { for(int j=0; j<xresWarped; j++, k+=4) { oiio_pixels[k] = pixmapWarped[i][j].red; oiio_pixels[k+1] = pixmapWarped[i][j].green; oiio_pixels[k+2] = pixmapWarped[i][j].blue; oiio_pixels[k+3] = pixmapWarped[i][j].alpha; } } } // If number of channels is 3 then read in RGB format using GL_RGB else if(outputchannels==3) { for(int i=0, k=0; i<yresWarped && k<(xresWarped*yresWarped*outputchannels); i++) { for(int j=0; j<xresWarped; j++, k+=3) { oiio_pixels[k] = pixmapWarped[i][j].red; oiio_pixels[k+1] = pixmapWarped[i][j].green; oiio_pixels[k+2] = pixmapWarped[i][j].blue; } } } // Create ImageSpec for the output image with name outfile ImageSpec spec(xresWarped,yresWarped,outputchannels,TypeDesc::UINT8); if (! out->open (outfilename, spec)) { cerr << "Could not open " << outfilename << "\nError: " << out->geterror()<< endl; delete out; delete [] oiio_pixels; exit(-1); } // This particular call to write flips the image for us int scanlinesize = xresWarped * outputchannels * sizeof(oiio_pixels[0]); if(! out->write_image (TypeDesc::UINT8, (unsigned char*)oiio_pixels+(yresWarped-1)*scanlinesize, AutoStride, -scanlinesize, AutoStride)) { cerr << "Could not write pixels to " << outfilename << "\nError: " << out->geterror()<< endl; delete out; delete [] oiio_pixels; exit(-1); } // Close the output file if(! out->close ()) { std::cerr << "Error closing " << outfilename << "\nError: " << out->geterror() << endl; delete out; delete [] oiio_pixels; exit(-1); } delete out; delete [] oiio_pixels; }
static bool convert_file (const std::string &in_filename, const std::string &out_filename) { if (noclobber && Filesystem::exists(out_filename)) { std::cerr << "iconvert ERROR: Output file already exists \"" << out_filename << "\"\n"; return false; } if (verbose) std::cout << "Converting " << in_filename << " to " << out_filename << "\n"; std::string tempname = out_filename; if (tempname == in_filename) { tempname = out_filename + ".tmp" + Filesystem::extension (out_filename); } // Find an ImageIO plugin that can open the input file, and open it. ImageInput *in = ImageInput::open (in_filename.c_str()); if (! in) { std::string err = geterror(); std::cerr << "iconvert ERROR: " << (err.length() ? err : Strutil::format("Could not open \"%s\"", in_filename)) << "\n"; delete in; return false; } ImageSpec inspec = in->spec(); std::string metadatatime = inspec.get_string_attribute ("DateTime"); // Find an ImageIO plugin that can open the output file, and open it ImageOutput *out = ImageOutput::create (tempname.c_str()); if (! out) { std::cerr << "iconvert ERROR: Could not find an ImageIO plugin to write \"" << out_filename << "\" :" << geterror() << "\n"; delete in; return false; } // In order to deal with formats that support subimages, but not // subimage appending, we gather them all first. std::vector<ImageSpec> subimagespecs; if (out->supports("multiimage") && !out->supports("appendsubimage")) { ImageCache *imagecache = ImageCache::create (); int nsubimages = 0; ustring ufilename (in_filename); imagecache->get_image_info (ufilename, 0, 0, ustring("subimages"), TypeDesc::TypeInt, &nsubimages); if (nsubimages > 1) { subimagespecs.resize (nsubimages); for (int i = 0; i < nsubimages; ++i) { ImageSpec inspec = *imagecache->imagespec (ufilename, i, 0, true /*native*/); subimagespecs[i] = inspec; adjust_spec (in, out, inspec, subimagespecs[i]); } } ImageCache::destroy (imagecache); } bool ok = true; bool mip_to_subimage_warning = false; for (int subimage = 0; ok && in->seek_subimage(subimage,0,inspec); ++subimage) { if (subimage > 0 && !out->supports ("multiimage")) { std::cerr << "iconvert WARNING: " << out->format_name() << " does not support multiple subimages.\n"; std::cerr << "\tOnly the first subimage has been copied.\n"; break; // we're done } int miplevel = 0; do { // Copy the spec, with possible change in format ImageSpec outspec = inspec; bool nocopy = adjust_spec (in, out, inspec, outspec); if (miplevel > 0) { // Moving to next MIP level ImageOutput::OpenMode mode; if (out->supports ("mipmap")) mode = ImageOutput::AppendMIPLevel; else if (out->supports ("multiimage") && out->supports ("appendsubimage")) { mode = ImageOutput::AppendSubimage; // use if we must if (! mip_to_subimage_warning && strcmp(out->format_name(),"tiff")) { std::cerr << "iconvert WARNING: " << out->format_name() << " does not support MIPmaps.\n"; std::cerr << "\tStoring the MIPmap levels in subimages.\n"; } mip_to_subimage_warning = true; } else { std::cerr << "iconvert WARNING: " << out->format_name() << " does not support MIPmaps.\n"; std::cerr << "\tOnly the first level has been copied.\n"; break; // on to the next subimage } ok = out->open (tempname.c_str(), outspec, mode); } else if (subimage > 0) { // Moving to next subimage ok = out->open (tempname.c_str(), outspec, ImageOutput::AppendSubimage); } else { // First time opening if (subimagespecs.size()) ok = out->open (tempname.c_str(), int(subimagespecs.size()), &subimagespecs[0]); else ok = out->open (tempname.c_str(), outspec, ImageOutput::Create); } if (! ok) { std::string err = out->geterror(); std::cerr << "iconvert ERROR: " << (err.length() ? err : Strutil::format("Could not open \"%s\"", out_filename)) << "\n"; ok = false; break; } if (! nocopy) { ok = out->copy_image (in); if (! ok) std::cerr << "iconvert ERROR copying \"" << in_filename << "\" to \"" << out_filename << "\" :\n\t" << out->geterror() << "\n"; } else { // Need to do it by hand for some reason. Future expansion in which // only a subset of channels are copied, or some such. std::vector<char> pixels ((size_t)outspec.image_bytes(true)); ok = in->read_image (outspec.format, &pixels[0]); if (! ok) { std::cerr << "iconvert ERROR reading \"" << in_filename << "\" : " << in->geterror() << "\n"; } else { ok = out->write_image (outspec.format, &pixels[0]); if (! ok) std::cerr << "iconvert ERROR writing \"" << out_filename << "\" : " << out->geterror() << "\n"; } } ++miplevel; } while (ok && in->seek_subimage(subimage,miplevel,inspec)); } out->close (); delete out; in->close (); delete in; // Figure out a time for the input file -- either one supplied by // the metadata, or the actual time stamp of the input file. std::time_t in_time; if (metadatatime.empty() || ! DateTime_to_time_t (metadatatime.c_str(), in_time)) in_time = Filesystem::last_write_time (in_filename); if (out_filename != tempname) { if (ok) { Filesystem::remove (out_filename); Filesystem::rename (tempname, out_filename); } else Filesystem::remove (tempname); } // If user requested, try to adjust the file's modification time to // the creation time indicated by the file's DateTime metadata. if (ok && adjust_time) Filesystem::last_write_time (out_filename, in_time); return ok; }
OIIO_NAMESPACE_USING #include <algorithm> #include "Perlin.h" int main(int argc, char* argv[]) { try { options_description desc("Allowed options"); desc.add_options() ("help,h", "produce help message") ("xres,x", value<int>()->default_value(255), "x resolution") ("yres,y", value<int>()->default_value(255), "y resolution") ("sample-size,s", value<int>()->default_value(256), "sample size") ("seed,r", value<int>()->default_value(0), "psuedo-random seed") ("persistence,p", value<float>()->default_value(0.5f), "persistence value") ("octaves,o", value<int>()->default_value(2), "number of octaves") ; options_description hidden("Hidden options"); hidden.add_options() ("output-file", value<string>()->required(), "output file") ; options_description all("Allowed options"); all.add(desc).add(hidden); positional_options_description p; p.add("output-file", 1); variables_map vm; store(command_line_parser(argc, argv).options(all) .positional(p).run(), vm); if (vm.count("help")) { cout << "Usage: " << argv[0] << " [options] output-file" << endl; cout << desc << endl; return 0; } notify(vm); string outputfile = vm["output-file"].as<string>(); ImageOutput* out = ImageOutput::create(outputfile); if (!out) { cerr << "Could not create an ImageOutput for " << outputfile << ", error = " << OpenImageIO::geterror() << endl; return 0; } const int xres = vm["xres"].as<int>(); const int yres = vm["yres"].as<int>(); const int channels = 3; // RGB ImageSpec outspec(xres, yres, channels, TypeDesc::UINT8); if (!out->open(outputfile, outspec)) { cerr << "Could not open " << outputfile << ", error = " << out->geterror() << endl; ImageOutput::destroy(out); return 0; } const int sample_size = vm["sample-size"].as<int>(); const int seed = vm["seed"].as<int>(); Perlin perlin(sample_size, seed); float persistence = vm["persistence"].as<float>(); int octaves = vm["octaves"].as<int>(); unsigned char pixels[xres * yres * channels]; for (int y = 0; y < yres; y++) { for (int x = 0; x < xres; x++) { float frequency, amplitude; float total = 0.0f; for (int i = 1; i <= octaves; ++i) { frequency = pow(2.0f, i); amplitude = pow(persistence, i); total += (perlin.Noise2(frequency * x / sample_size, frequency * y / sample_size) + 1)/ 2.0f * amplitude; } total = min<float>(1.0f, max<float>(0.0f, total)); unsigned int noise = (unsigned int) (total * 255); pixels[y * xres * channels + x * channels] = noise; pixels[y * xres * channels + x * channels + 1] = noise; pixels[y * xres * channels + x * channels + 2] = noise; } } if (!out->write_image(TypeDesc::UINT8, pixels)) { cerr << "Could not write pixels to " << outputfile << ", error = " << out->geterror() << endl; ImageOutput::destroy(out); return 0; } ImageOutput::destroy(out); } catch (exception& e) { cerr << e.what() << endl; } }