Int main(int argc, const char ** argv)
{
  if (argc < 2) return 1;
  // the path to the data should be given on the command line
  String tutorial_data_path(argv[1]);
  
  QApplication app(argc, const_cast<char **>(argv));

  PeakMap exp;
  exp.resize(1);
  DTAFile().load(tutorial_data_path + "/data/Tutorial_Spectrum1D.dta", exp[0]);
  LayerData::ExperimentSharedPtrType exp_sptr(new PeakMap(exp));
  Spectrum1DWidget * widget = new Spectrum1DWidget(Param(), 0);
  widget->canvas()->addLayer(exp_sptr);
  widget->show();

  return app.exec();
} //end of main
Exemplo n.º 2
0
  /**
  @brief Applies the peak-picking algorithm to a map (MSExperiment). This
  method picks peaks for each scan in the map consecutively. The resulting
  picked peaks are written to the output map.

  Currently we have to give up const-correctness but we know that everything on disc is constant
  */
  void PeakPickerHiRes::pickExperiment(/* const */ OnDiscMSExperiment& input, PeakMap& output, const bool check_spectrum_type) const
  {
    // make sure that output is clear
    output.clear(true);

    // copy experimental settings
    static_cast<ExperimentalSettings &>(output) = *input.getExperimentalSettings();

    Size progress = 0;
    startProgress(0, input.size() + input.getNrChromatograms(), "picking peaks");

    // resize output with respect to input
    output.resize(input.size());

    if (input.getNrSpectra() > 0)
    {
      for (Size scan_idx = 0; scan_idx != input.size(); ++scan_idx)
      {
        if (ms_levels_.empty()) //auto mode
        {
          MSSpectrum s = input[scan_idx];
          s.sortByPosition();

          // determine type of spectral data (profile or centroided)
          SpectrumSettings::SpectrumType spectrumType = s.getType();
          if (spectrumType == SpectrumSettings::CENTROID)
          {
            output[scan_idx] = input[scan_idx];
          }
          else
          {
            pick(s, output[scan_idx]);
          }
        }
        else if (!ListUtils::contains(ms_levels_, input[scan_idx].getMSLevel())) // manual mode
        {
          output[scan_idx] = input[scan_idx];
        }
        else
        {
          MSSpectrum s = input[scan_idx];
          s.sortByPosition();

          // determine type of spectral data (profile or centroided)
          SpectrumSettings::SpectrumType spectrum_type = s.getType();

          if (spectrum_type == SpectrumSettings::CENTROID && check_spectrum_type)
          {
            throw OpenMS::Exception::IllegalArgument(__FILE__, __LINE__, __FUNCTION__, "Error: Centroided data provided but profile spectra expected.");
          }

          pick(s, output[scan_idx]);
        }
        setProgress(++progress);
      }
    }

    for (Size i = 0; i < input.getNrChromatograms(); ++i)
    {
      MSChromatogram chromatogram;
      pick(input.getChromatogram(i), chromatogram);
      output.addChromatogram(chromatogram);
      setProgress(++progress);
    }
    endProgress();

    return;
  }
Exemplo n.º 3
0
  /**
  * @brief Applies the peak-picking algorithm to a map (MSExperiment). This
  * method picks peaks for each scan in the map consecutively. The resulting
  * picked peaks are written to the output map.
  *
  * @param input  input map in profile mode
  * @param output  output map with picked peaks
  * @param boundaries_spec  boundaries of the picked peaks in spectra
  * @param boundaries_chrom  boundaries of the picked peaks in chromatograms
  * @param check_spectrum_type  if set, checks spectrum type and throws an exception if a centroided spectrum is passed 
  */
  void PeakPickerHiRes::pickExperiment(const PeakMap& input, PeakMap& output, 
                                       std::vector<std::vector<PeakBoundary> >& boundaries_spec, 
                                       std::vector<std::vector<PeakBoundary> >& boundaries_chrom,
                                       const bool check_spectrum_type) const
  {
    // make sure that output is clear
    output.clear(true);

    // copy experimental settings
    static_cast<ExperimentalSettings &>(output) = input;

    // resize output with respect to input
    output.resize(input.size());

    Size progress = 0;
    startProgress(0, input.size() + input.getChromatograms().size(), "picking peaks");

    if (input.getNrSpectra() > 0)
    {
      for (Size scan_idx = 0; scan_idx != input.size(); ++scan_idx)
      {
        if (ms_levels_.empty()) // auto mode
        {
          SpectrumSettings::SpectrumType spectrum_type = input[scan_idx].getType();
          if (spectrum_type == SpectrumSettings::CENTROID)
          {
            output[scan_idx] = input[scan_idx];
          }
          else
          {
            std::vector<PeakBoundary> boundaries_s; // peak boundaries of a single spectrum

            pick(input[scan_idx], output[scan_idx], boundaries_s);
            boundaries_spec.push_back(boundaries_s);
          }
        }
        else if (!ListUtils::contains(ms_levels_, input[scan_idx].getMSLevel())) // manual mode
        {
          output[scan_idx] = input[scan_idx];
        }
        else
        {
          std::vector<PeakBoundary> boundaries_s; // peak boundaries of a single spectrum

                                                  // determine type of spectral data (profile or centroided)
          SpectrumSettings::SpectrumType spectrum_type = input[scan_idx].getType();

          if (spectrum_type == SpectrumSettings::CENTROID && check_spectrum_type)
          {
            throw OpenMS::Exception::IllegalArgument(__FILE__, __LINE__, __FUNCTION__, "Error: Centroided data provided but profile spectra expected.");
          }

          pick(input[scan_idx], output[scan_idx], boundaries_s);
          boundaries_spec.push_back(boundaries_s);
        }
        setProgress(++progress);
      }
    }


    for (Size i = 0; i < input.getChromatograms().size(); ++i)
    {
      MSChromatogram chromatogram;
      std::vector<PeakBoundary> boundaries_c; // peak boundaries of a single chromatogram
      pick(input.getChromatograms()[i], chromatogram, boundaries_c);
      output.addChromatogram(chromatogram);
      boundaries_chrom.push_back(boundaries_c);
      setProgress(++progress);
    }
    endProgress();

    return;
  }