MachineOperand
AMDGPUInstructionSelector::getSubOperand64(MachineOperand &MO,
                                           unsigned SubIdx) const {

  MachineInstr *MI = MO.getParent();
  MachineBasicBlock *BB = MO.getParent()->getParent();
  MachineFunction *MF = BB->getParent();
  MachineRegisterInfo &MRI = MF->getRegInfo();
  unsigned DstReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);

  if (MO.isReg()) {
    unsigned ComposedSubIdx = TRI.composeSubRegIndices(MO.getSubReg(), SubIdx);
    unsigned Reg = MO.getReg();
    BuildMI(*BB, MI, MI->getDebugLoc(), TII.get(AMDGPU::COPY), DstReg)
            .addReg(Reg, 0, ComposedSubIdx);

    return MachineOperand::CreateReg(DstReg, MO.isDef(), MO.isImplicit(),
                                     MO.isKill(), MO.isDead(), MO.isUndef(),
                                     MO.isEarlyClobber(), 0, MO.isDebug(),
                                     MO.isInternalRead());
  }

  assert(MO.isImm());

  APInt Imm(64, MO.getImm());

  switch (SubIdx) {
  default:
    llvm_unreachable("do not know to split immediate with this sub index.");
  case AMDGPU::sub0:
    return MachineOperand::CreateImm(Imm.getLoBits(32).getSExtValue());
  case AMDGPU::sub1:
    return MachineOperand::CreateImm(Imm.getHiBits(32).getSExtValue());
  }
}
Exemplo n.º 2
0
static bool updateOperand(FoldCandidate &Fold,
                          const TargetRegisterInfo &TRI) {
  MachineInstr *MI = Fold.UseMI;
  MachineOperand &Old = MI->getOperand(Fold.UseOpNo);
  assert(Old.isReg());

  if (Fold.isImm()) {
    Old.ChangeToImmediate(Fold.ImmToFold);
    return true;
  }

  if (Fold.isFI()) {
    Old.ChangeToFrameIndex(Fold.FrameIndexToFold);
    return true;
  }

  MachineOperand *New = Fold.OpToFold;
  if (TargetRegisterInfo::isVirtualRegister(Old.getReg()) &&
      TargetRegisterInfo::isVirtualRegister(New->getReg())) {
    Old.substVirtReg(New->getReg(), New->getSubReg(), TRI);

    Old.setIsUndef(New->isUndef());
    return true;
  }

  // FIXME: Handle physical registers.

  return false;
}
Exemplo n.º 3
0
/// Changes operand OpNum in MI the refer the PhysReg, considering subregs. This
/// may invalidate any operand pointers.  Return true if the operand kills its
/// register.
bool RegAllocFast::setPhysReg(MachineInstr &MI, MachineOperand &MO,
                              MCPhysReg PhysReg) {
  bool Dead = MO.isDead();
  if (!MO.getSubReg()) {
    MO.setReg(PhysReg);
    MO.setIsRenamable(true);
    return MO.isKill() || Dead;
  }

  // Handle subregister index.
  MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : 0);
  MO.setIsRenamable(true);
  MO.setSubReg(0);

  // A kill flag implies killing the full register. Add corresponding super
  // register kill.
  if (MO.isKill()) {
    MI.addRegisterKilled(PhysReg, TRI, true);
    return true;
  }

  // A <def,read-undef> of a sub-register requires an implicit def of the full
  // register.
  if (MO.isDef() && MO.isUndef())
    MI.addRegisterDefined(PhysReg, TRI);

  return Dead;
}
Exemplo n.º 4
0
void HexagonPeephole::ChangeOpInto(MachineOperand &Dst, MachineOperand &Src) {
  assert (&Dst != &Src && "Cannot duplicate into itself");
  switch (Dst.getType()) {
    case MachineOperand::MO_Register:
      if (Src.isReg()) {
        Dst.setReg(Src.getReg());
      } else if (Src.isImm()) {
        Dst.ChangeToImmediate(Src.getImm());
      } else {
        llvm_unreachable("Unexpected src operand type");
      }
      break;

    case MachineOperand::MO_Immediate:
      if (Src.isImm()) {
        Dst.setImm(Src.getImm());
      } else if (Src.isReg()) {
        Dst.ChangeToRegister(Src.getReg(), Src.isDef(), Src.isImplicit(),
                             Src.isKill(), Src.isDead(), Src.isUndef(),
                             Src.isDebug());
      } else {
        llvm_unreachable("Unexpected src operand type");
      }
      break;

    default:
      llvm_unreachable("Unexpected dst operand type");
      break;
  }
}
Exemplo n.º 5
0
/// Generate a predicated version of MI (where the condition is given via
/// PredR and Cond) at the point indicated by Where.
void HexagonExpandCondsets::predicateAt(const MachineOperand &DefOp,
                                        MachineInstr &MI,
                                        MachineBasicBlock::iterator Where,
                                        const MachineOperand &PredOp, bool Cond,
                                        std::set<unsigned> &UpdRegs) {
  // The problem with updating live intervals is that we can move one def
  // past another def. In particular, this can happen when moving an A2_tfrt
  // over an A2_tfrf defining the same register. From the point of view of
  // live intervals, these two instructions are two separate definitions,
  // and each one starts another live segment. LiveIntervals's "handleMove"
  // does not allow such moves, so we need to handle it ourselves. To avoid
  // invalidating liveness data while we are using it, the move will be
  // implemented in 4 steps: (1) add a clone of the instruction MI at the
  // target location, (2) update liveness, (3) delete the old instruction,
  // and (4) update liveness again.

  MachineBasicBlock &B = *MI.getParent();
  DebugLoc DL = Where->getDebugLoc();  // "Where" points to an instruction.
  unsigned Opc = MI.getOpcode();
  unsigned PredOpc = HII->getCondOpcode(Opc, !Cond);
  MachineInstrBuilder MB = BuildMI(B, Where, DL, HII->get(PredOpc));
  unsigned Ox = 0, NP = MI.getNumOperands();
  // Skip all defs from MI first.
  while (Ox < NP) {
    MachineOperand &MO = MI.getOperand(Ox);
    if (!MO.isReg() || !MO.isDef())
      break;
    Ox++;
  }
  // Add the new def, then the predicate register, then the rest of the
  // operands.
  MB.addReg(DefOp.getReg(), getRegState(DefOp), DefOp.getSubReg());
  MB.addReg(PredOp.getReg(), PredOp.isUndef() ? RegState::Undef : 0,
            PredOp.getSubReg());
  while (Ox < NP) {
    MachineOperand &MO = MI.getOperand(Ox);
    if (!MO.isReg() || !MO.isImplicit())
      MB.add(MO);
    Ox++;
  }

  MachineFunction &MF = *B.getParent();
  MachineInstr::mmo_iterator I = MI.memoperands_begin();
  unsigned NR = std::distance(I, MI.memoperands_end());
  MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(NR);
  for (unsigned i = 0; i < NR; ++i)
    MemRefs[i] = *I++;
  MB.setMemRefs(MemRefs, MemRefs+NR);

  MachineInstr *NewI = MB;
  NewI->clearKillInfo();
  LIS->InsertMachineInstrInMaps(*NewI);

  for (auto &Op : NewI->operands())
    if (Op.isReg())
      UpdRegs.insert(Op.getReg());
}
Exemplo n.º 6
0
static inline uint32_t getRegState(const MachineOperand &R) {
  assert(R.isReg());
  return getDefRegState(R.isDef()) |
         getImplRegState(R.isImplicit()) |
         getKillRegState(R.isKill()) |
         getDeadRegState(R.isDead()) |
         getUndefRegState(R.isUndef()) |
         getInternalReadRegState(R.isInternalRead()) |
         (R.isDebug() ? RegState::Debug : 0);
}
Exemplo n.º 7
0
void SILowerControlFlow::emitLoadM0FromVGPRLoop(MachineBasicBlock &LoopBB,
                                                DebugLoc DL,
                                                MachineInstr *MovRel,
                                                const MachineOperand &IdxReg,
                                                int Offset) {
  MachineBasicBlock::iterator I = LoopBB.begin();

  // Read the next variant into VCC (lower 32 bits) <- also loop target
  BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), AMDGPU::VCC_LO)
    .addReg(IdxReg.getReg(), getUndefRegState(IdxReg.isUndef()));

  // Move index from VCC into M0
  BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
    .addReg(AMDGPU::VCC_LO);

  // Compare the just read M0 value to all possible Idx values
  BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e32))
    .addReg(AMDGPU::M0)
    .addReg(IdxReg.getReg(), getUndefRegState(IdxReg.isUndef()));

  // Update EXEC, save the original EXEC value to VCC
  BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_AND_SAVEEXEC_B64), AMDGPU::VCC)
    .addReg(AMDGPU::VCC);

  if (Offset) {
    BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
      .addReg(AMDGPU::M0)
      .addImm(Offset);
  }

  // Do the actual move
  LoopBB.insert(I, MovRel);

  // Update EXEC, switch all done bits to 0 and all todo bits to 1
  BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_XOR_B64), AMDGPU::EXEC)
    .addReg(AMDGPU::EXEC)
    .addReg(AMDGPU::VCC);

  // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover
  BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
    .addMBB(&LoopBB);
}
Exemplo n.º 8
0
// Copy MachineOperand with all flags except setting it as implicit.
static void copyFlagsToImplicitVCC(MachineInstr &MI,
                                   const MachineOperand &Orig) {

  for (MachineOperand &Use : MI.implicit_operands()) {
    if (Use.getReg() == AMDGPU::VCC) {
      Use.setIsUndef(Orig.isUndef());
      Use.setIsKill(Orig.isKill());
      return;
    }
  }
}
Exemplo n.º 9
0
// Copy MachineOperand with all flags except setting it as implicit.
static MachineOperand copyRegOperandAsImplicit(const MachineOperand &Orig) {
  assert(!Orig.isImplicit());
  return MachineOperand::CreateReg(Orig.getReg(),
                                   Orig.isDef(),
                                   true,
                                   Orig.isKill(),
                                   Orig.isDead(),
                                   Orig.isUndef(),
                                   Orig.isEarlyClobber(),
                                   Orig.getSubReg(),
                                   Orig.isDebug(),
                                   Orig.isInternalRead());
}
Exemplo n.º 10
0
// Return true if a new block was inserted.
bool SILowerControlFlow::indirectDst(MachineInstr &MI) {
  MachineBasicBlock &MBB = *MI.getParent();
  DebugLoc DL = MI.getDebugLoc();

  unsigned Dst = MI.getOperand(0).getReg();
  int Off = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
  MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val);
  unsigned Reg;

  std::tie(Reg, Off) = computeIndirectRegAndOffset(Dst, Off);

  MachineInstr *MovRel =
    BuildMI(*MBB.getParent(), DL, TII->get(AMDGPU::V_MOVRELD_B32_e32))
    .addReg(Reg, RegState::Define)
    .addReg(Val->getReg(), getUndefRegState(Val->isUndef()))
    .addReg(Dst, RegState::Implicit);

  return loadM0(MI, MovRel, Off);
}
Exemplo n.º 11
0
// All currently live registers must remain so in the remainder block.
void SILowerControlFlow::splitBlockLiveIns(const MachineBasicBlock &MBB,
                                           const MachineInstr &MI,
                                           MachineBasicBlock &LoopBB,
                                           MachineBasicBlock &RemainderBB,
                                           unsigned SaveReg,
                                           const MachineOperand &IdxReg) {
  LivePhysRegs RemainderLiveRegs(TRI);

  RemainderLiveRegs.addLiveOuts(MBB);
  for (MachineBasicBlock::const_reverse_iterator I = MBB.rbegin(), E(&MI);
       I != E; ++I) {
    RemainderLiveRegs.stepBackward(*I);
  }

  // Add reg defined in loop body.
  RemainderLiveRegs.addReg(SaveReg);

  if (const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val)) {
    if (!Val->isUndef()) {
      RemainderLiveRegs.addReg(Val->getReg());
      LoopBB.addLiveIn(Val->getReg());
    }
  }

  const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
  for (unsigned Reg : RemainderLiveRegs) {
    if (MRI.isAllocatable(Reg))
      RemainderBB.addLiveIn(Reg);
  }


  const MachineOperand *Src = TII->getNamedOperand(MI, AMDGPU::OpName::src);
  if (!Src->isUndef())
    LoopBB.addLiveIn(Src->getReg());

  if (!IdxReg.isUndef())
    LoopBB.addLiveIn(IdxReg.getReg());
  LoopBB.sortUniqueLiveIns();
}
Exemplo n.º 12
0
/// Returns true if the given machine operand \p MO only reads undefined lanes.
/// The function only works for use operands with a subregister set.
bool VirtRegRewriter::readsUndefSubreg(const MachineOperand &MO) const {
  // Shortcut if the operand is already marked undef.
  if (MO.isUndef())
    return true;

  unsigned Reg = MO.getReg();
  const LiveInterval &LI = LIS->getInterval(Reg);
  const MachineInstr &MI = *MO.getParent();
  SlotIndex BaseIndex = LIS->getInstructionIndex(MI);
  // This code is only meant to handle reading undefined subregisters which
  // we couldn't properly detect before.
  assert(LI.liveAt(BaseIndex) &&
         "Reads of completely dead register should be marked undef already");
  unsigned SubRegIdx = MO.getSubReg();
  LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(SubRegIdx);
  // See if any of the relevant subregister liveranges is defined at this point.
  for (const LiveInterval::SubRange &SR : LI.subranges()) {
    if ((SR.LaneMask & UseMask) != 0 && SR.liveAt(BaseIndex))
      return false;
  }
  return true;
}
Exemplo n.º 13
0
void MIPrinter::print(const MachineOperand &Op, const TargetRegisterInfo *TRI) {
    switch (Op.getType()) {
    case MachineOperand::MO_Register:
        // TODO: Print the other register flags.
        if (Op.isImplicit())
            OS << (Op.isDef() ? "implicit-def " : "implicit ");
        if (Op.isDead())
            OS << "dead ";
        if (Op.isKill())
            OS << "killed ";
        if (Op.isUndef())
            OS << "undef ";
        printReg(Op.getReg(), OS, TRI);
        // TODO: Print sub register.
        break;
    case MachineOperand::MO_Immediate:
        OS << Op.getImm();
        break;
    case MachineOperand::MO_MachineBasicBlock:
        printMBBReference(*Op.getMBB());
        break;
    case MachineOperand::MO_GlobalAddress:
        Op.getGlobal()->printAsOperand(OS, /*PrintType=*/false, MST);
        // TODO: Print offset and target flags.
        break;
    case MachineOperand::MO_RegisterMask: {
        auto RegMaskInfo = RegisterMaskIds.find(Op.getRegMask());
        if (RegMaskInfo != RegisterMaskIds.end())
            OS << StringRef(TRI->getRegMaskNames()[RegMaskInfo->second]).lower();
        else
            llvm_unreachable("Can't print this machine register mask yet.");
        break;
    }
    default:
        // TODO: Print the other machine operands.
        llvm_unreachable("Can't print this machine operand at the moment");
    }
}
Exemplo n.º 14
0
void RegAllocFast::allocVirtRegUndef(MachineOperand &MO) {
  assert(MO.isUndef() && "expected undef use");
  unsigned VirtReg = MO.getReg();
  assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && "Expected virtreg");

  LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg);
  MCPhysReg PhysReg;
  if (LRI != LiveVirtRegs.end() && LRI->PhysReg) {
    PhysReg = LRI->PhysReg;
  } else {
    const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
    ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
    assert(!AllocationOrder.empty() && "Allocation order must not be empty");
    PhysReg = AllocationOrder[0];
  }

  unsigned SubRegIdx = MO.getSubReg();
  if (SubRegIdx != 0) {
    PhysReg = TRI->getSubReg(PhysReg, SubRegIdx);
    MO.setSubReg(0);
  }
  MO.setReg(PhysReg);
  MO.setIsRenamable(true);
}
Exemplo n.º 15
0
/// ExpandLaneOp - Translate VLD*LN and VST*LN instructions with Q, QQ or QQQQ
/// register operands to real instructions with D register operands.
void ARMExpandPseudo::ExpandLaneOp(MachineBasicBlock::iterator &MBBI) {
    MachineInstr &MI = *MBBI;
    MachineBasicBlock &MBB = *MI.getParent();

    const NEONLdStTableEntry *TableEntry = LookupNEONLdSt(MI.getOpcode());
    assert(TableEntry && "NEONLdStTable lookup failed");
    NEONRegSpacing RegSpc = TableEntry->RegSpacing;
    unsigned NumRegs = TableEntry->NumRegs;
    unsigned RegElts = TableEntry->RegElts;

    MachineInstrBuilder MIB = BuildMI(MBB, MBBI, MI.getDebugLoc(),
                                      TII->get(TableEntry->RealOpc));
    unsigned OpIdx = 0;
    // The lane operand is always the 3rd from last operand, before the 2
    // predicate operands.
    unsigned Lane = MI.getOperand(MI.getDesc().getNumOperands() - 3).getImm();

    // Adjust the lane and spacing as needed for Q registers.
    assert(RegSpc != OddDblSpc && "unexpected register spacing for VLD/VST-lane");
    if (RegSpc == EvenDblSpc && Lane >= RegElts) {
        RegSpc = OddDblSpc;
        Lane -= RegElts;
    }
    assert(Lane < RegElts && "out of range lane for VLD/VST-lane");

    unsigned D0, D1, D2, D3;
    unsigned DstReg = 0;
    bool DstIsDead = false;
    if (TableEntry->IsLoad) {
        DstIsDead = MI.getOperand(OpIdx).isDead();
        DstReg = MI.getOperand(OpIdx++).getReg();
        GetDSubRegs(DstReg, RegSpc, TRI, D0, D1, D2, D3);
        MIB.addReg(D0, RegState::Define | getDeadRegState(DstIsDead))
        .addReg(D1, RegState::Define | getDeadRegState(DstIsDead));
        if (NumRegs > 2)
            MIB.addReg(D2, RegState::Define | getDeadRegState(DstIsDead));
        if (NumRegs > 3)
            MIB.addReg(D3, RegState::Define | getDeadRegState(DstIsDead));
    }

    if (TableEntry->HasWriteBack)
        MIB.addOperand(MI.getOperand(OpIdx++));

    // Copy the addrmode6 operands.
    MIB.addOperand(MI.getOperand(OpIdx++));
    MIB.addOperand(MI.getOperand(OpIdx++));
    // Copy the am6offset operand.
    if (TableEntry->HasWriteBack)
        MIB.addOperand(MI.getOperand(OpIdx++));

    // Grab the super-register source.
    MachineOperand MO = MI.getOperand(OpIdx++);
    if (!TableEntry->IsLoad)
        GetDSubRegs(MO.getReg(), RegSpc, TRI, D0, D1, D2, D3);

    // Add the subregs as sources of the new instruction.
    unsigned SrcFlags = (getUndefRegState(MO.isUndef()) |
                         getKillRegState(MO.isKill()));
    MIB.addReg(D0, SrcFlags).addReg(D1, SrcFlags);
    if (NumRegs > 2)
        MIB.addReg(D2, SrcFlags);
    if (NumRegs > 3)
        MIB.addReg(D3, SrcFlags);

    // Add the lane number operand.
    MIB.addImm(Lane);
    OpIdx += 1;

    // Copy the predicate operands.
    MIB.addOperand(MI.getOperand(OpIdx++));
    MIB.addOperand(MI.getOperand(OpIdx++));

    // Copy the super-register source to be an implicit source.
    MO.setImplicit(true);
    MIB.addOperand(MO);
    if (TableEntry->IsLoad)
        // Add an implicit def for the super-register.
        MIB.addReg(DstReg, RegState::ImplicitDefine | getDeadRegState(DstIsDead));
    TransferImpOps(MI, MIB, MIB);
    MI.eraseFromParent();
}
Exemplo n.º 16
0
// If the use operand doesn't care about the value, this may be an operand only
// used for register indexing, in which case it is unsafe to fold.
static bool isUseSafeToFold(const SIInstrInfo *TII,
                            const MachineInstr &MI,
                            const MachineOperand &UseMO) {
  return !UseMO.isUndef() && !TII->isSDWA(MI);
  //return !MI.hasRegisterImplicitUseOperand(UseMO.getReg());
}
Exemplo n.º 17
0
// If the use operand doesn't care about the value, this may be an operand only
// used for register indexing, in which case it is unsafe to fold.
static bool isUseSafeToFold(const MachineInstr &MI,
                            const MachineOperand &UseMO) {
  return !UseMO.isUndef();
  //return !MI.hasRegisterImplicitUseOperand(UseMO.getReg());
}
Exemplo n.º 18
0
void MIPrinter::print(const MachineOperand &Op, const TargetRegisterInfo *TRI) {
  printTargetFlags(Op);
  switch (Op.getType()) {
  case MachineOperand::MO_Register:
    // TODO: Print the other register flags.
    if (Op.isImplicit())
      OS << (Op.isDef() ? "implicit-def " : "implicit ");
    if (Op.isDead())
      OS << "dead ";
    if (Op.isKill())
      OS << "killed ";
    if (Op.isUndef())
      OS << "undef ";
    if (Op.isEarlyClobber())
      OS << "early-clobber ";
    if (Op.isDebug())
      OS << "debug-use ";
    printReg(Op.getReg(), OS, TRI);
    // Print the sub register.
    if (Op.getSubReg() != 0)
      OS << ':' << TRI->getSubRegIndexName(Op.getSubReg());
    break;
  case MachineOperand::MO_Immediate:
    OS << Op.getImm();
    break;
  case MachineOperand::MO_CImmediate:
    Op.getCImm()->printAsOperand(OS, /*PrintType=*/true, MST);
    break;
  case MachineOperand::MO_FPImmediate:
    Op.getFPImm()->printAsOperand(OS, /*PrintType=*/true, MST);
    break;
  case MachineOperand::MO_MachineBasicBlock:
    printMBBReference(*Op.getMBB());
    break;
  case MachineOperand::MO_FrameIndex:
    printStackObjectReference(Op.getIndex());
    break;
  case MachineOperand::MO_ConstantPoolIndex:
    OS << "%const." << Op.getIndex();
    printOffset(Op.getOffset());
    break;
  case MachineOperand::MO_TargetIndex: {
    OS << "target-index(";
    if (const auto *Name = getTargetIndexName(
            *Op.getParent()->getParent()->getParent(), Op.getIndex()))
      OS << Name;
    else
      OS << "<unknown>";
    OS << ')';
    printOffset(Op.getOffset());
    break;
  }
  case MachineOperand::MO_JumpTableIndex:
    OS << "%jump-table." << Op.getIndex();
    break;
  case MachineOperand::MO_ExternalSymbol:
    OS << '$';
    printLLVMNameWithoutPrefix(OS, Op.getSymbolName());
    printOffset(Op.getOffset());
    break;
  case MachineOperand::MO_GlobalAddress:
    Op.getGlobal()->printAsOperand(OS, /*PrintType=*/false, MST);
    printOffset(Op.getOffset());
    break;
  case MachineOperand::MO_BlockAddress:
    OS << "blockaddress(";
    Op.getBlockAddress()->getFunction()->printAsOperand(OS, /*PrintType=*/false,
                                                        MST);
    OS << ", ";
    printIRBlockReference(*Op.getBlockAddress()->getBasicBlock());
    OS << ')';
    printOffset(Op.getOffset());
    break;
  case MachineOperand::MO_RegisterMask: {
    auto RegMaskInfo = RegisterMaskIds.find(Op.getRegMask());
    if (RegMaskInfo != RegisterMaskIds.end())
      OS << StringRef(TRI->getRegMaskNames()[RegMaskInfo->second]).lower();
    else
      llvm_unreachable("Can't print this machine register mask yet.");
    break;
  }
  case MachineOperand::MO_Metadata:
    Op.getMetadata()->printAsOperand(OS, MST);
    break;
  case MachineOperand::MO_CFIIndex: {
    const auto &MMI = Op.getParent()->getParent()->getParent()->getMMI();
    print(MMI.getFrameInstructions()[Op.getCFIIndex()], TRI);
    break;
  }
  default:
    // TODO: Print the other machine operands.
    llvm_unreachable("Can't print this machine operand at the moment");
  }
}
Exemplo n.º 19
0
/// Handle the direct use of a physical register.  Check that the register is
/// not used by a virtreg. Kill the physreg, marking it free. This may add
/// implicit kills to MO->getParent() and invalidate MO.
void RegAllocFast::usePhysReg(MachineOperand &MO) {
  // Ignore undef uses.
  if (MO.isUndef())
    return;

  unsigned PhysReg = MO.getReg();
  assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) &&
         "Bad usePhysReg operand");

  markRegUsedInInstr(PhysReg);
  switch (PhysRegState[PhysReg]) {
  case regDisabled:
    break;
  case regReserved:
    PhysRegState[PhysReg] = regFree;
    LLVM_FALLTHROUGH;
  case regFree:
    MO.setIsKill();
    return;
  default:
    // The physreg was allocated to a virtual register. That means the value we
    // wanted has been clobbered.
    llvm_unreachable("Instruction uses an allocated register");
  }

  // Maybe a superregister is reserved?
  for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
    MCPhysReg Alias = *AI;
    switch (PhysRegState[Alias]) {
    case regDisabled:
      break;
    case regReserved:
      // Either PhysReg is a subregister of Alias and we mark the
      // whole register as free, or PhysReg is the superregister of
      // Alias and we mark all the aliases as disabled before freeing
      // PhysReg.
      // In the latter case, since PhysReg was disabled, this means that
      // its value is defined only by physical sub-registers. This check
      // is performed by the assert of the default case in this loop.
      // Note: The value of the superregister may only be partial
      // defined, that is why regDisabled is a valid state for aliases.
      assert((TRI->isSuperRegister(PhysReg, Alias) ||
              TRI->isSuperRegister(Alias, PhysReg)) &&
             "Instruction is not using a subregister of a reserved register");
      LLVM_FALLTHROUGH;
    case regFree:
      if (TRI->isSuperRegister(PhysReg, Alias)) {
        // Leave the superregister in the working set.
        setPhysRegState(Alias, regFree);
        MO.getParent()->addRegisterKilled(Alias, TRI, true);
        return;
      }
      // Some other alias was in the working set - clear it.
      setPhysRegState(Alias, regDisabled);
      break;
    default:
      llvm_unreachable("Instruction uses an alias of an allocated register");
    }
  }

  // All aliases are disabled, bring register into working set.
  setPhysRegState(PhysReg, regFree);
  MO.setIsKill();
}
Exemplo n.º 20
0
void MIPrinter::print(const MachineOperand &Op, const TargetRegisterInfo *TRI,
                      unsigned I, bool ShouldPrintRegisterTies, bool IsDef) {
  printTargetFlags(Op);
  switch (Op.getType()) {
  case MachineOperand::MO_Register:
    if (Op.isImplicit())
      OS << (Op.isDef() ? "implicit-def " : "implicit ");
    else if (!IsDef && Op.isDef())
      // Print the 'def' flag only when the operand is defined after '='.
      OS << "def ";
    if (Op.isInternalRead())
      OS << "internal ";
    if (Op.isDead())
      OS << "dead ";
    if (Op.isKill())
      OS << "killed ";
    if (Op.isUndef())
      OS << "undef ";
    if (Op.isEarlyClobber())
      OS << "early-clobber ";
    if (Op.isDebug())
      OS << "debug-use ";
    printReg(Op.getReg(), OS, TRI);
    // Print the sub register.
    if (Op.getSubReg() != 0)
      OS << ':' << TRI->getSubRegIndexName(Op.getSubReg());
    if (ShouldPrintRegisterTies && Op.isTied() && !Op.isDef())
      OS << "(tied-def " << Op.getParent()->findTiedOperandIdx(I) << ")";
    break;
  case MachineOperand::MO_Immediate:
    OS << Op.getImm();
    break;
  case MachineOperand::MO_CImmediate:
    Op.getCImm()->printAsOperand(OS, /*PrintType=*/true, MST);
    break;
  case MachineOperand::MO_FPImmediate:
    Op.getFPImm()->printAsOperand(OS, /*PrintType=*/true, MST);
    break;
  case MachineOperand::MO_MachineBasicBlock:
    printMBBReference(*Op.getMBB());
    break;
  case MachineOperand::MO_FrameIndex:
    printStackObjectReference(Op.getIndex());
    break;
  case MachineOperand::MO_ConstantPoolIndex:
    OS << "%const." << Op.getIndex();
    printOffset(Op.getOffset());
    break;
  case MachineOperand::MO_TargetIndex: {
    OS << "target-index(";
    if (const auto *Name = getTargetIndexName(
            *Op.getParent()->getParent()->getParent(), Op.getIndex()))
      OS << Name;
    else
      OS << "<unknown>";
    OS << ')';
    printOffset(Op.getOffset());
    break;
  }
  case MachineOperand::MO_JumpTableIndex:
    OS << "%jump-table." << Op.getIndex();
    break;
  case MachineOperand::MO_ExternalSymbol:
    OS << '$';
    printLLVMNameWithoutPrefix(OS, Op.getSymbolName());
    printOffset(Op.getOffset());
    break;
  case MachineOperand::MO_GlobalAddress:
    Op.getGlobal()->printAsOperand(OS, /*PrintType=*/false, MST);
    printOffset(Op.getOffset());
    break;
  case MachineOperand::MO_BlockAddress:
    OS << "blockaddress(";
    Op.getBlockAddress()->getFunction()->printAsOperand(OS, /*PrintType=*/false,
                                                        MST);
    OS << ", ";
    printIRBlockReference(*Op.getBlockAddress()->getBasicBlock());
    OS << ')';
    printOffset(Op.getOffset());
    break;
  case MachineOperand::MO_RegisterMask: {
    auto RegMaskInfo = RegisterMaskIds.find(Op.getRegMask());
    if (RegMaskInfo != RegisterMaskIds.end())
      OS << StringRef(TRI->getRegMaskNames()[RegMaskInfo->second]).lower();
    else
      llvm_unreachable("Can't print this machine register mask yet.");
    break;
  }
  case MachineOperand::MO_RegisterLiveOut: {
    const uint32_t *RegMask = Op.getRegLiveOut();
    OS << "liveout(";
    bool IsCommaNeeded = false;
    for (unsigned Reg = 0, E = TRI->getNumRegs(); Reg < E; ++Reg) {
      if (RegMask[Reg / 32] & (1U << (Reg % 32))) {
        if (IsCommaNeeded)
          OS << ", ";
        printReg(Reg, OS, TRI);
        IsCommaNeeded = true;
      }
    }
    OS << ")";
    break;
  }
  case MachineOperand::MO_Metadata:
    Op.getMetadata()->printAsOperand(OS, MST);
    break;
  case MachineOperand::MO_MCSymbol:
    OS << "<mcsymbol " << *Op.getMCSymbol() << ">";
    break;
  case MachineOperand::MO_CFIIndex: {
    const auto &MMI = Op.getParent()->getParent()->getParent()->getMMI();
    print(MMI.getFrameInstructions()[Op.getCFIIndex()], TRI);
    break;
  }
  }
}
Exemplo n.º 21
0
void MIPrinter::print(const MachineOperand &Op, const TargetRegisterInfo *TRI,
                      unsigned I, bool ShouldPrintRegisterTies, LLT TypeToPrint,
                      bool IsDef) {
  printTargetFlags(Op);
  switch (Op.getType()) {
  case MachineOperand::MO_Register:
    if (Op.isImplicit())
      OS << (Op.isDef() ? "implicit-def " : "implicit ");
    else if (!IsDef && Op.isDef())
      // Print the 'def' flag only when the operand is defined after '='.
      OS << "def ";
    if (Op.isInternalRead())
      OS << "internal ";
    if (Op.isDead())
      OS << "dead ";
    if (Op.isKill())
      OS << "killed ";
    if (Op.isUndef())
      OS << "undef ";
    if (Op.isEarlyClobber())
      OS << "early-clobber ";
    if (Op.isDebug())
      OS << "debug-use ";
    printReg(Op.getReg(), OS, TRI);
    // Print the sub register.
    if (Op.getSubReg() != 0)
      OS << '.' << TRI->getSubRegIndexName(Op.getSubReg());
    if (ShouldPrintRegisterTies && Op.isTied() && !Op.isDef())
      OS << "(tied-def " << Op.getParent()->findTiedOperandIdx(I) << ")";
    if (TypeToPrint.isValid())
      OS << '(' << TypeToPrint << ')';
    break;
  case MachineOperand::MO_Immediate:
    OS << Op.getImm();
    break;
  case MachineOperand::MO_CImmediate:
    Op.getCImm()->printAsOperand(OS, /*PrintType=*/true, MST);
    break;
  case MachineOperand::MO_FPImmediate:
    Op.getFPImm()->printAsOperand(OS, /*PrintType=*/true, MST);
    break;
  case MachineOperand::MO_MachineBasicBlock:
    printMBBReference(*Op.getMBB());
    break;
  case MachineOperand::MO_FrameIndex:
    printStackObjectReference(Op.getIndex());
    break;
  case MachineOperand::MO_ConstantPoolIndex:
    OS << "%const." << Op.getIndex();
    printOffset(Op.getOffset());
    break;
  case MachineOperand::MO_TargetIndex:
    OS << "target-index(";
    if (const auto *Name = getTargetIndexName(
            *Op.getParent()->getParent()->getParent(), Op.getIndex()))
      OS << Name;
    else
      OS << "<unknown>";
    OS << ')';
    printOffset(Op.getOffset());
    break;
  case MachineOperand::MO_JumpTableIndex:
    OS << "%jump-table." << Op.getIndex();
    break;
  case MachineOperand::MO_ExternalSymbol: {
    StringRef Name = Op.getSymbolName();
    OS << '$';
    if (Name.empty()) {
      OS << "\"\"";
    } else {
      printLLVMNameWithoutPrefix(OS, Name);
    }
    printOffset(Op.getOffset());
    break;
  }
  case MachineOperand::MO_GlobalAddress:
    Op.getGlobal()->printAsOperand(OS, /*PrintType=*/false, MST);
    printOffset(Op.getOffset());
    break;
  case MachineOperand::MO_BlockAddress:
    OS << "blockaddress(";
    Op.getBlockAddress()->getFunction()->printAsOperand(OS, /*PrintType=*/false,
                                                        MST);
    OS << ", ";
    printIRBlockReference(*Op.getBlockAddress()->getBasicBlock());
    OS << ')';
    printOffset(Op.getOffset());
    break;
  case MachineOperand::MO_RegisterMask: {
    auto RegMaskInfo = RegisterMaskIds.find(Op.getRegMask());
    if (RegMaskInfo != RegisterMaskIds.end())
      OS << StringRef(TRI->getRegMaskNames()[RegMaskInfo->second]).lower();
    else
      printCustomRegMask(Op.getRegMask(), OS, TRI);
    break;
  }
  case MachineOperand::MO_RegisterLiveOut: {
    const uint32_t *RegMask = Op.getRegLiveOut();
    OS << "liveout(";
    bool IsCommaNeeded = false;
    for (unsigned Reg = 0, E = TRI->getNumRegs(); Reg < E; ++Reg) {
      if (RegMask[Reg / 32] & (1U << (Reg % 32))) {
        if (IsCommaNeeded)
          OS << ", ";
        printReg(Reg, OS, TRI);
        IsCommaNeeded = true;
      }
    }
    OS << ")";
    break;
  }
  case MachineOperand::MO_Metadata:
    Op.getMetadata()->printAsOperand(OS, MST);
    break;
  case MachineOperand::MO_MCSymbol:
    OS << "<mcsymbol " << *Op.getMCSymbol() << ">";
    break;
  case MachineOperand::MO_CFIIndex: {
    const MachineFunction &MF = *Op.getParent()->getParent()->getParent();
    print(MF.getFrameInstructions()[Op.getCFIIndex()], TRI);
    break;
  }
  case MachineOperand::MO_IntrinsicID: {
    Intrinsic::ID ID = Op.getIntrinsicID();
    if (ID < Intrinsic::num_intrinsics)
      OS << "intrinsic(@" << Intrinsic::getName(ID, None) << ')';
    else {
      const MachineFunction &MF = *Op.getParent()->getParent()->getParent();
      const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo();
      OS << "intrinsic(@" << TII->getName(ID) << ')';
    }
    break;
  }
  case MachineOperand::MO_Predicate: {
    auto Pred = static_cast<CmpInst::Predicate>(Op.getPredicate());
    OS << (CmpInst::isIntPredicate(Pred) ? "int" : "float") << "pred("
       << CmpInst::getPredicateName(Pred) << ')';
    break;
  }
  }
}